Как найти сторону квадрата описанного около круга

При помощи нашего калькулятора вы легко сможете узнать длину стороны квадрата описанного около окружности.

Для того, что бы узнать длину стороны квадрата описанного около окружности необходимо с тем что у этих двух фигур общее, а одной из общих величин у них является сторона квадрата которая равна диаметру круга.

a=D

Таким образом для нахождения длину стороныы квадрата описанного около окружности, через этот круг, необходимо найти значение диаметра.

Для нахождения диаметра окружности нам необходимо знать одну из его величин а именно:

  1. либо площадь круга, обозначаемая буквой S,
  2. либо периметр круга, обозначаемый буквой P,
  3. либо радиус круга, обозначаемый буквой R,

1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

D=P/π

3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

D=2R

Соответственно если мы знаем диаметр круга, то мы знаем и длинц стороны описанного квадрата,

a=D

Онлайн калькулятор длины стороны а квадрата описанного около окружности. Как узнать длину стороны квадрата описанного около окружности.

Вычислить длину стороны квадрата описанного около окружности через:

Радиус круга R:

Для того, что бы узнать длину стороны квадрата описанного около окружности необходимо с тем что у этих двух фигур общее, а одной из общих величин у них является сторона квадрата которая равна диаметру круга.

Таким образом для нахождения длину стороныы квадрата описанного около окружности, через этот круг, необходимо найти значение диаметра.

Для нахождения диаметра окружности нам необходимо знать одну из его величин а именно:

  1. либо площадь круга, обозначаемая буквой S,
  2. либо периметр круга, обозначаемый буквой P,
  3. либо радиус круга, обозначаемый буквой R,

1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

Соответственно если мы знаем диаметр круга, то мы знаем и длинц стороны описанного квадрата,

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

. (1)

Из равенства (1) найдем d:

. (2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Ответ:

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Ответ:

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Ответ:

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

(5)

Из формулы (5) найдем R:

(6)

или, умножая числитель и знаменатель на , получим:

. (7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Ответ:

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

. (8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:

Ответ:

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

(9)

где − сторона квадрата.

Пример 6. Сторона квадрата равен . Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:

Ответ:

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

(10)

Так как AD и BC перпендикулярны, то

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

(12)

Эти реугольники также равнобедренные. Тогда

Из (13) следует, что

(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).

Все формулы стороны квадрата

1. Формула стороны квадрата через диагональ

a – сторона квадрата

d – диагональ квадрата

Формула стороны квадрата, ( a ):

2. Формула стороны квадрата через радиус вписанной окружности

a – сторона квадрата

R – радиус вписанной окружности

D – диаметр вписанной окружности

Формула стороны квадрата, ( a ):

3. Формула стороны квадрата через радиус описанной окружности

a – сторона квадрата

R – радиус описанной окружности

D – диаметр описанной окружности

d – диагональ

Формула стороны квадрата, ( a ):

4. Формула стороны квадрата через площадь и периметр

a – сторона квадрата

S – площадь квадрата

P – периметр квадрата

Формула стороны квадрата, ( a ):

5. Формула стороны квадрата через линию выходящую из угла на середину стороны квадрата

a – сторона квадрата

C – линия выходящая из угла на середину стороны квадрата

Формула стороны квадрата, ( a ):

[spoiler title=”источники:”]

http://matworld.ru/geometry/kvadrat.php

http://www-formula.ru/storona-kvadrata

[/spoiler]


1. Формула стороны квадрата через диагональ

сторона квадрата через диагональ

a – сторона квадрата

d – диагональ квадрата

Формула стороны квадрата, (a):


2. Формула стороны квадрата через радиус вписанной окружности

сторона квадрата через радиус вписанной окружности

a – сторона квадрата

R – радиус вписанной окружности

D – диаметр вписанной окружности

Формула стороны квадрата, (a):

