Как найти сторону прямоугольника если знаем площадь

Площадь – 56 квадратных см. Периметр – 30 см.

Сторона А=7, сторона В=8

S=AxB

P=2A+2B

S=56

P=30

автор вопроса выбрал этот ответ лучшим

Можно попробовать решить данную задачу, составив систему уравнений.

Периметр прямоугольника равен: p=2a+2b;

Площадь прямоугольника равна: s=a*b;

Так как мы знаем периметр и площадь, то сразу подставляем числа:

30=2a+2b;

56=a*b;

Выражаем b через a во втором уравнении:

b=56/a;

И подставляем 56/a вместо b в первое уравнение:

30=2a+2(56/a);

15=a+56/a;

Домножаем обе части на a:

15a=a²+56;

Получаем квадратное уравнение:

a²-15a+56=0;

Находим корни этого квадратного уравнения:

(15±√(15²-4*1*56))/2*1 = (15±√(225-224))/2 = (15±√1)/2 = (15±1)/2

Получилось, что корни этого уравнения:

a1=(15+1)/2=16/2=8;

a2=(15-1)/2=14/2=7;

Получается, что у нас 2 возможных варианта прямоугольников.

Вспомним, что мы выразили: b=56/a;

Отсюда находим возможные b:

b1=56/a1=56/8=7;

b2=56/a2=56/7=8;

Как оказалось эти два разных прямоугольника – это один и тот же, просто достигнуть периметра в 30 при площади в 56 можно:

Если a=7 и b=8.

Либо наоборот: a=8 и b=7.

То есть в сущности у нас один и тот же прямоугольник, просто в одном варианте вертикальная сторона больше горизонтальной, а в другом наоборот – горизонтальная больше вертикальной.

Ответ: одна сторона 7 сантиметров, а вторая 8 сантиметров.

Oleg7­4
[202K]

9 лет назад 

Если периметр прямоугольника Р = 30 см, а его площадь S = 56 см, то его стороны будут равны :

а – одна сторона, в – другая сторона прямоугольника.

S = а * в

P = 2а + 2в

Решив эту систему, приходим к тому, что сторона а будет равна 7 см, а сторона в будет равна 8 см.

а = 7 см в = 8 см.

Чтобы решить поставленную задачу, нужно составить систему уравнений и решить ее

S = а*b

P = 2(а+b)

получим квадратное уравнение, которое легко решается, если подставить в него значения периметра и площади

текст при наведении

Дискриминант равен 1 и уравнение имеет два корня 7 и 8, следовательно одна из сторон равна 7 см, другая 8 см или наоборот.

Я специально выписал здесь дискриминант, так как по нему очень хорошо ориентироваться

если в условии задачи на нахождение сторон прямоугольника значение периметра и площади заданы так, что этот дискриминант больше ноля, тогда мы имеем прямоугольник;

если дискриминант равен нолю – тогда имеем квадрат (P=30, S=56,25, квадрат со стороной 7,5);

если дискриминант меньше ноля, то тогда такой прямоугольник не существует (P=20, S=56 – решения нет)

Galin­a7v7
[120K]

7 лет назад 

Дано: S = 56 см

Р = 30 см

Стороны=?

Решение:

Пусть стороны прямоугольника a и b.

Тогда: площадь S = a * b , периметр Р=2*(a + b),

Получим систему уравнений:

{a*b=56 ? {ab=56

{2(a+b)=30, {a+b=15 ,выражая b через а получим квадратное уравнение:

b=15-a, a^2 -15a +56 =0 ,решая которое ,получим :

a1=7, a2=8,

b1=8, b2=7. То есть стороны прямоугольника: a=7,b=8 ,или наоборот:a=8,b=7.

Zolot­ynka
[551K]

7 лет назад 

Нашла еще такое решение,

Известно, что периметр прямоугольника 30 а площадь 56, далее:

периметр = 2*(длина + ширина) или 2L + 2W

площадь= длина * ширина или L * W

2L + 2W = 30 (делим обе части на 2)

L + W = 15

L * W = 56

L * (15 – L) = 56

Честно говоря, не совсем поняла решение, но думаю, тот, кто не совсем подзабыл математику, разберется.

