Как найти сторону прямоугольного треугольника через тангенс

Треугольник. Расчет сторон прямоугольного треугольника через тригонометрические функции.

Проанализируем прямоугольный треугольник ABC в котором обозначим катеты как а, b и гипотенузу как с соответственно.

Вполне логично сделать вывод, будут верны следующие равенства:

Значит катет прямоугольного треугольника допускается представить как произведение гипотенузы и синуса угла, противолежащего этому катету, либо и косинуса угла, прилежащего к нему.

На основе этих соотношений так же можно определить гипотенузу прямоугольного треугольника:

Иначе говоря, гипотенуза будет частным от деления катета либо на синус противолежащего к нему угла, либо на косинус прилежащего к катету угла.

Значит, катет прямоугольного треугольника допускается представить как произведением другого катета на тангенс угла, противолежащего первому катету, либо на котангенс угла, прилежащего к первому катету.

Как с помощью тангенса найти сторону треугольника. Теорема Пифагора, чтобы найти катет прямоугольного треугольника

В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.

Что такое прямоугольный треугольник

Для начала вспомним, что такое прямоугольный треугольник. Прямоугольный треугольник – это геометрическая фигура из трех отрезков, которые соединяют точки, не лежащие на одной прямой, и один из углов этой фигуры равен 90 градусам. Стороны, образующие прямой угол, называются катетами, а сторона, которая лежит напротив прямого угла – гипотенузой.

Находим катет прямоугольного треугольника

Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.

Теорема Пифагора, чтобы найти катет прямоугольного треугольника

Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².

Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).


Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника

Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.


Найти катет прямоугольного треугольника при помощи синуса

Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.

Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).


Найти катет прямоугольного треугольника при помощи косинуса

Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу и получим: b=cos*c.

Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).


Найти катет прямоугольного треугольника при помощи тангенса

Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.

Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).


Найти катет прямоугольного треугольника при помощи котангенса

Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет, а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.

Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).


Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.

Сторону треугольника дозволено обнаружить не только по периметру и площади, но и по заданной стороне и углам. Для этого применяются тригонометрические функции – синус и косинус . Задачи с их применением встречаются в школьном курсе геометрии, а также в вузовском курсе аналитической геометрии и линейной алгебры.

Инструкция

1. Если знаменита одна из сторон треугольника и угол между ней и иной его стороной, воспользуйтесь тригонометрическими функциями – синус ом и косинус ом. Представьте себе прямоугольный треугольник НBC , у которого угол? равен 60 градусам. Треугольник НBC показан на рисунке. От того что синус , как знаменито, представляет собой отношение противолежащего катета к гипотенузе, а косинус – отношение прилежащего катета к гипотенузе, для решения поставленной задачи воспользуйтесь дальнейшим соотношением между этими параметрами:sin ?=НB/BCСоответственно, если вы хотите узнать катет прямоугольного треугольника, выразите его через гипотенузу дальнейшим образом:НB=BC*sin ?

2. Если в условии задачи, напротив, дан катет треугольника, обнаружьте его гипотенузу, руководствуясь дальнейшим соотношением между заданными величинами:BC=НB/sin ?По аналогии обнаружьте стороны треугольника и с применением косинус а, изменив предыдущее выражение дальнейшим образом:cos ?=НC/BC

3. В элементарной математике существует представление теоремы синус ов. Руководствуясь фактами, которые описывает данная теорема, также дозволено обнаружить стороны треугольника. Помимо этого, она разрешает обнаружить стороны треугольника, вписанного в окружность, если знаменит вестим радиус последней. Для этого воспользуйтесь соотношением, указанным ниже:a/sin ?=b/sin b=c/sin y=2RЭта теорема применима в том случае, когда знамениты две стороны и угол треугольника, либо дан один из углов треугольника и радиус описанной вокруг него окружности.

4. Помимо теоремы синус ов, существует и аналогичная ей по сути теорема косинус ов, которая, как и предыдущая, также применима к треугольникам всех 3 разновидностей: прямоугольному, остроугольному и тупоугольному. Руководствуясь фактами, которые доказывают эта теорема, дозволено находить неведомые величины, применяя следующие соотношения между ними:c^2=a^2+b^2-2ab*cos ?

Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, именуется треугольником. Существует уйма задач на нахождение сторон и углов треугольника по ограниченному числу начальных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум углам .

Инструкция

1. Пускай построен треугольник?ABC и знамениты – сторона BC и углы?? и. Знаменито, что сумма углов всякого треугольника равна 180?, следственно в треугольнике?ABC угол?? будет равен?? = 180? – (?? + ??).Обнаружить стороны AC и AB дозволено применяя теорему синусов, которая гласитAB/sin?? = BC/sin?? = AC/sin?? = 2 * R, где R – радиус описанной около треугольника?ABC окружности,тогда получаемR = BC/sin. AB = 2 * R * sin. AC = 2 * R * sin. Теорему синусов дозволено использовать при всяких данных 2-х углах и стороне.

2. Стороны заданно треугольника дозволено обнаружить, вычислив его площадь по формулеS = 2 * R? * sin?? * sin?? * sin. где R вычисляется по формулеR = BC/sin. R – радиус описанной около треугольника?ABC отсюдаТогда сторону AB дозволено обнаружить, вычислив высоту, опущенную на неёh = BC * sin. отсель по формуле S = 1/2 * h * AB имеемAB = 2 * S/hАналогичным образом дозволено вычислить сторону AC.

3. Если в качестве углов даны внешние углы треугольника?? и. то обнаружить внутренние углы дозволено с поддержкой соответствующих соотношений?? = 180? – . = 180? – . = 180? – (?? + ??).Дальше действуем подобно первым двум пунктам.

Постижение треугольников ведется математиками на протяжении нескольких тысячелетий. Наука о треугольниках – тригонометрия – использует особые величины: синус и косинус.

Прямоугольный треугольник

Изначально синус и косинус появились из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было подмечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается неизменно идентичным.Именно так и были введены представления синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут использоваться не только в прямоугольных треугольниках. Дабы обнаружить значение тупого либо острого угла, стороны всякого треугольника, довольно применить теорему косинусов и синусов.Теорема косинусов достаточно примитивна: «Квадрат стороны треугольника равен сумме квадратов 2-х других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними». Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему зачастую расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная – математический инструмент, показывающий, как стремительно меняется функция касательно метаморфозы ее довода. Производные применяются в алгебре, геометрии, экономике и физике, ряде технических дисциплин. При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса – синус, но со знаком «минус».

Применение в математике

Особенно зачастую синусы и косинусы применяются при решении прямоугольных треугольников и задач, связанных с ними. Удобство синусов и косинусов обнаружило свое отражение и в технике. Углы и стороны было примитивно оценивать по теоремам косинусов и синусов, разбивая трудные фигуры и объекты на «примитивные» треугольники. Инженеры и архитекторы, зачастую имеющие дело с расчетами соотношения сторон и градусных мер, тратили много времени и усилий для вычисления косинусов и синусов не табличных углов. Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов различных углов. В советское время некоторые преподаватели принуждали своих подопечных учить страницы таблиц Брадиса назубок.

Площадь треугольника равна половине произведения его сторон на синус угла между ними.

Рассмотрим произвольный треугольник ABC. Пусть в нем сторона BC = a, сторона CA = b и S – площадь этого треугольника. Необходимо доказать, что S = (1/2)*a*b*sin(C) .

Для начала введем прямоугольную систему координат и поместим начало координат в точку С. Расположим нашу систему координат так, чтобы точка B лежала на положительном направлении оси Сх, а точка А имела бы положительную ординату.

Если все выполнить правильно, то должен получится следующий рисунок.

Площадь данного треугольника можно вычислить по следующей формуле: S = (1/2)*a*h , где h – это высота треугольника. В нашем случае высота треугольника h равна ординате точки А, то есть h = b*sin(C).

