Правильная четырехугольная призма
Определение.
Правильная четырехугольная призма – это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники
Боковое ребро – это общая сторона двух смежных боковых граней
Высота призмы – это отрезок, перпендикулярный основаниям призмы
Диагональ призмы – отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани
Диагональная плоскость – плоскость, которая проходит через диагональ призмы и ее боковые ребра
Диагональное сечение – границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
Перпендикулярное сечение (ортогональное сечение) – это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам
Элементы правильной четырехугольной призмы
На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:
- Основания ABCD и A1B1C1D1 равны и параллельны друг другу
- Боковые грани AA1D1D, AA1B1B, BB1C1C и CC1D1D, каждая из которых является прямоугольником
- Боковая поверхность – сумма площадей всех боковых граней призмы
- Полная поверхность – сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
- Боковые ребра AA1, BB1, CC1 и DD1.
- Диагональ B1D
- Диагональ основания BD
- Диагональное сечение BB1D1D
- Перпендикулярное сечение A2B2C2D2 .
Свойства правильной четырехугольной призмы
- Основаниями являются два равных квадрата
- Основания параллельны друг другу
- Боковыми гранями являются прямоугольники
- Боковые грани равны между собой
- Боковые грани перпендикулярны основаниям
- Боковые ребра параллельны между собой и равны
- Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
- Углы перпендикулярного сечения – прямые
- Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
- Перпендикулярное (ортогональное сечение) параллельно основаниям
Формулы для правильной четырехугольной призмы
Указания к решению задач
При решении задач на тему “правильная четырехугольная призма” подразумевается, что:
Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия – призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом в форуме. Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .
Задача.
В правильной четырёхугольной призме площадь основания 144 см2, а высота 14 см. Найти диагональ призмы и площадь полной поверхности.
Решение.
Правильный четырехугольник – это квадрат.
Соответственно, сторона основания будет равна
√144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√( 122 + 122 ) = √288 = 12√2
Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√( ( 12√2 )2 + 142 ) = 22 см
Ответ: 22 см
Задача
Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.
Решение.
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
a2 + a2 = 52
2a2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
h2 + 12,5 = 42
h2 + 12,5 = 16
h2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
S = 2a2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см2 .
Ответ: 25 + 10√7 ≈ 51,46 см2 .
15306.1214
Прямая призма |
Описание курса
| Куб
как найти сторону основания четырёхугольной призмы?
Знаток
(326),
закрыт
6 лет назад
Дополнен 10 лет назад
основанием прямой призмы служит ромб; диагонали призмы равны 20 и 18 дм, высота призмы 16 дм. найдите сторону основания призмы
Семен Аркадьевич
Высший разум
(340149)
10 лет назад
Зная диагонали призмы и высоту призмы по теореме Пифагора находим диагонали ромба.
Зная диагонали ромба по теореме Пифагора находим сторону ромба т. е. сторону основания призмы. Если возникнут вопросы – пиши в агент.
Содержание
- Четырехугольная призма: высота, диагональ, площадь
- Понятие о призме
- Что такое призма четырехугольная?
- Виды параллелепипедов
- Поверхность призмы и ее площадь
- Площадь прямоугольной призмы с квадратным основанием
- Площадь косоугольного параллелепипеда
- Длина диагонали прямоугольного параллелепипеда
- Объем призмы
- Задача с прямоугольным параллелепипедом
- Задача с косоугольным параллелепипедом
Четырехугольная призма: высота, диагональ, площадь
В школьном курсе стереометрии одной из самых простых фигур, которая имеет не нулевые размеры вдоль трех пространственных осей, является четырехугольная призма. Рассмотрим в статье, что это за фигура, из каких элементов она состоит, а также как можно рассчитать площадь ее поверхности и объем.
Понятие о призме
В геометрии призмой полагают пространственную фигуру, которая образована двумя одинаковыми основаниями и боковыми поверхностями, которые соединяют стороны этих оснований. Отметим, что оба основания переходят друг в друга с помощью операции параллельного переноса на некоторый вектор. Такое задание призмы приводит к тому, что все ее боковые стороны всегда являются параллелограммами.
Количество сторон основания может быть произвольным, начиная от трех. При стремлении этого числа к бесконечности, призма плавно переходит в цилиндр, поскольку ее основание становится кругом, а боковые параллелограммы, соединяясь, образуют цилиндрическую поверхность.
