Как найти сторону квадрата если знаешь площадь

как найти сторону квадрата если известна только площадь?!



Ученик

(107),
закрыт



6 лет назад

Quantorus3d

Знаток

(277)


6 лет назад

Площадь на 4 делить не надо!!!!

А как найти ответы я не знаю.

Вот задача

Площадь участка равна 100м кв. Чему равна сторона.

Прошу! Без корня я ещё не знаю этого.

LK ОМСК-СТРОЙ

Ученик

(158)


6 лет назад

Как найти сторону квадрата если известна только площадь. Площадь делить на 2 и 4 нельзя так мы не узнаем его стороны. Единственно верный вариант это найти квадратный корень, но это 4 класс они этого ещё не проходят.

елена сисецкая

Профи

(546)


6 лет назад

В этом случае нужно подобрать два одинаковых числа произведение которых равнялось бы числу, обозначающему площадь квадрата. (другими словами, найти квадратный корень числа, обозначающего площадь квадрата) Формула площади квадрата S = а * а или S = а², значит, чтобы найти сторону нужно извлечь корень из площади а = √

ODuHOKuu_BOJIK

Мастер

(1507)


5 лет назад

Извлечь квадратный корень, если корни не проходили, то нужно найти с начало периметр S:4=P. А т. к. у квадрата все стороны равны, то P:4=x – это и есть сторона квадрата.
S – площадь
P – периметр
x – сторона квадрата

  • Все калькуляторы
  • /

  • Учеба и наука
  • /

  • Математика
  • /   Длина стороны квадрата

    Длина стороны квадрата

    Установить Длина стороны квадрата на мобильный

    Найти длину стороны квадрата
    зная площадь

    Длина стороны квадрата по площади
    Площадь квадрата S
    Результат

    Вычислить длину стороны квадрата
    зная диагональ

    длину стороны квадрата зная диагональ
    Диагональ квадрата d
    Результат

    Скачать калькулятор

    Рейтинг: 2.5 (Голосов 24)

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone – просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android – просто добавьте страницу
    «На главный экран»

    Сообщить об ошибке

    Смотрите также

    Сторона треугольника Стороны прямоугольного Стороны равнобедренного Стороны равностороннего
    Стороны прямоугольника Стороны ромба Стороны параллелограмма Ребро куба

    Александра

    523 дн. назад

    Клас клас клас!!! Не могла понять (сломала голову

    • reply

    Наталья

    820 дн. назад

    Класс!!! Не люблю считать. Вообще… Спасибо!!!

    • reply

    Николай

    1019 дн. назад

    Супер. И быстро. Мне нравится.

    • reply

    Добавить комментарий:

    Я не робот

    Квадрат

    Где d – диагональ квадрата.

    Квадрат

    Где S – площадь квадрата

    Квадрат

    Где r – радиус вписанной окружности

    Квадрат

    Где R – радиус описанной окружности

    Квадрат

    Где P – периметр квадрата.

    Квадрат

    • Квадрат  – это четырехугольник у которого все стороны равны AB = BC = CD = DA. 
    • Противоположные стороны квадрата параллельны, а смежные – перпендикулярны.
    • Все квадраты отличаются между собой только длиной стороны.

    Как найти длину стороны квадрата?

    Сторона квадрата может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.

    Квадрат с диагональю

    a =

    Квадрат с площадью

    a = S

    Квадрат с радиусом вписанной окружности

    a = 2r

    Квадрат с радиусом описанной окружности

    a = R2

    Квадрат с периметром

    a =

    Как найти сторону квадрата?

    Как найти сторону квадрата?

    Часто в геометрии необходимо найти длину стороны квадрата, при этом известны такие его параметры: периметр, площадь, длина диагонали.

    Квадрат — это ромб или прямоугольник, стороны которого равны между собой. Углы квадрата также равны между собой и имеют по 90° каждый. Рассмотрим, как найти сторону квадрата имея один из вышеперечисленных параметров.

    Нахождение стороны квадрата по его периметру

    В этом случае, чтобы найти длину стороны квадрата, необходимо число значения периметра квадрата разделить на 4 (поскольку квадрат имеет 4 стороны, равные между собой): z = P/4, где z — это длина стороны квадрата; P — это периметр квадрата.

    Единицей измерения одной стороны квадрата будет та же самая единица измерения длины, как у его периметра. Например, если задан периметр квадрата в миллиметрах, то также длина его стороны будет в миллиметрах.

    Например: Задан периметр квадрата 40 метров. При решении этой задачи мы получим: z = 40/4 = 10. Длина стороны квадрата — 10 метров.

    Нахождение стороны квадрата по его площади

    В этом случае, чтобы найти длину стороны, необходимо добыть квадратный корень числа значения площади (поскольку площадь квадрата равна квадрату его стороны): z = vS, где z — это длина стороны квадрата; S — это площадь квадрата.