Учитывая полученные результат, формулу площади треугольника можно переписать следующим образом: S = (1/2)*a*b*sin(C). Что и требовалось доказать.

Решение задач

Задача 1. Найти площадь треугольника ABC, если а) AB = 6*√8 см, АС = 4 см, угол А = 60 градусов б) BC = 3 см, AB = 18*√2 см, угол B= 45 градусов в) AC = 14 см, CB = 7 см, угол C= 48 градусов.

По доказанной выше теореме площадь S треугольника ABC равна:

а) S = ((1/2) *6*√8*4*sin(60˚)) = 12*√6 см^2.

б) S = (1/2)*BC*BA*sin(B)=((1/2)* 3*18*√2 *(√2/2)) = 27 см^2.

в) S = (1/2)*CA*CB*sin(C) = ½*14*7*sin48˚ см^2.

Значение синуса угла считаем на калькуляторе либо используем значения из таблицы значений тригонометрических углов. Ответ:

в) приблизительно 36.41 см^2.

Задача 2. Площадь треугольника ABC равна 60 см^2. Найдите сторону AB, если AC = 15 см, угол А = 30˚.

Положим S – площадь треугольника ABC. По теореме о площади треугольника имеем:

Подставим в неё имеющиеся у нас значения:

60 = (1/2)*AB*15*sin30˚ = (1/2)*15*(1/2)*AB=(15/4)*AB.

Отсюда выражаем длину стороны AB: AB = (60*4)/15 = 16.

Синус является одной из основных тригонометрических функций, применение которой не ограничено одной лишь геометрией. Таблицы вычисления тригонометрических функций, как и инженерные калькуляторы, не всегда под рукой, а вычисление синуса порой нужно для решения различных задач. Вообще, вычисление синуса поможет закрепить чертёжные навыки и знание тригонометрических тождеств.

Игры с линейкой и карандашом

Простая задача: как найти синус угла, нарисованного на бумаге? Для решения понадобится обычная линейка, треугольник (или циркуль) и карандаш. Простейшим способом вычислить синус угла можно, разделив дальний катет треугольника с прямым углом на длинную сторону – гипотенузу. Таким образом, сначала нужно дополнить острый угол до фигуры прямоугольного треугольника, прочертив перпендикулярную одному из лучей линию на произвольном расстоянии от вершины угла. Потребуется соблюсти угол именно 90°, для чего нам и понадобится канцелярский треугольник.

Использование циркуля немного точнее, но займёт больше времени. На одном из лучей нужно отметить 2 точки на некотором расстоянии, настроить на циркуле радиус, примерно равный расстоянию между точками, и прочертить полуокружности с центрами в этих точках до получения пересечений этих линий. Соединив точки пересечения наших окружностей между собой, мы получим строгий перпендикуляр к лучу нашего угла, остаётся лишь продлить линию до пересечения с другим лучом.

В полученном треугольнике нужно линейкой измерить сторону напротив угла и длинную сторону на одном из лучей. Отношение первого измерения ко второму и будет искомой величиной синуса острого угла.

Найти синус для угла больше 90°

Для тупого угла задача не намного сложнее. Нужно прочертить луч из вершины в противоположную сторону с помощью линейки для образования прямой с одним из лучей интересующего нас угла. С полученным острым углом следует поступать как описано выше, синусы смежных углов, образующих вместе развёрнутый угол 180°, равны.

Вычисление синуса по другим тригонометрическим функциям

Также вычисление синуса возможно, если известны значения других тригонометрических функций угла или хотя бы длины сторон треугольника. В этом нам помогут тригонометрические тождества. Разберём распространённые примеры.

Как находить синус при известном косинусе угла? Первое тригонометрическое тождество, исходящее из теоремы Пифагора, гласит, что сумма квадратов синуса и косинуса одного и того же угла равна единице.

Как находить синус при известном тангенсе угла? Тангенс получают делением дальнего катета на ближний или делением синуса на косинус. Таким образом, синусом будет произведение косинуса на тангенс, а квадратом синуса будет квадрат этого произведения. Заменяем косинус в квадрате на разность между единицей и квадратным синусом согласно первому тригонометрическому тождеству и путём нехитрых манипуляций приводим уравнение к вычислению квадратного синуса через тангенс, соответственно, для вычисления синуса придётся извлечь корень из полученного результата.

Как находить синус при известном котангенсе угла? Значение котангенса можно вычислить, разделив длину ближнего от угла катета на длину дальнего, а также поделив косинус на синус, то есть котангенс – функция, обратная тангенсу относительно числа 1. Для расчёта синуса можно вычислить тангенс по формуле tg α = 1 / ctg α и воспользоваться формулой во втором варианте. Также можно вывести прямую формулу по аналогии с тангенсом, которая будет выглядеть следующим образом.

Как находить синус по трём сторонам треугольника

Существует формула для нахождения длины неизвестной стороны любого треугольника, не только прямоугольного, по двум известным сторонам с использованием тригонометрической функции косинуса противолежащего угла. Выглядит она так.

Ну, а синус можно далее рассчитать по косинусу согласно формулам выше.

Если в задаче даны длины двух сторон треугольника и угол между ними, то можно применить формулу площади треугольника через синус.

Пример расчета площади треугольника через синус. Даны стороны a = 3, b = 4, и угол γ= 30°. По синус угла в 30° равен 0.5

Площадь треугольника будет равна 3 кв. см.

Также могут быть и другие условия. Если дана длина одной стороны и углы, то для начала нужно вычислить недостающий угол. Т.к. сумма всех углов треугольника равняется 180°, то:

Площадь будет равна половине квадрата стороны, умноженной на дробь. В ее числителе находится произведение синусов прилегающих углов, а в знаменателе синус противолежащего угла. Теперь рассчитываем площадь по следующим формулам:

Например, дан треугольник со стороной a=3 и углами γ=60°, β=60°. Вычисляем третий угол:
Подставляем данные в формулу
Получаем, что площадь треугольника равняется 3,87 кв. см.

II. Площадь треугольника через косинус

Чтобы найти площадь треугольника, нужно знать длины всех сторон. По теореме косинусов можно найти не известные стороны, а уже потом использовать .
По теореме косинусов квадрат неизвестной стороны треугольника равняется сумме квадратов остальных сторон минус удвоенное произведение этих сторон на косинус угла, находящегося между ними.

Из теоремы выводим формулы для поиска длины неизвестной стороны:

Зная как найти недостающую сторону, имея две стороны и угол между ними можно легко посчитать площадь. Формула площади треугольника через косинус помогает легко и быстро найти решение различных задач.

Пример расчета формулы площади треугольника через косинус
Дан треугольник с известными сторонами a = 3, b = 4, и углом γ= 45°. Для начала найдем недостающую сторону с . По косинус 45°=0,7. Для этого подставим данные в уравнение, выведенное из теоремы косинусов.
Теперь используя формулу, найдем

Понравилось?

Нажмите на кнопку, если статья Вам понравилась, это поможет нам развивать проект. Спасибо!

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

[spoiler title=”источники:”]

http://school10-mgn.ru/kak-s-pomoshchyu-tangensa-naiti-storonu-treugolnika-teorema-pifagora.html

http://www-formula.ru/2011-10-09-11-08-41

[/spoiler]

Прямоугольный треугольник. Вычисление сторон и углов. Задание В7 (2015

Для решения задач на нахождение сторон и углов прямоугольного треугольника нужно вспомнить определения синуса, косинуса и тангенса.

Рассмотрим прямоугольный треугольник:

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Противолежащий катет – это тот катет, который лежит напротив угла, синус которого мы рассматриваем.

Например, для  треугольника, который изображен на рисунке,  sin{A}=a/bsin{C}=c/b

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Прилежащий катет – это тот катет, который является одной из  сторон угла, косинус которого мы рассматриваем.