Как и любой полиэдр, призма характеризуется сторонами (плоскости, которые ограничивают фигуру), ребрами (отрезки, по которым пересекаются две любые стороны) и вершинами (точки встречи трех сторон, для призмы две из них являются боковыми, а третья — основанием). Количества названных трех элементов фигуры связаны между собой следующим выражением:
Здесь Р, С и В — это число ребер, сторон и вершин, соответственно. Это выражение является математической записью теоремы Эйлера.
Выше приведен рисунок, где показаны две призмы. В основании одной из них (A) лежит правильный шестиугольник, и стороны боковые перпендикулярны основаниям. Рисунок B демонстрирует другую призму. Ее боковые стороны уже не перпендикулярны основаниям, а основание представляет собой правильный пятиугольник.
Что такое призма четырехугольная?
Как понятно из описания выше, тип призмы в первую очередь определяется видом многоугольника, который образует основание (оба основания одинаковые, поэтому речь можно вести об одном из них). Если этим многоугольником является параллелограмм, то мы получаем четырехугольную призму. Таким образом, все стороны этого вида призмы являются параллелограммами. Четырехугольная призма имеет собственное название — параллелепипед.
Количество сторон параллелепипеда равно шести, причем каждая сторона имеет аналогичную параллельную ей. Поскольку основания параллелепипеда — это две стороны, то оставшиеся четыре являются боковыми.
Количество вершин параллелепипеда равно восьми, в чем легко убедиться, если вспомнить, что вершины призмы образуются только на вершинах базовых многоугольников (4х2=8). Применяя теорему Эйлера, получаем число ребер:
Из 12-ти ребер, только 4 образованы самостоятельно боковыми сторонами. Остальные 8 лежат в плоскостях оснований фигуры.
Далее в статье речь пойдет только о четырехугольных призмах.
Виды параллелепипедов
Первый тип классификации заключается в особенности параллелограмма, лежащего в основании. Он может быть следующего вида:
Второй тип классификации заключается в угле, при котором боковая сторона пересекает основание. Здесь возможно два разных случая:
- этот угол не является прямым, тогда призму называют косоугольной или наклонной;
- угол равен 90 o , тогда такая призма является прямоугольной или просто прямой.
Третий тип классификации связан с высотой призмы. Если призма является прямоугольной, и в основании лежит либо квадрат, либо прямоугольник, тогда ее называют прямоугольным параллелепипедом. Если же в основании находится квадрат, призма является прямоугольной, а ее высота равна длине стороны квадрата, то мы получаем всем известную фигуру куб.
Поверхность призмы и ее площадь
Совокупность всех точек, которые лежат на двух основаниях призмы (параллелограммах) и на ее боковых сторонах (четыре параллелограмма), образуют поверхность фигуры. Площадь этой поверхности может быть вычислена, если рассчитать площадь основания и эту величину для боковой поверхности. Тогда их сумма даст искомое значение. Математически это записывается так:
Здесь So и Sb — площадь основания и боковой поверхности, соответственно. Цифра 2 перед So появляется в виду того, что оснований два.
Отметим, что записанная формула справедлива для любой призмы, а не только для площади четырехугольной призмы.
Полезно напомнить, что площадь параллелограмма Sp вычисляется по формуле:
Где символы a и h обозначают длину одной из его сторон и высоту, проведенную к этой стороне, соответственно.
Площадь прямоугольной призмы с квадратным основанием
В правильной четырехугольной призме основание представляет собой квадрат. Обозначим для определенности его сторону буквой a. Чтобы рассчитать площадь правильной четырехугольной призмы, следует знать ее высоту. Согласно определению для этой величины, она равна длине перпендикуляра, опущенного из одного основания на другое, то есть равна расстоянию между ними. Обозначим ее буквой h. Поскольку все боковые грани перпендикулярны основаниям для рассматриваемого типа призмы, то высота правильной четырехугольной призмы будет равна длине ее бокового ребра.
В общей формуле для площади поверхности призмы стоит два слагаемых. Площадь основания в данном случае рассчитать просто, она равна:
Чтобы вычислить площадь боковой поверхности, рассуждаем следующим образом: эта поверхность образована 4-мя одинаковыми прямоугольниками. Причем стороны каждого из них равны a и h. Это означает, что площадь Sb буде равна:
Заметим, что произведение 4*a — это периметр квадратного основания. Если обобщить это выражение на случай произвольного основания, тогда для прямоугольной призмы боковую поверхность можно рассчитать так:
Где Po — периметр основания.