    Единицей измерения одной стороны квадрата будет та же самая единица измерения длины, как у его площади. Например, если задана площадь квадрата в миллиметрах квадратных — длина его стороны будет просто в миллиметрах.

    Например: Задана площадь квадрата 16 квадратных метров. При решении этой задачи мы получим: z = v9 = 3. Длина стороны квадрата — 4 метра.

    Нахождение стороны квадрата по его диагонали

    В этом случае длина стороны квадрата будет равна длине диагонали квадрата, разделенной на корень квадратный из 2 (за теоремой Пифагора, поскольку смежные стороны квадрата и его диагональ составляют равнобедренный прямоугольный треугольник). Чтобы найти сторону квадрата по диагонали необходимо: z = d/v2 (так как z 2 + z 2 = d 2 ), где: z — это длина стороны квадрата; d — это длина диагонали квадрата.

    Единицей измерения одной стороны квадрата будет та же самая единица измерения длины, как у его диагонали. Например, если задана диагональ квадрата в миллиметрах, то также длина его стороны будет в миллиметрах.

    Например: Задана диагональ квадрата 20 метров. При решении этой задачи мы получим: z = 20/v2, это приблизительно равно 20/1,4142. Длина стороны квадрата — 20/v2 метров, или, приблизительно, 14,142 метров.

    Теперь Вы знаете, как найти длину стороны квадрата, если заданы его периметр, площадь или длина диагонали.

    Сторона квадрата

    Квадрат, наряду с кругом, считается идеальной геометрической фигурой. Квадрат является не только параллелограммом, но и ромбом, и прямоугольником одновременно, так как у него все стороны равны и все углы прямые. Более того, квадрат является представителем ряда правильных многоугольников, поэтому к нему относятся и их свойства тоже. Вычислить сторону квадрата можно несколькими различными способами: через периметр квадрата, через площадь квадрата или через диагональ квадрата, а также радиусы вписанной и описанной окружностей.

    Поскольку все стороны квадрата между собой равны, а периметр многоугольника – это сумма всех его сторон, то найти сторону можно, разделив периметр на четыре (количество равных сторон):

    Площадь квадрата – это его сторона, возведенная во вторую степень, следовательно, если нам нужно найти сторону через площадь, то необходимо извлечь из нее квадратный корень:

    Если дана диагональ квадрата, то исходя из теоремы Пифагора в прямоугольном треугольнике, который образует диагональ, сторона будет равна диагонали, деленной на корень из двух:
    a 2 +a 2 =d 2
    2a 2 =d 2

    Сторона квадрата

    Четырехугольник, у которого все четыре стороны равны, противоположные — параллельны, а углы — прямые, называется квадратом. Диагональ квадрата (d) делит его на 2 одинаковых прямоугольных треугольника, у которых гипотенузой является диагональ (d) квадрата, а катетами — две одинаковых стороны квадрата (а). Как известно по теореме Пифагора, в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Т.е. d 2 = а 2 + а 2 = 2а 2 .
    Отсюда, сторона квадрата (а) равна диагонали квадрата (d) деленной на корень квадратный из двух.
    Сторона квадрата


    1. Формула стороны квадрата через диагональ

    сторона квадрата через диагональ

    a – сторона квадрата

    d – диагональ квадрата

    Формула стороны квадрата, (a):


    2. Формула стороны квадрата через радиус вписанной окружности

    сторона квадрата через радиус вписанной окружности

    a – сторона квадрата

    R – радиус вписанной окружности

    D – диаметр вписанной окружности

    Формула стороны квадрата, (a):

    Формула стороны квадрата


    3. Формула стороны квадрата через радиус описанной окружности

    сторона квадрата через радиус описанной окружности

    a – сторона квадрата

    R – радиус описанной окружности

    D – диаметр описанной окружности

    d – диагональ

    Формула стороны квадрата, (a):

    Формула стороны квадрата


    4. Формула стороны квадрата через площадь и периметр

    сторона квадрата через площадь и периметр

    a – сторона квадрата

    S – площадь квадрата

    P – периметр квадрата

    Формула стороны квадрата, (a):

    Формула стороны квадрата через площадь и периметр


    5. Формула стороны квадрата через линию выходящую из угла на середину стороны квадрата

    сторона квадрата через линию выходящую из угла на середину стороны квадрата

    a – сторона квадрата

    C – линия выходящая из угла на середину стороны квадрата

    Формула стороны квадрата, (a):



    Формула площади квадрата

    Формула периметра квадрата

    Все формулы по геометрии

    Подробности

    Опубликовано: 13 октября 2013

    Обновлено: 13 августа 2021

    Добавить комментарий