Azama­tik
[55.3K]

7 лет назад 

Вспоминаем школьную геометрию:

Периметр прямоугольника – это будет сумма длин всех сторон, а площадь прямоугольника – это уже произведение двух смежных его сторон (длину на ширину).

В данном случае нам известны и Площадь и Периметр прямоугольника. Они равны 56 см^2 и 30 см соответственно.

Итак, решение:

S – площадь = а x b;

56 = a x b;

Р – периметр = а + b + a + b = 2a + 2b;

30 = 2 (а + b);

15 = a + b;

a = 15 – b;

Делаем подставление:

56 = (15 – b) x b;

56 = 15 b – b^2;

b^2 – 15b + 56 = 0.

Получили квадратное уравнение, решая которое получаем: b1 = 8, b2 = 7.

Находим и другую сторону прямоугольника:

a1 = 15 – 8 = 7;

a2 = 15 – 7 = 8.

Ответ: стороны прямоугольника равны 8 и 7 см или же 7 и 8 см.

Зная формулы периметра прямоугольника и его площади, стороны ищутся в виде решения системы двух уравнений. Для начала выражаем значение одной стороны через другую и например площадь.Это выглядит так А=S/В=56/В

Затем подставляем это выражение вместо буквы А в уравнении для периметра:

Р=2(56/В + В)=30

Получаем что 56/В+В=15

В этом уравнении даже решать его не надо – любому человеку знакомому с таблицей умножения сразу видно, что 56 это произведение 7 и 8, а поскольку и сумма этих цифр как раз 15, то они и есть нужные нам значения сторон прямоугольника.

Хелен­очка
[61.9K]

8 лет назад 

Обозначим одну сторону буквой Х, другую – буквой Y.

Площадь прямоугольника вычисляется умножением длин сторон, следовательно, мы можем составить первое уравнение:

Х*Y=56

Периметр – это сумма длин сторон, следовательно, второе уравнение такое:

2Х+2Y=30

Получаем систему двух уравнений.

По первому уравнению выделяем Х: Х=56:Y, подставляем это во второе уравнение:

2*56:Y+2Y=30 Отсюда уже легко найти значение Y: Y=7, тогда Х=8.

Lilec­hka
[36.5K]

9 лет назад 

Периметр 30, площадь 56. Назовем стороны прямоугольника а и с. Тогда можем составить такие уравнения:

(а+c)х2=30

ахс=56

Далее решаем систему уравнений и находим, что стороны прямоугольника составляют 7 и 8 см.

morel­juba
[62.5K]

7 лет назад 

Итак, для начала рассмотрим формулы для нахождения площади и периметра:

1) S = a * b = 56 см2;

2) Р = 2а + 2b = 30 см.

Ведь мы знаем, что прямоугольник имеет по две одинаковых стороны.

Таким образом нам требуется решить систему из двух уравнений:

a * b = 56

2а + 2b = 30

Отсюда получаем, что одна сторона равна 7, а другая 8.

Знаете ответ?

Сторона прямоугольника через диагональ и известную сторону.

Где d – диагональ,b – сторона.

Сторона прямоугольника через диагональ и угол между ними.

Где d – диагональ,α – угол между диагональю и искомой стороной.

Сторона прямоугольника через диагональ и противоположный угол.

Где d – диагональ,α – угол между диагональю и другой стороной.

Сторона прямоугольника через площадь и другую известную сторону.

Где S – площадь, b– известная сторона.

Сторона прямоугольника через периметр и известную сторону.

Где P – периметр, b – известная сторона.

Сторона прямоугольника через диагонали и угол между ними.

Где d – диагональ, α – угол между диагоналями.

прямоугольник

  • Прямоугольник  – это четырехугольник у которого противоположные стороны равны и параллельны AB = CD и  BC = DA. 
  • Стороны прямоугольника являются его высотами.
  • Между прилегающими сторонами угол всегда 90°.

Как найти длину стороны прямоугольника?