Например, для  треугольника, который изображен на рисунке,  cos{A}=c/bcos{C}=a/b

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Например, для  треугольника, который изображен на рисунке,  tg{A}=a/ctg{C}=c/a

Задачи на нахождение сторон и углов прямоугольного треугольника решаются по такому алгоритму:

1. Выделяем треугольник, в который входит сторона или угол, который нам нужно найти.

2. Смотрим, какие элементы треугольника нам известны, и  с помощью какой тригонометрической функции они между собой связаны.

3. Записываем соотношение, которое связывает между собой эти элементы,

Рассмотрим примеры решения задач из  Открытого банка заданий для подготовки к ЕГЭ  по математике:

1. Задание В7 (№ 27217)  В треугольнике ABC  угол C равен 90^{circ}, sin{ A}=7/{25}. Найдите cos {A}

рис.1

Решим эту задачу двумя способами.

а. Так как требуется найти косинус угла, синус которого известен, мы можем воспользоваться основным тригонометрическим тождеством.

{cos}^2{A}=1-{sin}^2{A}=1-{(7/25)}^2=1-{{49}/{625}}={625-49}/{625}={576}/{625}

cos{A}={24}/{25}

б. sin{ A}={BC}/{AB}=7/{25}

Введем единичный отрезок x, тогда BC=7xAB=25x

По теореме Пифагора AC=24x.

Тогда cos{A}={AC}/{AB}={24x}/{25x}={24}/{25}

Ответ: cos{A}={24}/{25}

2. Задание В7 (№27220)

В треугольнике ABC угол C равен 90^{circ}, sin{ A}=0,1. Найдите  cos {B}

Смотрим на рис.1:

cos {B}={CB}/{AB}=sin{ A}

Значит, cos {B}=0,1

Ответ: cos {B}=0,1

3.  Задание В7 (№27221)

В треугольнике ABC угол C равен 90^{circ}, sin{ A}=4/{sqrt{17}}. Найдите  tg {B}

sin{ A}={CB}/{AB}=4/{sqrt{17}}

Введем единичный отрезок x, тогда CB=4xAB=sqrt{17}x

По теореме Пифагора AB^2=AC^2+CB^2

17x^2=AC^2+16x^2

AC^2=x^2

AC=x

tg {B}={AC}/{CB}=x/{4x}=0,25

Ответ: tg {B}=0,25

4. Задание В7 (№27221)

В треугольнике ABC угол C равен 90^{circ}, sin{ A}=7/{25},  AB=5. Найдите AC.

sin{ A}={BC}/{AB}=7/{25}

Введем единичный отрезок x, тогда BC=7xAB=25x

По теореме Пифагора AC=24x

Найдем xAB=25x=5 – по условию.

Значит, x=1/5. Отсюда AC=24x=24/5=4,8

Ответ: AC=4,8

5. Задание В7 (№27259)

В треугольнике ABC угол C равен 90^{circ}, sin{ A}=2/3,  AB=27. Найдите AH.

Найдем AC из треугольника  ABC

AC – прилежвщий  к углу A катет, поэтому он связан с AB через cos{A}

Найдем cos{A} с помощью основного тригонометрического тождества:

cos{A}=sqrt{1-sin^2{A}}=sqrt{1-{(2/3)}^2}={sqrt{5}}/3

cos{A}={AC}/{AB}, отсюда AC=ABcos{A}=27{sqrt{5}}/3=9{sqrt{5}}

Теперь рассмотрим треугольник ACH, в котором AC – гипотенуза, а AH – катет, связанные между собой через cos{A}:

cos{A}={AH}/{AC}, отсюда AH=ACcos{A}={9sqrt{5}}*{sqrt{5}}/3=15

Ответ: AH=15.

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр “Час ЕГЭ”, попробуйте скачать

Firefox

И.В. Фельдман, репетитор по математике.

Купить видеокурс “ВСЯ ГЕОМЕТРИЯ. Часть В”

Калькулятор длин сторон треугольника онлайн умеет вычислять длину сторон 14 способами.
Калькулятор может:

  1. Найти все стороны треугольника.
  2. Найти все углы треугольника.
  3. Найти площадь (S) и периметр (P) треугольника.
  4. Найти радиус (r) вписанной окружности.
  5. Найти радиус (R) описанной окружности.
  6. Найти высоту (h) треугольника.

Просто введите любые имеюшиеся данные и, если их достаточно, то калькулятор сам подберет нужные формулы для вычислений и покажет подробный расчет с выводом формул.
 

Сторона треугольника (или длина сторон) может быть найдена различными методами. 
В большинстве случаев достаточно воспользоваться одной из ниже приведенных формул. Однако не редки случаи когда для нахождения искомой стороны понадобиться обратиться к дополнительным материалам или решения в два действия.

Как найти длину стороны треугольника?

Найти длину сторон треугольника очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.

Для прямоугольного треугольника:

1) Найти катет через гипотенузу и другой катет



где a и b – катеты, с – гипотенуза.

2) Найти гипотенузу по двум катетам



где a и b – катеты, с – гипотенуза.

3) Найти катет по гипотенузе и противолежащему углу



где a и b – катеты, с – гипотенуза,α° и β° – углы напротив катетов.

4) Найти гипотенузу через катет и противолежащий угол



где a и b – катеты, с – гипотенуза,α° и β°- углы напротив катетов.

Для равнобедренного треугольника:

1) Найти основание через боковые стороны и угол между ними



где a – искомое основание, b – известная боковая сторона,α° – угол между боковыми сторонами.

2) Найти основание через боковые стороны и угол при основании



где a – искомое основание,b – известная боковая сторона,β° – угол при осноавнии.

3) Найти боковые стороны по углу между ними



где b – искомая боковая сторона, a – основание,α° – угол между боковыми сторонами.

4) Найти боковые стороны по углу при основании



где b – искомая боковая сторона, a – основание,β° – угол при осноавнии.

​​​​​Для равностороннего треугольника:

1) Найти сторону через площадь



где a – искомая сторона, S – площадь треугольника.

2) Найти сторону через высоту



где a – искомая сторона,h – высота треугольника.

3) Найти сторону через радиус вписанной окружности



где a – искомая сторона,r – радиус вписанной окружности.

4) Найти сторону через радиус описанной окружности



где a – искомая сторона,R – радиус описанной окружности.

​​​​​Для произвольного треугольника:

1) Найти сторону через две известные стороны и один угол (теорема косинусов)



где a – искомая сторона, b и с – известные стороны, α° – угол напротив неизвестной стороны.

2) Найти сторону через одну известную сторону и два угла (теорема синусов)



где a – искомая сторона, b – известная сторона, α° и β° известные углы.

Скачать все формулы в формате Word

Катетами прямоугольного треугольника называются те его стороны, которые образуют прямой угол. Каждый из катетов всегда меньше гипотенузы по значению, но в сумме они обязательно ее превосходят. Зная оба катета, можно найти не только третью сторону прямоугольного треугольника – гипотенузу, по теореме Пифагора, но и углы, находящиеся между катетами и гипотенузой. Для этого используется тригонометрическое отношение тангенса угла α, которое по определению равно отношению катета, противолежащего углу α, к катету прилежащему.

Делением катета, находящегося напротив угла, на катет, который является одной из сторон угла, получается значение тангенса, соответствующее определенной градусной мере. Краткая таблица основных значений тангенса находится внизу страницы, а полная таблица всех тангенсов расположена по ссылке.

Стороны и угол tg  прямоугольного треугольника

Свойства

Тангенс угла tg(α) — есть отношение противолежащего катета a к прилежащему катету b.

Таблица тангенсов

Тангенс угла градусов   0   0.000
Тангенс угла 30° градусов   1/√3   0.577
Тангенс угла 45° градусов   1   1.000
Тангенс угла 60° градусов   √3   1.732
Тангенс угла 90° градусов   ∞  

Содержание:

В этой лекции вы ознакомитесь со знаменитой теоремой Пифагора. Вы научитесь по известным сторонам и углам прямоугольного треугольника находить его неизвестные стороны и углы.

