steshare624
Вопрос по математике:
В основание прямой призмы лежит ромб .Найти сторону основания призмы если диагонали призмы равны 8 и 12 см,а высота 4 см
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 1
unthotuiemag889
РЕШЕНИЕ на рисунке в приложении.
Диагонали ромба пересекаются под прямым углом.
Можно применить теорему Пифагора.
ОТВЕТ Сторона а = 2√13
Дополнительно: площадь грани S=8√13
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Математика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.
Ответ: 9 см
Объяснение:
дано: ABCDA₁B₁C₁D₁ – прямая призма, ABCD – ромб. AC₁=10 см, BD₁=16 см, H=4 см
найти: АD
решение.
ABCDA₁B₁C₁D₁ – прямая призма, => боковые грани призмы прямоугольники (боковые ребра _|_ основанию)
1. ΔACC₁:
<ACC₁=90°
гипотенуза AC₁=10 см – диагональ призмы
катет CC₁=4 см – высота призмы
катет AC – диагональ основания призмы, найти по теореме Пифагора:
AC₁²=CC₁²+AC²
10²=4²+AC², AC²=84, AC=√84. √84=√(4·21)=2·√21
AC=2√21 см
2. ΔBDD₁:
<BDD₁=90°
гипотенуза BD₁=16 см – диагональ призмы
катет DD₁=4 см – высота призмы
катет BD- диагональ основания призмы, найти по теореме Пифагора:
BD₁²=DD₁²+BD²
16²=4²+BD², BD²=240, BD=√240. √240=√(16·15)=4·√15
BD=4·√15 см
3. ΔAOD:
<AOD=90°(диагонали ромба перпендикулярны)
катет AO=AC/2, AO=√21 см (диагонали ромба в точке пересечения делятся пополам)
катет OD=BD/2, OD=2√15 см
гипотенуза AD – сторона ромба, найти по теореме Пифагора:
AD²=AO²+OD²
AD²=(√21)²+(2√15)², AD²=81
AD=9 см
ответ сторона ромба 9 см
Приложения:
Задача.
Основание прямой призмы – ромб с углом 120 градусов. БОльшая диагональ призмы равна 8см и составляет с боковым ребром угол 60 градусов. Найти сторону ромба и меньшую диагональ призмы.
Решение.
Поскольку диагональ AC1 образует с ребром AA1 угол 60 градусов, призма является прямой, то угол C1AC равен 90 – 60 = 30 градусов.
Исходя из этого cos 30 = AC / AC1 = √3 / 2
AC / AC1 = √3 / 2
AC / 8 = √3 / 2
2AC = 8√3
AC = 4√3
Поскольку угол ADC равен 120 градусам, то угол BAD равен 60 градусам. (Сумма углов выпуклого четырехугольника равна 180(n-2) = 360 градусам, углы ромба попарно равны).
Исходя из того, что угол BAD равен 60 градусам, треугольники ABD и BDC- равносторонние. (Так как ABCD – ромб, то они равнобедренные, следовательно углы при основании равны, значит они равны ( 180 – 60 ) / 2 = 60 градусов. Треугольник, у которого все углы равны – равносторонний).
Диагонали параллелограмма в точке пересечения делятся пополам. Таким образом, AO = AC / 2 = 4√3 / 2 = 2√3
Поскольку треугольник ABD правильный, то AO является одновременно высотой и биссектрисой. Учтем, что высота правильного треугольника равна
h = а √3 / 2, тогда
а √3 / 2 = 2√3
а = 4
Зная, что BD = 4 см, DD1 = 4 см, по теореме Пифагора найдем меньшую диагональ:
BD12 = 4 + 4
Таким образом, сторона ромба равна 4 см, а, так как треугольники ABD и BDC- равносторонние, то и меньшая диагональ ромба равна 4 см.
Для того, чтобы найти длину ребра призмы, учтем, что диагональ AC1 = 8 см, а угол C1AC = 30 градусам. Тогда sin 30 = C1C / AC1 = 1/2
C1C / 8 = 1/2
C1C = 4 см
Зная что BD = 4 см (меньшая диагональ ромба), D1D = 4 см (ребро призмы), длину меньшей диагонали призмы найдем по теореме Пифагора:
BD12 = DD12 + BD2
BD12 = 42 + 42
BD12 = 32
BD1 = 4√2
Ответ: Сторона ромба – 4 см, меньшая диагональ призмы с ромбом в основании равна 4√2 см.
