Как найти сторону по биссектрисе 7 класс

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.

.

Далее, из формулы

.

. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Длина биссектрисы треугольника

Длина биссектрисы треугольника может быть найдена разными способами, в зависимости от исходных данных.

I. Через длины двух сторон и отрезки, на которые биссектриса делит третью сторону.

Квадрат биссектрисы треугольника равен разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.

Соответственно, длина биссектрисы равна квадратному корню из разности между произведением двух его сторон и произведением отрезков, на которые эта биссектриса делит третью сторону.

Дано:

СF — биссектриса ∠ABC

Доказательство:

Опишем около треугольника ABC окружность и продлим биссектрису CF до пересечения с окружностью в точке D. Соединим точки A и D отрезком.

Рассмотрим треугольники BCF и DCA.

∠BCF=∠DCA (по условию);

Значит, треугольники BFC и DCA подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Что и требовалось доказать.

II. Через три стороны треугольника

Длина биссектрисы треугольника выражается через длины его сторон a, b и c по формуле

По свойству биссектрисы треугольника:

Согласно утверждению 1,

Что и требовалось доказать.

III Через две стороны треугольника и угол между ними.

Длина биссектрисы треугольника через две стороны, образующие угол, из вершины которого исходит биссектриса, и угол между этими сторонами выражается по формуле

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

[spoiler title=”источники:”]

http://www-formula.ru/2011-10-09-11-08-41

[/spoiler]

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

a, b, c – стороны произвольного треугольника

α, β, γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), (a):

Формула  стороны треугольника по теореме косинусов

* Внимательно, при подстановке в формулу, для тупого угла (α>90), cosα принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), (a):

Формула  стороны по теореме синусов

Есть следующие формулы для определения катета или гипотенузы

Формулы для прямоугольного треугольника

a, b – катеты

c – гипотенуза

α, β – острые углы

Формулы для катета, (a):

Формулы катета прямоугольного треугольника

Формулы для катета, (b):

Формулы катета прямоугольного треугольника

Формулы для гипотенузы, (c):

Формулы гипотенузы прямоугольного треугольника

формула гипотенузы прямоугольного треугольника

Формулы сторон по теореме Пифагора, (a,b):

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Вычислить длину неизвестной стороны через любые стороны и углы

Формулы сторон равнобедренного треугольника

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины равных сторон , (a):

Формулы длины равных сторон

Формулы длины равных сторон

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

Найти длину высоты треугольникаH – высота треугольника

a – сторона, основание

b, c – стороны

β, γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через сторону и угол, (H):

Формула длины высоты через сторону и угол

Формула длины высоты через сторону и площадь, (H):

Формула длины высоты через сторону и площадь

Формула длины высоты через стороны и радиус, (H):

Формула длины высоты через стороны и радиус

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр – точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике
H – высота из прямого угла

a, b – катеты

с – гипотенуза

c1 , c2 – отрезки полученные от деления гипотенузы, высотой

α, β – углы при гипотенузе

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы

Найти длину биссектрисы в треугольнике

L– биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b – стороны треугольника

с – сторона на которую опущена биссектриса

d, e – отрезки полученные делением биссектрисы

γ – угол ABC , разделенный биссектрисой пополам

p – полупериметр, p=(a+b+c)/2

Длина биссектрисы через две стороны и угол, (L):

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны, (L):

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны, (L):

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки d, e, (L):

Длина биссектрисы через стороны и отрезки d, e

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

L – биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b – катеты прямоугольного треугольника

с – гипотенуза

α – угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L):

Формула длины биссектрисы через катеты

Формула длины биссектрисы через гипотенузу и угол, ( L):

Формула длины биссектрисы через гипотенузу и угол

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

L – биссектриса, отрезок ME , исходящий из острого угла

a, b – катеты прямоугольного треугольника

с – гипотенуза

α, β – углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула длины биссектрисы через катет и гипотенузу, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу

Длина биссектрисы равнобедренного треугольника

L – высота = биссектриса = медиана

a – одинаковые стороны треугольника

b – основание

α – равные углы при основании

β – угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула высоты, биссектрисы и медианы, через стороны, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L – высота=биссектриса=медиана

a – сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

Медиана – отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M – медиана, отрезок |AO|

c – сторона на которую ложится медиана

a, b – стороны треугольника

γ – угол CAB

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними

Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам.

Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).

Длина медианы прямоугольного треугольника

M – медиана

R – радиус описанной окружности

O – центр описанной окружности

с – гипотенуза

a, b – катеты

α – острый угол CAB

Медиана равна радиусу и половине гипотенузы, (M):

Медиана равна радиусу и половине гипотенузы

Формула длины через катеты, (M):

Формула медианы через катеты

Формула длины через катет и острый угол, (M):

Формула медианы через катет и острый угол

Как найти стороны равнобедренного прямоугольного треугольника, если известна биссектриса (она же высота)?