Метрические соотношения в прямоугольном треугольнике

На рисунке 173 отрезок CD — высота прямоугольного треугольника ABC Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Отрезки AD и DB называют проекциями катетов АС и СВ соответственно на гипотенузу.

Лемма. Высота прямоугольного треугольника, проведенная к гипотенузе делит треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.

Докажите лемму самостоятельно.

Теорема 15.1. Квадрат высоты прямоугольного треугольника, проведенной к гипотенузе, равен произведению проекций катетов на гипотенузу. Квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу.

Доказательство. На рисунке 173 отрезок CD — высота прямоугольного треугольника ABC Решение прямоугольных треугольников с формулами и примерами вычисления

Докажем, что Решение прямоугольных треугольников с формулами и примерами вычисления

Если длины отрезков на рисунке 173 обозначить так:

АС = Ь, Решение прямоугольных треугольников с формулами и примерами вычисления то доказанные соотношения принимают вид:
Решение прямоугольных треугольников с формулами и примерами вычисления
Эти равенства называют метрическими соотношениями в прямоугольном треугольнике.

Пример:

Даны два отрезка, длины которых равны а и b (рис. 174). Постройте третий отрезок, длина которого равна Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим треугольник ADC Решение прямоугольных треугольников с формулами и примерами вычисления в котором отрезок DB является высотой (рис. 175). Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления Если обозначить Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Проведенный анализ показывает, как провести построение.

На произвольной прямой отметим точку А и отложим последовательно отрезки АВ и ВС так, чтобы АВ = а, ВС = b. Построим окружность с диаметром АС. Через точку В проведем прямую, перпендикулярную прямой АС (рис. 175). 

Докажем, что отрезок DB искомый. Действительно, Решение прямоугольных треугольников с формулами и примерами вычисления как вписанный угол, опирающийся на диаметр АС. Тогда по теореме 15.1 Решение прямоугольных треугольников с формулами и примерами вычисления 

Теорема Пифагора

Теорема 16.1 (теорема Пифагора). В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Доказательство. На рисунке 176 изображен прямоугольный треугольник ABC Решение прямоугольных треугольников с формулами и примерами вычисления Докажем, что Решение прямоугольных треугольников с формулами и примерами вычисления  
Проведем высоту CD. Применив теорему 15.1 для катетов АС и ВС, получаем:
Решение прямоугольных треугольников с формулами и примерами вычисления Сложив почленно эти равенства, получим:
Решение прямоугольных треугольников с формулами и примерами вычисления

Далее имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Если в прямоугольном треугольнике длины катетов равны а и b, а длина гипотенузы равна с, то теорему Пифагора можно выразить следующим равенством: Решение прямоугольных треугольников с формулами и примерами вычисления

Теорема Пифагора позволяет по двум сторонам прямоугольного треугольника найти его третью сторону: 

Решение прямоугольных треугольников с формулами и примерами вычисления

Из равенства Решение прямоугольных треугольников с формулами и примерами вычисления также следует, что Решение прямоугольных треугольников с формулами и примерами вычисления отсюда Решение прямоугольных треугольников с формулами и примерами вычислениято есть гипотенуза больше любого из катетов1.

1Другим способом этот факт был установлен в курсе геометрии 7 класса.

Пифагор:

Вы изучили знаменитую теорему, которая носит имя выдающегося древнегреческого ученого Пифагора.

Исследования древних текстов свидетельствуют о том, что утверждение этой теоремы было известно задолго до Пифагора. Почему же ее приписывают Пифагору? Скорее всего потому, что именно Пифагор нашел доказательство этого утверждения.

Решение прямоугольных треугольников с формулами и примерами вычисления

О жизни Пифагора мало что известно достоверно. Он родился на греческом острове Самос. По преданиям, он много путешествовал, приобретая знания и мудрость.

Поселившись в греческой колонии Кротон (на юге Италии), он окружил себя преданными учениками и единомышленниками. Так возник пифагорейский союз (или кротонское братство). Влияние этого союза было столь велико, что даже спустя столетия после смерти Пифагора многие выдающиеся математики Древнего мира Пифагор называли себя пифагорейцами. 

Тригонометрические функции острого угла прямоугольного треугольника

На рисунке 180 изображен прямоугольный треугольник АВС Решение прямоугольных треугольников с формулами и примерами вычисления Напомним, что катет ВС называют противолежащим углу А, а катет АС — прилежащим к этому углу.

Определение. Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Синус угла А обозначают так: sin А (читают: «синус А»). Для острых углов А и В прямоугольного треугольника АВС имеем:
Решение прямоугольных треугольников с формулами и примерами вычисления
Для прямоугольного треугольника, изображенного на рисунке 181, можно записать: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим прямоугольный равнобедренный треугольник АВС Решение прямоугольных треугольников с формулами и примерами вычисления в котором АС = ВС = а (рис. 182).

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
По определению Решение прямоугольных треугольников с формулами и примерами вычисления отсюда Решение прямоугольных треугольников с формулами и примерами вычисления Видим, что синус острого угла прямоугольного равнобедренного треугольника не зависит от размеров треугольника, так как полученное значение синуса одинаково для всех значений а. Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления Эту запись не связывают с конкретным прямоугольным равнобедренным треугольником.

Вообще, если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны.

Действительно, эти прямоугольные треугольники подобны по первому признаку подобия треугольников. Поэтому отношение катета к гипотенузе одного треугольника равно отношению соответственного катета к гипотенузе другого треугольника.

Например, запись sin 17° можно отнести ко всем углам, градусные меры которых равны 17°. Значение этого синуса можно вычислить один раз, выбрав произвольный прямоугольный треугольник с острым углом 17°.
Следовательно, синус острого угла зависит только от величины этого угла.

Определение. Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Косинус угла А обозначают так: cos А (читают: «косинус А»).
Для острых углов А и В прямоугольного треугольника АВС (рис. 180) можно записать: Решение прямоугольных треугольников с формулами и примерами вычисления

Отметим, что катет прямоугольного треугольника меньше его гипотенузы, а поэтому синус и косинус острого угла меньше 1.

Определение. Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Тангенс угла А обозначают так: tg А (читают: «тангенс А»).
Для острых углов А и В прямоугольного треугольника АВС (рис. 180) можно записать:
Решение прямоугольных треугольников с формулами и примерами вычисления

Определение. Котангенсом острого угла прямоугольного треугольника называют отношение прилежащего катета к противолежащему.

Котангенс угла А обозначают так: ctg А (читают: «котангенс А»). Для острых углов А и В прямоугольного треугольника АВС (рис. 180) можно записать:
Решение прямоугольных треугольников с формулами и примерами вычисления
Для прямоугольного треугольника, изображенного на рисунке 181, записывают: Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Как было установлено, синус угла зависит только от величины угла. Рассуждая аналогично, можно прийти к следующему выводу: косинус, тангенс и котангенс острого угла зависят только от величины этого угла.

Вообще, каждому острому углу а соответствует единственное число — значение синуса (косинуса, тангенса, котангенса) этого угла. Поэтому зависимость значения синуса (косинуса, тангенса, котангенса) острого угла от величины этого угла является функциональной. Функцию, соответствующую этой зависимости, называют тригонометрической. Так, Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления — тригонометрические функции, аргументами которых являются острые углы.

С древних времен люди составляли таблицы приближенных значений тригонометрических функции с некоторым шагом, один раз вычисляя значения тригонометрических функций для конкретного аргумента. Затем эти таблицы широко использовались во многих областях науки и техники.

В наше время значения тригонометрических функций острых углов удобно находить с помощью микрокалькулятора.

Тангенс и котангенс острого угла можно выразить через синус и косинус этого же угла. Рассмотрим прямоугольный треугольник (рис. 181).