Сторона прямоугольника может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.

Сторона прямоугольника через диагональ и известную сторону.

a = d2b2

Сторона прямоугольника через диагональ и угол между ними.

a = d·cos(α)

Сторона прямоугольника через диагональ и противоположный угол

a = d·sin(α)

Сторона прямоугольника через площадь и другую известную сторону.

a =

S

b

Сторона прямоугольника через периметр и известную сторону.

a =

P – 2b

2

Сторона прямоугольника через диагонали и угол между ними.

a = d·sin(0.5·α)

Зная в прямоугольнике площадь и сторону можно найти вторую сторону, и затем все остальные параметры по порядку. Вторая сторона прямоугольника будет равна отношению площади к известной стороне.
b=S/a

Для того чтобы найти периметр прямоугольника через площадь и сторону, необходимо подставить в формулу вместо второй стороны полученное отношение
P=2(a+b)=2(a+S/a)

Диагональ прямоугольника можно найти через теорему Пифагора в прямоугольном треугольнике, который она образует. Обе диагонали прямоугольника принимают одно и то же значение. Выразив b через площадь и известную сторону, получим следующее выражение. (рис. 56.1)
d_1=d_2=√(a^2+b^2 )=√(a^2+(S/a)^2 )=√(a^2+S^2/a^2 )

Используя тригонометрические отношения в полученном треугольнике можно найти углы при пересечении диагоналей со сторонами. Для этого проще всего будет использовать тангенс, как отношение катетов друг к другу. Точно также, как и в предыдущих формулах, заменяем неизвестную сторону на равное ей выражение.
α=arc tan⁡〖b/a〗=arc tan⁡〖S/a^2 〗
β=arc tan⁡〖a/b=arc tan⁡〖a^2/S〗 〗

Угол, образованный при пересечении диагоналей, и дополнительный ему до 180° зависят только от углов при диагонали и стороне, и равны удвоенному их значению. (рис. 56.2)
γ=2α
δ=2β

Радиус описанной вокруг прямоугольника окружности равен половине диагонали, так как лежит на ней и исходит из точки пересечения диагоналей. (рис. 56.3)
R=d/2=√(a^2+S^2/a^2 )/2

Сторона прямоугольника по площади и другой стороне в м

Введите длину стороны в м:

0.00м

S = ab ⇒ b = S : a


S — площадь прямоугольника в м2 (квадратных метрах);

a — известная длина одной из сторон прямоугольника в м (метрах).

b — неизвестная длина другой стороны прямоугольника в м (метрах)

Например:


Площадь прямоугольника равна 192 м2, одна сторона равна 8 м. Найдите длину другой стороны прямоугольника.

Краткое решение: b = S : a = 192 : 8 = 24 м.


Площадь прямоугольника равна 144 м2, длина прямоугольника равна 18 м. Найдите его ширину.

Краткое решение: ширина прямоугольника b = S : a = 144 : 18 = 8 м.


Как найти стороны прямоугольника, если знаем общую длину и площадь?

Анонимный вопрос

11 февраля 2020  · 15,1 K

Площадь прямоугольник это:
S=a*b (произведение его сторон).
Общая длина, как я понял, это его периметр, который равен:
P=2(a+b). Из них составляем систему уравнений
S=ab;
P=2(a+b). Выражаем одну из сторон из какого-либо уравнения, поставляем её в оставшееся уравнение, из которого находим вторую сторону и уже зная её находим первую сторону. Например можно сделать так… Из первого уравнения выражаем сторону a, получим:
a=S/b. Подставляем её во второе уравнение получим:
P=2((S/b)+b) <=> (выражаем b) 2(S+b²)/b = P <=> b = (P+√[P²-16S])/4. Тогда сторона a будет ровна:
a=4S/(P+√[P²-16S]), а тогда сторону b можно натйи из той же системы: подставим выраженную сторону a, к примеру, в выражение площади, тогда выражение для стороны b примет вид

b = (P+√[P²-16S])/4.

10,1 K

Комментировать ответ…Комментировать…

Добавить комментарий