Ученик

(95),
на голосовании



1 год назад

Голосование за лучший ответ

Михаил Королёв

Просветленный

(22847)


1 год назад

просто рассмотреть треугольник полученный
Получится прямоугольный треугольник с катетом высотой/биссектрисой лежащим против угла в 45 градусов. Гипотенуза же будет биссектриса/sin45°.
То есть катеты всего треугольника будут равны этой гипотенузе.

Владимир ЕвтушенковУченик (95)

1 год назад

Блин, не соображу) Мне не нужна гипотенуза, мне нужны стороны (а они равны, поэтому любая из них). Разве нельзя просто зная, что стороны равны, угол 90 градусов и биссектриса 100 (например) вычислить стороны?

Теорема о биссектрисе треугольника. Доказательство

Теорема 1. Биссектриса при вершине треугольника делит противоположную сторону на две отрезки, пропорциональные сторонам, прилежащим к данной вершине. То есть если биссектриса при вершине A делит в точке D сторону BC на отрезки BD и CD (Рис.1), то имеет место следующее соотношение:

Доказательство (метод площадей 1). Из вершины A опущена биссектриса AD. Построим вершину треугольника AH. Найдем площади треугольников ABD и ACD:

Построим следующее соотношение

С другой стороны, площадь треугольников ABD и ACD можно найти используя следующие формулы:

Построим следующее соотношение используя формулы (6) и (7):

Из формул (5) и (8) получим соотношение (1).Конец доказательства

Доказательство (метод площадей 2). С одной стороны, аналогично вышеизложенному имеем соотношение (5). Далее из точки D проведем вершины L и M для треугольников ABD и ACD (Рис.2).

Тогда площади треугольников ABD и ACD можно найти из формул:

Построим следующее соотношение

Из формул (5) и (11) получим соотношение (1).Конец доказательства

Доказательство (через теорему синусов). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.3):

Применяя теорему синусов для треугольников ABD и ACD можем записать:

Поделив (12) на (13) и учитывая, что ( small sin(180°-delta)=sin delta , ) (см. статью Формулы приведения тригонометрических функций онлайн) получим равенство (1).Конец доказательства

Доказательство (через подобие треугольников). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.4). Проведем перпендикуляры из вершин B и C на луч AD и обозначим точки пересечения через L и K.

Рассмотрим треугольники ABL и ACK. Эти треугольники подобны по двум углам (( small ∠ ALB= ∠ AKC ,;; ∠ BAL= ∠ CAK ) ). Тогда имеем:

Рассмотрим, далее, треугольники BLD и CKD. Они также подобны поскольку ( small ∠ BLD= ∠ CKD ,) а углы BDL и CDK равны так как они вертикальные. Тогда имеет место следующее соотношение:

Из равенств (14) и (15) получаем:

Пример. Даны стороны треугольника ABC: AB=18, AC=6, BC=20. Найти отрезки, полученные делением биссектрисей большой стороны треугольника.

Решение. Поскольку напротив самой большой стороны треугольника находится вершина A, то бисскетриса AD делит сторону BC на отрезки BD и CD. Тогда имеем:

Обозначим BD=x. Тогда CD=BC−x=20−x. Подставляя данные в уравнение (16), получим:

или

Методом перекресного умножения упростим (17) и решим:

Тогда BD=x=15,   CD=BC−x=20−x=5.

Ответ. BD=15,   CD=5.

Задача.

Биссектриса угла A треугольника ABC делит сторону BC на отрезки BK = 8 см и KC = 18 см. Определите длину стороны AC, если длина стороны AB = 12 см.

Решение.

Для решения задачи потребуется знание следующей теоремы:

Биссектриса  любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.

Для условий данной задачи это означает:

BK/KC = AB/AC

8/18=12/x

x=27 см

Задача.

Найти отрезки, на которые биссектриса AD треугольника ABC делит сторону BC, если AB=6 BC=7 AC=8.

Решение.

Для решения задачи потребуется знание следующей теоремы:

Биссектриса  любого внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам треугольника.

Для условий данной задачи это означает:

BD/DC = AB/AC

BD/DC = 6/8

Обозначим BD = x, тогда DC = 7 – x

x / ( 7 – x ) = 6/8

8x = 42 – 6x

14x = 42

x =3

Тогда DC = 4

Ответ: BD = 3, DC = 4 см


0
 

 Биссектриса внешнего угла |

Описание курса

| Площадь геометрической фигуры 

Добавить комментарий