Запишем: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно, получаем такие формулы: Решение прямоугольных треугольников с формулами и примерами вычисления

Заметим, что тангенс и котангенс одного и того же острого угла являются взаимно обратными числами, то есть имеет место равенство:

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления Обе части этого равенства делим на Решение прямоугольных треугольников с формулами и примерами вычисления Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления Учитывая, что Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления получим:Решение прямоугольных треугольников с формулами и примерами вычисления 

Принято записывать: Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
Эту формулу называют основным тригонометрическим тождеством.

Отметим, что Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисленияПоскольку Решение прямоугольных треугольников с формулами и примерами вычисления то получаем такие формулы:

Решение прямоугольных треугольников с формулами и примерами вычисления

Мы уже знаем, что Решение прямоугольных треугольников с формулами и примерами вычисления Найдем теперь cos 45°, tg 45° и ctg 45°.

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
 

Найдем синус, косинус, тангенс и котангенс углов 30° и 60°. Рассмотрим прямоугольный треугольник АВС, в котором Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 183).

Решение прямоугольных треугольников с формулами и примерами вычисления

Пусть ВС = а. Тогда по свойству катета, лежащего против угла 30°, получаем, что АВ = 2а. Из теоремы Пифагора следует, что Решение прямоугольных треугольников с формулами и примерами вычисления

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления
Отсюда находим: Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку 60° = 90° – 30°, то получаем:
Решение прямоугольных треугольников с формулами и примерами вычисления

Значения синуса, косинуса, тангенса и котангенса для углов 30°, 45° и 60° полезно запомнить.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников

На рисунке 185 изображен прямоугольный треугольник с острыми углами Решение прямоугольных треугольников с формулами и примерами вычисления катеты которого равны а и b, а гипотенуза равна с.
По определению синуса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, катет прямоугольного треугольника равен произведению гипотенузы на синус угла, противолежащего этому катету.    

По определению косинуса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, катет прямоугольного треугольника равен произведению гипотенузы на косинус угла, прилежащего к этому катету.

Решение прямоугольных треугольников с формулами и примерами вычисления

По определению тангенса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, катет прямоугольного треугольника равен произведению второго катета на тангенс угла, противолежащего первому катету.

По определению котангенса острого угла прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления
Следовательно, катет прямоугольного треугольника равен произведению второго катета на котангенс угла, прилежащего к первому катету.
Из равенств Решение прямоугольных треугольников с формулами и примерами вычисления получаем: Решение прямоугольных треугольников с формулами и примерами вычисления
Следовательно, гипотенуза прямоугольного треугольника равна частному от деления катета на синус противолежащего ему угла;

  • гипотенуза прямоугольного треугольника равна частному от деления катета на косинус прилежащего к нему угла.

Решить прямоугольный треугольник означает найти его стороны и углы по известным сторонам и углам.

Приведенные выше правила позволяют решать прямоугольный треугольник по одной стороне и одному острому углу.

В задачах на решение прямоугольных треугольников, если не обусловлено иначе, приняты такие обозначения (см. рис. 185): с — гипотенуза, а и b — катеты, Решение прямоугольных треугольников с формулами и примерами вычисления — углы, противолежащие катетам а и b соответственно.

Пример №1

Решите прямоугольный треугольник по катету и острому углу: a = 14 см, Решение прямоугольных треугольников с формулами и примерами вычисления = 38°. (Значения тригонометрических функций найдите с помощью микрокалькулятора и округлите их до сотых. Значения длин сторон округлите до десятых.)

Решение:

Имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления
Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Отметим, что эту задачу можно было решить и другим способом: например, найти гипотенузу, используя теорему Пифагора.

Пример №2

Решите прямоугольный треугольник по катету и гипотенузе:

a = 26 см, с = 34 см.

Решение:

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Вычисляем угол Решение прямоугольных треугольников с формулами и примерами вычисления с помощью микрокалькулятора: Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления
Решение прямоугольных треугольников с формулами и примерами вычисления
Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №3

Высота AD треугольника АВС (рис. 186) делит его сторону ВС на отрезки BD и CD такие, что Решение прямоугольных треугольников с формулами и примерами вычисленияНайдите стороны АВ и АС, если Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем:
Решение прямоугольных треугольников с формулами и примерами вычисления

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем:Решение прямоугольных треугольников с формулами и примерами вычисления
Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №4

Боковая сторона равнобедренного треугольника равна b, угол при основании равен Решение прямоугольных треугольников с формулами и примерами вычисления Найдите радиус окружности, вписанной в треугольник.

Решение:

В треугольнике АВС (рис. 187) Решение прямоугольных треугольников с формулами и примерами вычисления

Проведем высоту BD.

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем: Решение прямоугольных треугольников с формулами и примерами вычисления

Точка О — центр окружности, вписанной в треугольник АВС. Следовательно, точка О принадлежит высоте ВD и биссектрисе АО угла ВАС. Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления то вписанная окружность касается стороны АС в точке D. Таким образом, OD — радиус вписанной окружности. Отрезок АО — биссектриса угла BAD, поэтому
Решение прямоугольных треугольников с формулами и примерами вычисления

Из треугольника Решение прямоугольных треугольников с формулами и примерами вычисления получаем: Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Напомню:

Метрические соотношения в прямоугольном треугольнике

  • Квадрат высоты прямоугольного треугольника, проведенной к гипотенузе, равен произведению проекций катетов на гипотенузу.
  • Квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу.

Теорема Пифагора

  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Синус острого угла прямоугольного треугольника

  • Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника

  • Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Тангенс острого угла прямоугольного треугольника

  • Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Котангенс острого угла прямоугольного треугольника

  • Котангенсом острого угла прямоугольного треугольника называют отношение прилежащего катета к противолежащему.

Тригонометрические формулы

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления – основное тригонометрическое тождество

Решение прямоугольных треугольников с формулами и примерами вычисления

Соотношения между сторонами и значениями тригонометрических функций углов в прямоугольном треугольнике

  • Катет прямоугольного треугольника равен произведению гипотенузы на синус угла, противолежащего этому катету.
  • Катет прямоугольного треугольника равен произведению гипотенузы на косинус угла, прилежащего к этому катету.
  • Катет прямоугольного треугольника равен произведению второго катета на тангенс угла, противолежащего первому катет>г.
  • Катет прямоугольного треугольника равен произведению второго катета на котангенс угла, прилежащего к первому’ катету.
  • Гипотенуза прямоугольного треугольника равна частному от деления катета на синус противолежащего ему угла.
  • Гипотенуза прямоугольного треугольника равна частному от деления катета на косинус прилежащего к нему угла.

Четырехугольник, его элементы. Сумма углов четырехугольника

Рассмотрим одну из важнейших теорем геометрии, которая показывает зависимость между катетами и гипотенузой прямоугольного треугольника.

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

На сегодняшний день известны более ста доказательств этой теоремы. Рассмотрим одно из них.

Доказательство:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления -данный прямоугольный треугольник, у которого Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 172). Докажем, что

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

1) Проведем высоту Решение прямоугольных треугольников с формулами и примерами вычисления
2) По теореме о средних пропорциональных отрезках в прямоугольном треугольнике имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

3) Сложим эти два равенства почленно. Учитывая, что Решение прямоугольных треугольников с формулами и примерами вычисления получим:

 Решение прямоугольных треугольников с формулами и примерами вычисления

4) Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления 

Решение прямоугольных треугольников с формулами и примерами вычисления

Если в треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления обозначить Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 173), то теорему Пифагора можно записать формулой:

Решение прямоугольных треугольников с формулами и примерами вычисления

Таким образом, зная две стороны прямоугольного треугольника, с помощью теоремы Пифагора можно найти третью. В этом нам поможет следующая схема:

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №5

Катеты прямоугольного треугольника равны 7 см и 24 см. Найдите гипотенузу.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления тогда Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 25 см.

Пример №6

Гипотенуза прямоугольного треугольника равна 17 см, а один из катетов – 15 см. Найдите второй катет.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления тогда Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 8 см.