Формула стороны квадрата


3. Формула стороны квадрата через радиус описанной окружности

сторона квадрата через радиус описанной окружности

a – сторона квадрата

R – радиус описанной окружности

D – диаметр описанной окружности

d – диагональ

Формула стороны квадрата, (a):

Формула стороны квадрата


4. Формула стороны квадрата через площадь и периметр

сторона квадрата через площадь и периметр

a – сторона квадрата

S – площадь квадрата

P – периметр квадрата

Формула стороны квадрата, (a):

Формула стороны квадрата через площадь и периметр


5. Формула стороны квадрата через линию выходящую из угла на середину стороны квадрата

сторона квадрата через линию выходящую из угла на середину стороны квадрата

a – сторона квадрата

C – линия выходящая из угла на середину стороны квадрата

Формула стороны квадрата, (a):



Формула площади квадрата

Формула периметра квадрата

Все формулы по геометрии

Подробности

Опубликовано: 13 октября 2013

Обновлено: 13 августа 2021

Как найти длину стороны квадрата

Квадрат – один из простейших плоских многоугольников правильной формы, все углы в вершинах которого равны 90°. Не так много параметров, определяющих размеры квадрата, можно назвать – это длина его стороны, длина диагонали, площадь, периметр и радиусы вписанной и описанной окружностей. Знание любого из них позволяет без проблем вычислить все остальные.

Как найти длину стороны квадрата

Инструкция

Если вам известен периметр (Р) квадрата, то формула вычисления длины его стороны (a) будет очень проста – уменьшите эту величину в четыре раза: a = P/4. Например, при длине периметра в 100 см длина стороны должна быть равна 100/4 = 25 см.

Знание длины диагонали (l) этой фигуры тоже не особо усложнит формулу расчета длины стороны (a), но при этом придется извлекать квадратный корень из двойки. Сделав это, разделите на полученную величину известную длину диагонали: a = L/√2. Так длина диагонали в 100 см определяет длину стороны размером в 100/√2 ≈ 70,71 см.

Заданная в условиях задачи площадь (S) такого многоугольника тоже потребует излечения корня второй степени для вычисления длины стороны (a). В этом случае извлекайте корень из единственной известной величины: a = √S. Например, площадь в 100 см² соответствует длине стороны в √100 = 10 см.

Если в условиях задачи приведен диаметр вписанной в квадрат окружности (d), это означает, что вам досталась задача не на вычисления, а на знание определений вписанной и описанной окружностей. Численный ответ дан в условиях задачи, так как длина стороны (a) в этом случае совпадает с диаметром: a = d. А если в условиях вместо диаметра приведен радиус (r) такой окружности, увеличьте его вдвое: a = 2*r. Например, радиус вписанной окружности, равный 100 см может быть только у квадрата со стороной в 100*2 = 200 см.

Диаметр описанной около квадрата окружности (D) совпадает с диагональю четырехугольника, поэтому используйте для вычисления длины стороны (a) формулу из второго шага, просто изменив в нем обозначение: a = D/√2. Зная радиус (R) вместо диаметра, трансформируйте эту формулу таким образом: a = 2*R/√2 = √2*R. Например, если радиус описанной окружности составляет 100 см, сторона квадрата должна быть равна √2*100 ≈ 70,71 см.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Квадрат

Где d – диагональ квадрата.

Квадрат

Где S – площадь квадрата

Квадрат

Где r – радиус вписанной окружности

Квадрат

Где R – радиус описанной окружности

Квадрат

Где P – периметр квадрата.

Квадрат

  • Квадрат  – это четырехугольник у которого все стороны равны AB = BC = CD = DA. 
  • Противоположные стороны квадрата параллельны, а смежные – перпендикулярны.
  • Все квадраты отличаются между собой только длиной стороны.

Как найти длину стороны квадрата?

Сторона квадрата может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.

Квадрат с диагональю

a =

Квадрат с площадью

a = S

Квадрат с радиусом вписанной окружности

a = 2r

Квадрат с радиусом описанной окружности

a = R2

Квадрат с периметром

a =

Добавить комментарий