Возвращаясь к задаче расчета площади правильной четырехугольной призмы, можно записать итоговую формулу:
Площадь косоугольного параллелепипеда
Вычислить ее несколько сложнее, чем для прямоугольного. В этом случае площадь основания четырехугольной призмы вычисляется по той же формуле, что и для параллелограмма. Изменения касаются способа определения площади боковой поверхности.
Для этого используется та же формула через периметр, что приведена в пункте выше. Только теперь в ней появятся несколько иные множители. Общая формула для Sb в случае косоугольной призмы имеет вид:
Здесь с — это длина бокового ребра фигуры. Величина Psr является периметром прямоугольного среза. Строится этот сред следующим образом: необходимо плоскостью пересечь все боковые грани таким образом, чтобы она была перпендикулярна всем им. Образованный прямоугольник и будет искомым срезом.
На рисунке выше приведен пример косоугольного параллелепипеда. Заштрихованное его сечение с боковыми сторонами образует прямые углы. Периметр сечения равен Psr. Он образован четырьмя высотами боковых параллелограммов. Для этой четырехугольной призмы площадь боковой поверхности рассчитывается по указанной выше формуле.
Длина диагонали прямоугольного параллелепипеда
Диагональ параллелепипеда — это отрезок, который соединяет две вершины, не имеющие общих сторон, которые их образуют. В любой четырехугольной призме диагоналей всего четыре. Для прямоугольного параллелепипеда, в основании которого расположен прямоугольник, длины всех диагоналей равны друг другу.
Ниже на рисунке приведена соответствующая фигура. Красный отрезок является ее диагональю.
Рассчитать ее длину очень просто, если вспомнить о теореме Пифагора. Каждый школьник может получить искомую формулу. Она имеет следующую форму:
Здесь D — длина диагонали. Остальные символы — это длины сторон параллелепипеда.
Многие путают диагональ параллелепипеда с диагоналями его сторон. Ниже приводится рисунок, где цветными отрезками изображены диагонали сторон фигуры.
Длина каждой из них также определяется по теореме Пифагора и равна квадратному корню из суммы квадратов соответствующих длин сторон.
Объем призмы
Помимо площади правильной четырехугольной призмы или других видов призм, для решения некоторых геометрических задач следует знать и их объем. Эта величина для абсолютно любой призмы вычисляется по следующей формуле:
Если призма является прямоугольной, тогда достаточно вычислить площадь ее основания и умножить его на длину ребра боковой стороны, чтобы получить объем фигуры.
Если призма является правильной четырехугольной, тогда ее объем будет равен:
Легко видеть, что эта формула преобразуется в выражение для объема куба, если длина бокового ребра h равна стороне основания a.
Задача с прямоугольным параллелепипедом
Для закрепления изученного материала решим следующую задачу: имеется прямоугольный параллелепипед, стороны которого равны 3 см, 4 см и 5 см. Необходимо рассчитать площадь его поверхности, длину диагонали и объем.
Для определенности будем считать, что основанием фигуры является прямоугольник со сторонами 3 см и 4 см. Тогда его площадь равна 12 см 2 , а период составляет 14 см. Используя формулу для площади поверхности призмы, получаем:
Для определения длины диагонали и объема фигуры можно непосредственно воспользоваться приведенными выше выражениями:
Задача с косоугольным параллелепипедом
Ниже на рисунке изображена косоугольная призма. Ее стороны равны: a=10 см, b = 8 см, с = 12 см. Необходимо найти площадь поверхности этой фигуры.
Сначала определим площадь основания. Из рисунка видно, что острый угол равен 50 o . Тогда его площадь равна:
Для определения площади боковой поверхности, следует найти периметр заштрихованного прямоугольника. Стороны этого прямоугольника равны a*sin(45 o ) и b*sin(60 o ). Тогда периметр этого прямоугольника равен:
Полная площадь поверхности этого параллелепипеда равна:
Подставляем данные из условия задачи для длин сторон фигуры, получаем ответ:
Из решения этой задачи видно, что для определения площадей косоугольных фигур используются тригонометрические функции.
Источник
-
Вы здесь:
- Главная
- Правильная четырехугольная призма
Правильная четырехугольная призма
Четырехугольная призма — это многогранник, две грани которого являются равными квадратами, лежащими в параллельных плоскостях, а остальные грани (боковые грани) — параллелограммами, имеющими общие стороны с этими квадратами.