Пример №7

Найдите диагональ квадрата, сторона которого равнаРешение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим квадрат Решение прямоугольных треугольников с формулами и примерами вычисленияу которого Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 174). Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №8

Найдите медиану равностороннего треугольника со стороной Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим равносторонний треугольник Решение прямоугольных треугольников с формулами и примерами вычисления со стороной Решение прямоугольных треугольников с формулами и примерами вычисления– его медиана (рис. 175).

Решение прямоугольных треугольников с формулами и примерами вычисления

Так как Решение прямоугольных треугольников с формулами и примерами вычисления – медиана равностороннего треугольника, то она является и его высотой.

Из Решение прямоугольных треугольников с формулами и примерами вычисления Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №9

Основания равнобокой трапеции равны 12 см и 22 см, а боковая сторона – 13 см. Найдите высоту трапеции.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления – данная трапеция, Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 176).

Решение прямоугольных треугольников с формулами и примерами вычисления

1) Проведем высоты Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

2) Решение прямоугольных треугольников с формулами и примерами вычисления (по катету и гипотенузе), поэтому

Решение прямоугольных треугольников с формулами и примерами вычисления

3) Из Решение прямоугольных треугольников с формулами и примерами вычисления по теореме Пифагора имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 12 см.

Пример №10

Один из катетов прямоугольного треугольника равен 8 см, а второй на 2 см меньше гипотенузы. Найдите неизвестный катет треугольника.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления см и Решение прямоугольных треугольников с формулами и примерами вычисления см- катеты треугольника, тогда Решение прямоугольных треугольников с формулами и примерами вычисления см – его гипотенуза.

Так как по теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления получим уравнение: Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисления (см).

Следовательно, неизвестный катет равен 15 см.

Ответ. 15 см.

Верно и утверждение, обратное теореме Пифагора.

Теорема 2 (обратная теореме Пифагора). Если для треугольника Решение прямоугольных треугольников с формулами и примерами вычисления справедливо равенство Решение прямоугольных треугольников с формулами и примерами вычисления то угол Решение прямоугольных треугольников с формулами и примерами вычисления этого треугольника — прямой.

Доказательство:

Пусть в треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления Докажем, что Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 177).

Рассмотрим Решение прямоугольных треугольников с формулами и примерами вычисления у которого Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисленияТогда по теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления а следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Но Решение прямоугольных треугольников с формулами и примерами вычисления по условию, поэтому Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Таким образом, Решение прямоугольных треугольников с формулами и примерами вычисления (по трем сторонам), откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Так как Решение прямоугольных треугольников с формулами и примерами вычислениято треугольник со сторонами 3, 4 и 5 является прямоугольным. Такой треугольник часто называют египетским, потому что о том, что он прямоугольный, было известно еще древним египтянам.

Тройку целых чисел, удовлетворяющую теореме Пифагора, называют пифагоровой тройкой чисел, а треугольник, стороны которого равны этим числам, – пифагоровым треугольником. Например, пифагоровой является не только тройка чисел 3, 4, 5, но и 7, 24, 25 или 9, 40, 41 и т. п.

Заметим, что из теоремы Пифагора и теоремы, ей обратной, следует, что

треугольник является прямоугольным тогда и только тогда, когда квадрат наибольшей стороны треугольника равен сумме квадратов двух других его сторон.

Пример №11

Является ли прямоугольным треугольник со сторонами: 1) 6; 8; 10; 2) 5; 7; 9?

Решение:

1) Так как Решение прямоугольных треугольников с формулами и примерами вычислениято треугольник является прямоугольным.

2) Так как Решение прямоугольных треугольников с формулами и примерами вычисления то треугольник не является прямоугольным.

Ответ. 1) Да; 2) нет.

А еще раньше…

Теорема, названная в честь древнегреческого философа и математика Пифагора, была известна задолго до него. В текстах давних вавилонян о ней вспоминалось еще за 1200 лет до Пифагора. Скорее всего, доказывать эту теорему вавилоняне не умели, а зависимость между катетами и гипотенузой прямоугольного треугольника установили опытным путем. Также эта теорема была известна в Древнем Египте и Китае.

Решение прямоугольных треугольников с формулами и примерами вычисления

Считается, что Пифагор – первый, кто предложил строгое доказательство теоремы. Он сформулировал теорему так: «Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах». Именно в такой формулировке она и была доказана Пифагором.

Решение прямоугольных треугольников с формулами и примерами вычисления

Рисунок к этому доказательству еще называют «пифагоровыми штанами».

Зная, что треугольник со сторонами 3, 4 и 5 является прямоугольным, землемеры Древнего Египта использовали его для построения прямого угла. Бечевку делили узлами на 12 равных частей и соединяли ее концы. Потом веревку растягивали и с помощью колышков фиксировали на земле в виде треугольника со сторонами 3; 4; 5. В результате угол, противолежащий стороне, длина которой 5, был прямым.

Решение прямоугольных треугольников с формулами и примерами вычисления

Перпендикуляр и наклонная, их свойства

Пусть Решение прямоугольных треугольников с формулами и примерами вычисленияперпендикуляр, проведенный из точки Решение прямоугольных треугольников с формулами и примерами вычисления к прямой Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 185). Точку Решение прямоугольных треугольников с формулами и примерами вычисления называют основанием перпендикуляра Решение прямоугольных треугольников с формулами и примерами вычисленияПусть Решение прямоугольных треугольников с формулами и примерами вычисления – произвольная точка прямой Решение прямоугольных треугольников с формулами и примерами вычисления отличающаяся от Решение прямоугольных треугольников с формулами и примерами вычисления Отрезок Решение прямоугольных треугольников с формулами и примерами вычисления называют наклонной, проведенной из точки Решение прямоугольных треугольников с формулами и примерами вычисления к прямой Решение прямоугольных треугольников с формулами и примерами вычисления а точку Решение прямоугольных треугольников с формулами и примерами вычисления основанием наклонной. Отрезок Решение прямоугольных треугольников с формулами и примерами вычисления называют проекцией наклонной Решение прямоугольных треугольников с формулами и примерами вычисления на прямую Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим свойства перпендикуляра и наклонной.

1. Перпендикуляр, проведенный из точки к прямой, меньше любой наклонной, проведенной из этой точки к этой прямой.

Действительно, в прямоугольном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления -катет, Решение прямоугольных треугольников с формулами и примерами вычисления – гипотенуза (рис. 185). Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

2. Если две наклонные, проведенные к прямой из одной точки, равны, то равны и их проекции.

Пусть из точки Решение прямоугольных треугольников с формулами и примерами вычисления к прямой Решение прямоугольных треугольников с формулами и примерами вычисления проведены наклонные Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления и перпендикуляр Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 186). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления (по катету и гипотенузе), поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Верно и обратное утверждение.

3. Если проекции двух наклонных, проведенных из точки к прямой, равны, то равны и сами наклонные.

Решение прямоугольных треугольников с формулами и примерами вычисления (по двум катетам), поэтому Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 186).

4. Из двух наклонных, проведенных из точки к прямой, большей является та, у которой больше проекция.

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления – наклонные, Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 187). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления (из Решение прямоугольных треугольников с формулами и примерами вычисления), Решение прямоугольных треугольников с формулами и примерами вычисления (из Решение прямоугольных треугольников с формулами и примерами вычисления). Но Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Свойство справедливо и в случае, когда точки Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления лежат на прямой по одну сторону от точки Решение прямоугольных треугольников с формулами и примерами вычисления

Верно и обратное утверждение.

5. Из двух наклонных, проведенных из точки к прямой, большая наклонная имеет большую проекцию.

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления– наклонные, Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 187).

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда Решение прямоугольных треугольников с формулами и примерами вычисления(из Решение прямоугольных треугольников с формулами и примерами вычисления),

Решение прямоугольных треугольников с формулами и примерами вычисления (из Решение прямоугольных треугольников с формулами и примерами вычисления). Но Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №12

Из точки к прямой проведены две наклонные. Длина одной из них равна 10 см, а ее проекции – 6 см. Найдите длину второй наклонной, если она образует с прямой угол 30°.