0
Параллелограмм в основании призмы |
Описание курса
| Пирамида. Решение задач
1) Найдём диагонали основания по Пифагору.
D = √(20² – 16²) = √(400 – 256) = √144 =
12
d
= √(18² – 16²) = √(324 – 256) = √68
a = √(D +d)/2
a
= √(12² + (√68)²)/2 = √(144 + 68)/2 =√212/2 = √53
Ответ: √53
дм.
2) Основания
– квадраты. D –
диагональ большего основания, d
– диагональ меньшего основания.
Диагональное сечение – трапеция высотой 4 и с основаниями D и d.
D =
8√2; d = 2√2
S =
1/2*(8√2 + 2√2)*4 = 1/2* 10√2* 4 = 20√2
Ответ: 20√2
дм².
3) ABC – равносторонний треугольник, EO – радиус вписанной окружности, r = a√3/6.
EO =
4√3/6 = 2√3/3
DE – апофема, ∠EDO = 90 – 60 = 30°
⟹ DE = 2EO = 4√3/3
DO – высота пирамиды, DO = √(DE² – EO²)
DO = √((4√3/3)² – (2√3/3)²) = √(16*3/9 – 4*3/9) = √(48/9 – 12/9) = √(36/9) = √4 = 2
V = ha²/4√3
V = 2*4²/4√3 = 2*16/4√3 = 8/√3 = 8√3/3
Sосн. = √3/4 * a²; Sбок. = 1/2PL
S осн. = 4²*√3/4 = 16√3/4 = 4√3; Sбок. = 1/2*16*4√3/3 = 32√3/3
S = 4√3 + 32√3/3 = 12√3/3 + 32√3/3 = 48√3/3 = 16√3
Ответ: V
= 8√3/3 см³, S = 16√3 см².
Призма
Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.
Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.
Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.
Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.
$С_1Н$ – высота
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.
Формулы вычисления объема и площади поверхности призмы:
Чтобы были понятны формулы, введем обозначения:
$P_{осн}$ – периметр основания;
$S_{осн}$ – площадь основания;
$S_{бок}$ – площадь боковой поверхности;
$S_{п.п}$ – площадь полной поверхности;
$h$ – высота призмы.
$S_{бок}=P_{осн}·h$
$S_{п.п}=S_{бок}+2S_{осн}$
$V=S_{осн}·h$
В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.
В основании лежит треугольник.
- $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$
- $S={a·b·sinα}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
- Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$
- $S=p·r$, где $r$ – радиус вписанной окружности
- $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности
- Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.
В основании лежит четырехугольник
1. Прямоугольник
$S=a·b$, где $а$ и $b$ – смежные стороны.
2. Ромб
$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба
$S=a^2·sinα$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.
3. Трапеция
$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.
Прямая призма называется правильной, если ее основания – правильные многоугольники.
Рассмотрим площади правильных многоугольников:
1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны.
2. Квадрат
$S=a^2$, где $а$ – сторона квадрата.
3. Правильный шестиугольник
Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:
$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ – сторона правильного шестиугольника.
Пример:
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.
Решение:
Построим прямую призму, в основании которой лежит ромб.
Распишем формулу площади полной поверхности:
$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$
В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$
Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.
Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.
$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$
$Р=13·4=52$
Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.
$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$
Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:
$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$
Ответ: $1280$
Цилиндр – это та же призма, в основании которой лежит круг.
$S_{бок}=P_{осн}·h=2πRh$
$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$
$V=S_{осн}·h=πR^2 h$
Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.
Средняя линия треугольника параллельна основанию и равна его половине.
$MN$ – средняя линия, так как соединяет середины соседних сторон.
$MN {//} AC, MN = {AC}/{2}$
Подобие треугольников
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.
Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)
- Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
- Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Прямоугольный треугольник и его свойства:
В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
- Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
- Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
$AC^2+BC^2=AB^2$
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.
Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.
- Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | ${1}/{2}$ | ${√2}/{2}$ | ${√3}/{2}$ |
$cosα$ | ${√3}/{2}$ | ${√2}/{2}$ | ${1}/{2}$ |
$tgα$ | ${√3}/{3}$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | ${√3}/{3}$ |
Теорема синусов
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ – радиус описанной около треугольника окружности.
Теорема косинусов
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
$a^2=b^2+c^2-2·b·c·cosα;$
$b^2=a^2+c^2-2·a·c·cosβ;$
$c^2=b^2+a^2-2·b·a·cosγ.$