Правильная четырехугольная призма – это четырехугольная призма у которой основания квадраты, а боковые грани прямоугольники.
Данное геометрическое тело по своим свойствам и характеристикам соответствует – параллелепипеду.
Основания призмы являются равными квадратами.
Боковые грани призмы являются прямоугольниками.
Боковые рёбра призмы параллельны и равны.
Размеры призмы можно выразить через длину стороны a и высоту h.
Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
Формула площади поверхности четырехугольной призмы:
Объём призмы равен произведению её высоты на площадь основания.
Формула объема правильной четырехугольной призмы:
Правильная четырехугольная призма может быть вписана в цилиндр.
Формула радиуса цилиндра вписанной четырехугольной призмы:
Двойственным многогранником прямой призмы является бипирамида.
Исторически понятие “призма” возникло из латыни и означало – нечто отпиленное.
Анимация демонстрирует как две параллельные плоскости отрезая лишнее формируют два основания призмы. Из одной заготовки можно получить как правильную призму, так и наклонную призму.
Геометрические размеры готовой призмы (мм):
Длина = 68
Ширина = 68
Высота = 52
Геометрические размеры готовой призмы (мм):
Длина = 59
Ширина = 59
Высота = 83
Геометрические размеры готовой призмы (мм):
Длина = 43
Ширина = 43
Высота = 110
посмотреть другие призмы
Популярное
Почему бумага может быть такой прочной?
Почему бумага? Иногда приходится слышать вопрос: «Почему вы выбрали для сборки многогранников такой материал как бумага (или точнее дизайнерский картон)? Это же…
Выбрать один продукт
В настоящее время покупатель столкнулся с настолько широким ассортиментом товаров, что сил на то чтобы сделать рациональный выбор уже не хватает.
И реклама иногда только усиливает…
Многогранники в архитектуре. Часть 5
Архитекторы с древних времен применяли элементы многогранников в создании своих творений. В современно мире этот подход выделяет здания среди тысяч других.
Головоломка звёздчатый октаэдр
Это новый, весьма необычный способ создать модель Звёздчатого многогранника открытого 1619 году немецким математиком и астрономом Иоганном Кеплером.
Многогранники в кино
Современный кинематограф постарался привлечь внимание зрителя, используя геометрические формы “инопланетного происхождения”.
Внешняя сфера многогранников
Совершенство сферической формы издавна привлекало внимание мыслителей и учёных, которые с помощью сфер пытались объяснить гармонию окружающего мира.
В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).
Как выглядит призма
Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.
Рисунок, на котором изображена четырёхугольная призма, показан ниже.
На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:
- Основы призмы — квадраты LMNO и L₁M₁N₁O₁.
- Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
- Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
- Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).
Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.
Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.
Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).
Площадь поверхности и объём
Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:
V = Sосн·h
Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:
V = a²·h
Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:
V = a³
Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.
Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:
Sбок = Pосн·h
С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:
Sбок = 4a·h
Для куба:
Sбок = 4a²
Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:
Sполн = Sбок + 2Sосн
Применительно к четырёхугольной правильной призме формула имеет вид:
Sполн = 4a·h + 2a²
Для площади поверхности куба:
Sполн = 6a²
Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.
Нахождение элементов призмы
Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:
- длина стороны основания: a = Sбок / 4h = √(V / h),
- длина высоты или бокового ребра: h = Sбок / 4a = V / a²,
- площадь основания: Sосн = V / h,
- площадь боковой грани: Sбок. гр = Sбок / 4.
Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:
Sдиаг = ah√2
Для вычисления диагонали призмы используется формула:
dприз = √(2a² + h²)
Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.
Примеры задач с решениями
Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.
Задание 1.
В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?
Решение.
Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:
V₁ = ha² = 10a²
Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:
V₂ = h (2a)² = 4ha²
Поскольку V₁ = V₂, можно приравнять выражения:
10a² = 4ha²
После сокращения обеих частей уравнения на a² получается:
10 = 4h
В результате новый уровень песка составит h = 10 / 4 = 2,5 см.
Задание 2.
ABCDA₁B₁C₁D₁ правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.
Решение.
Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.
Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.
Длина любого ребра определяется через известную диагональ:
a = d / √2 = 6√2 / √2 = 6
Площадь полной поверхности находится по формуле для куба:
Sполн = 6a² = 6·6² = 216
Задание 3.
В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?
Решение.
Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.
Длина комнаты составляет a = √9 = 3 м.
Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².
Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.
Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.
Как найти площадь куба
Проститутки Ростов на Дону rostovchanotki.ru