Решение:

Пусть на рисунке 187 Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления

1) Из Решение прямоугольных треугольников с формулами и примерами вычисления (см).

2) Из Решение прямоугольных треугольников с формулами и примерами вычисления по свойству катета, противолежащего углу 30°,

будем иметь: Решение прямоугольных треугольников с формулами и примерами вычисления

Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. 16 см.

Пример №13

Из точки Решение прямоугольных треугольников с формулами и примерами вычисления прямой проведены две наклонные, проекции которых равны 30 см и 9 см. Найдите длины наклонных, если их разность равна 9 см.

Решение:

Пусть на рисунке 187 Решение прямоугольных треугольников с формулами и примерами вычисленияПо свойству 4: Решение прямоугольных треугольников с формулами и примерами вычисления Обозначим Решение прямоугольных треугольников с формулами и примерами вычисления см. Тогда Решение прямоугольных треугольников с формулами и примерами вычисления см.

Из Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Из Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Левые части полученных равенств равны, следовательно, равны и правые их части.

Имеем уравнение: Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисленияСледовательно, Решение прямоугольных треугольников с формулами и примерами вычисления см, Решение прямоугольных треугольников с формулами и примерами вычисления (см).

Ответ. 41 см, 50 см.

Синус, косинус и тангенс острого угла прямоугольного треугольника. Соотношения между сторонами и углами в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник Решение прямоугольных треугольников с формулами и примерами вычисления с прямым углом Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). Для острого угла Решение прямоугольных треугольников с формулами и примерами вычисления катет Решение прямоугольных треугольников с формулами и примерами вычисления является противолежащим катетом, а катет Решение прямоугольных треугольников с формулами и примерами вычисления – прилежащим катетом. Для острого угла Решение прямоугольных треугольников с формулами и примерами вычисления катет Решение прямоугольных треугольников с формулами и примерами вычисления является противолежащим, а катет Решение прямоугольных треугольников с формулами и примерами вычисления – прилежащим.

Решение прямоугольных треугольников с формулами и примерами вычисления

Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Синус угла Решение прямоугольных треугольников с формулами и примерами вычисления обозначают так: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно,

Решение прямоугольных треугольников с формулами и примерами вычисления
Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Косинус угла Решение прямоугольных треугольников с формулами и примерами вычисления обозначают так: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно,

Решение прямоугольных треугольников с формулами и примерами вычисления

Так как катеты Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления меньше гипотенузы Решение прямоугольных треугольников с формулами и примерами вычисления то синус и косинус острого угла прямоугольного треугольника меньше единицы.

Тангенсом острого угла прямоугольного треугольника называют отношение противолежащего катета к прилежащему.

Тангенс угла Решение прямоугольных треугольников с формулами и примерами вычисления обозначают так: Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно,

Решение прямоугольных треугольников с формулами и примерами вычисления

Докажем, что если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Рассмотрим прямоугольные треугольники Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления у которых Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 191). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления (по острому углу). Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления 

Решение прямоугольных треугольников с формулами и примерами вычисления

Из этого следует, что Решение прямоугольных треугольников с формулами и примерами вычисления и поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Аналогично Решение прямоугольных треугольников с формулами и примерами вычисления поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

поэтому Решение прямоугольных треугольников с формулами и примерами вычисления

Таким образом, приходим к выводу: синус, косинус и тангенс острого угла прямоугольного треугольника зависят только от градусной меры угла.

Из определений синуса, косинуса и тангенса угла получаем следующие соотношения между сторонами и углами в прямоугольном треугольнике.

1. Катет равен гипотенузе, умноженной на синус противолежащего ему угла или на косинус прилежащего: Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления
2. Гипотенуза равна катету, деленному на синус противолежащего ему угла или на косинус прилежащего:

Решение прямоугольных треугольников с формулами и примерами вычисления

3. Катет, противолежащий углу Решение прямоугольных треугольников с формулами и примерами вычисления равен произведению второго катета на тангенс этого угла: Решение прямоугольных треугольников с формулами и примерами вычисления
4. Катет, прилежащий к углу Решение прямоугольных треугольников с формулами и примерами вычисления равен частному от деления другого катета на тангенс этого угла: Решение прямоугольных треугольников с формулами и примерами вычисления

Значения Решение прямоугольных треугольников с формулами и примерами вычисления можно находить с помощью специальных таблиц, калькулятора или компьютера. Для вычислений используем клавиши калькулятора Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления (на некоторых калькуляторах Решение прямоугольных треугольников с формулами и примерами вычисленияПоследовательность вычислений у разных калькуляторов может быть разной. Поэтому советуем внимательно познакомиться с инструкцией к калькулятору.

Пример №14

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления Найдите Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). Решение прямоугольных треугольников с формулами и примерами вычисления(см).

Ответ. 16 см.

Пример №15

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисленияНайдите Решение прямоугольных треугольников с формулами и примерами вычисления (с точностью до десятых сантиметра).

Решение:

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). С помощью таблиц или калькулятора находим Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления 2,9 см.

С помощью таблиц, калькулятора или компьютера можно по данному значению Решение прямоугольных треугольников с формулами и примерами вычисления или Решение прямоугольных треугольников с формулами и примерами вычисления находить угол Решение прямоугольных треугольников с формулами и примерами вычисления Для вычислений используем клавиши калькулятора Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №16

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления 

Найдите острые углы треугольника.

Решение:

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 190). С помощью калькулятора находим значение угла Решение прямоугольных треугольников с формулами и примерами вычисления в градусах: 51,34019. Представим его в градусах и минутах (в некоторых калькуляторах это возможно сделать с помощью специальной клавиши): Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления

Найдем синус, косинус и тангенс углов 30° и 60°. Рассмотрим Решение прямоугольных треугольников с формулами и примерами вычисленияу которого Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 192).

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда по свойству катета, противолежащего углу 30°, Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора:

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Найдем синус, косинус и тангенс угла 45°.

Рассмотрим Решение прямоугольных треугольников с формулами и примерами вычисления у которого Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 193). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления По теореме Пифагора:

Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления то есть Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Систематизируем полученные данные в таблицу:

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №17

Найдите высоту равнобедренного треугольника, проведенную к основанию, если основание равно 12 см, а угол при вершине треугольника равен 120°.

Решение:

Пусть Решение прямоугольных треугольников с формулами и примерами вычисления – данный треугольник, Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 194).

Решение прямоугольных треугольников с формулами и примерами вычисления

Проведем к основанию Решение прямоугольных треугольников с формулами и примерами вычисления высоту Решение прямоугольных треугольников с формулами и примерами вычисления являющуюся также медианой и биссектрисой. Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления

Из Решение прямоугольных треугольников с формулами и примерами вычисления

отсюда Решение прямоугольных треугольников с формулами и примерами вычисления (см). 

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления см. 

Вычисление прямоугольных треугольников

Решить треугольник – значит найти все неизвестные его стороны и углы по известным сторонам и углам.

Для того чтобы можно было решить прямоугольный треугольник, известными должны быть или две стороны треугольника или одна из сторон и один из острых углов треугольника.

Используя в прямоугольном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисленияобозначение Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 198) и соотношение между его сторонами и углами:

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления (теорема Пифагора);

Решение прямоугольных треугольников с формулами и примерами вычисления

можно решить любой прямоугольный треугольник.

Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим четыре вида задач на решение прямоугольных треугольников.

Образцы записи их решения в общем виде и примеры задач представлены в виде таблиц.

Решение прямоугольных треугольников по гипотенузе и острому углу

Пример:

Дано гипотенузу Решение прямоугольных треугольников с формулами и примерами вычисления и острый угол Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите второй острый угол треугольника и его катеты.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников по катету и острому углу

Пример:

Дано катет Решение прямоугольных треугольников с формулами и примерами вычисления и острый угол Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите второй острый угол треугольника, второй катет и гипотенузу.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников по двум катетам

Пример:

Дано катеты Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите гипотенузу и острые углы треугольника.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников по катету и гипотенузе

Пример:

Дано катет Решение прямоугольных треугольников с формулами и примерами вычисления и гипотенуза Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника. Найдите второй катет и острые углы треугольника.

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример:

Найдите высоту дерева Решение прямоугольных треугольников с формулами и примерами вычисленияоснование Решение прямоугольных треугольников с формулами и примерами вычисления которого является недоступным (рис. 199).

Решение:

Обозначим на прямой, проходящей через точку Решение прямоугольных треугольников с формулами и примерами вычисления – основание дерева, точки Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления и измеряем отрезок Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

1) В  Решение прямоугольных треугольников с формулами и примерами вычисления

2) В  Решение прямоугольных треугольников с формулами и примерами вычисления

3) Так как Решение прямоугольных треугольников с формулами и примерами вычисления имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ. Решение прямоугольных треугольников с формулами и примерами вычисления

Определение прямоугольных треугольников

Из этой главы вы узнаете, как решать прямоугольные треугольники, т. е. находить их неизвестные стороны и углы по известным. Необходимые для этого теоретические знания можно почерпнуть из раздела математики, родственного как с геометрией, так и с алгеброй, — из тригонометрии. Собственно, само слово «тригонометрия» в переводе с греческого означает «измерение треугольников». Поэтому отношения сторон прямоугольного треугольника, с которыми вы познакомитесь далее, получили название тригонометрических функций.

Соотношения, которые будут применяться в этой главе, в полной мере можно считать проявлением подобия треугольников. Вообще, подобие треугольников, теорема Пифагора и площадь — это те три кита, на которых держится геометрия многоугольника. Именно исследование взаимосвязей между этими теоретическими фактами и составляет основное содержание курса геометрии в восьмом классе.

Синус, косинус и тангенс

Как уже было доказано, все прямоугольные треугольники, имеющие по равному острому углу, подобны. Свойство подобия обусловливает не только равенство отношений пропорциональных сторон этих треугольников, но и равенство отношений между катетами и гипотенузой каждого из этих треугольников. Именно эти отношения и будут предметом дальнейшего рассмотрения.

Пусть дан прямоугольный треугольник с катетами Решение прямоугольных треугольников с формулами и примерами вычисления гипотенузой Решение прямоугольных треугольников с формулами и примерами вычисления и острым углом Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 168).

Решение прямоугольных треугольников с формулами и примерами вычисления

Определение

Синусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение противолежащего катета к гипотенузе:

Решение прямоугольных треугольников с формулами и примерами вычисления

Косинусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение прилежащего катета к гипотенузе:

Решение прямоугольных треугольников с формулами и примерами вычисления

Тангенсом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисленияназывается отношение противолежащего катета к прилежащему:

Решение прямоугольных треугольников с формулами и примерами вычисления

Кроме синуса, косинуса и тангенса, рассматривают также котангенс острого угла Решение прямоугольных треугольников с формулами и примерами вычисления прямоугольного треугольника (обозначается Решение прямоугольных треугольников с формулами и примерами вычисления который равен отношению прилегающего катета к противолежащему:

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку катет прямоугольного треугольника меньше гипотенузы, то синус и косинус острого угла меньше единицы.

Покажем, что значения тригонометрических функций зависят только от величины угла. Пусть прямоугольные треугольники Решение прямоугольных треугольников с формулами и примерами вычисления имеют равные острые углы Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 169).

Решение прямоугольных треугольников с формулами и примерами вычисления

Эти треугольники подобны, отсюда Решение прямоугольных треугольников с формулами и примерами вычисления или по основному свойству пропорции, Решение прямоугольных треугольников с формулами и примерами вычисления

Правая и левая части этого равенства по определению равны синусам острых углов Решение прямоугольных треугольников с формулами и примерами вычисления соответственно. Имеем: 

Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. синус угла Решение прямоугольных треугольников с формулами и примерами вычисления не зависит от выбора треугольника. Аналогичные рассуждения можно провести и для других тригонометрических функций (сделайте это самостоятельно). Таким образом, тригонометрические функции острого угла зависят только от величины угла.

Имеет место еще один важный факт: если значения некоторой тригонометрической функции для острых углов Решение прямоугольных треугольников с формулами и примерами вычисления равны, то Решение прямоугольных треугольников с формулами и примерами вычисленияИначе говоря, каждому значению тригонометрической функции соответствует единственный острый угол.

Пример №18

Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.

Решение:

Пусть в треугольнике Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления(рис. 170).

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку в треугольнике наименьший угол лежит против наименьшей стороны, то угол Решение прямоугольных треугольников с формулами и примерами вычисления — наименьший угол треугольника Решение прямоугольных треугольников с формулами и примерами вычисления По определению Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Тригонометрические тождества

Выведем соотношения (тождества), которые выражают зависимость между тригонометрическими функциями одного угла.

Теорема (основное тригонометрическое тождество)

Для любого острого угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательство:

 По определению синуса и косинуса острого угла прямоугольного треугольника (см. рис. 168) имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора числитель этой дроби равен Решение прямоугольных треугольников с формулами и примерами вычисления

Следствие

Для любого острого углаРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Докажем еще несколько тригонометрических тождеств.

Непосредственно из определений синуса

sin a а b ас а и косинуса имеем: Решение прямоугольных треугольников с формулами и примерами вычисления т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Аналогично доказывается, что Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда следует, что Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №19

Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен 0,8.

Решение:

Пусть для острого угла Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Вычисление значений тригонометрических функций. Формулы дополнения

Тригонометрические тождества, которые мы рассмотрели, устанавливают взаимосвязь между разными тригонометрическими функциями одного угла. Попробуем установить связь между функциями двух острых углов прямоугольного треугольника.

Теорема (формулы дополнения)

Для любого острого угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательство:

 Рассмотрим прямоугольный треугольник Решение прямоугольных треугольников с формулами и примерами вычисления с гипотенузой Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 172).

Решение прямоугольных треугольников с формулами и примерами вычисления

Если Решение прямоугольных треугольников с формулами и примерами вычисления Выразив синусы и косинусы острых углов треугольника, получим:

Решение прямоугольных треугольников с формулами и примерами вычисления

Теорема доказана. 

Следствие

Для любого острого угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Заметим, что название «формулы дополнения», как и название «косинус», в котором префикс «ко» означает «дополнительный», объясняется тем, что косинус является синусом угла, который дополняет данный угол до Решение прямоугольных треугольников с формулами и примерами вычисленияАналогично объясняется и название «котангенс».

Значения тригонометрических функций углов 30 45 60

Вычислим значения тригонометрических функций угла Решение прямоугольных треугольников с формулами и примерами вычисления Для этого в равностороннем треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления со стороной Решение прямоугольных треугольников с формулами и примерами вычисления проведем высоту Решение прямоугольных треугольников с формулами и примерами вычисления которая является также биссектрисой и медианой (рис. 173).

Решение прямоугольных треугольников с формулами и примерами вычисления

В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления и по теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления Имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления
С помощью формул дополнения получаем значения тригонометрических функций угла Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Для вычисления значений тригонометрических функций угла Решение прямоугольных треугольников с формулами и примерами вычисления рассмотрим равнобедренный прямоугольный треугольник Решение прямоугольных треугольников с формулами и примерами вычисления с катетами Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 174).

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления Имеем:

Решение прямоугольных треугольников с формулами и примерами вычисления

Представим значения тригонометрических функций углов Решение прямоугольных треугольников с формулами и примерами вычисления в виде таблицы.

Решение прямоугольных треугольников с формулами и примерами вычисления

Значения тригонометрических функций других углов можно вычислить с помощью калькулятора или специальных таблиц (см. Приложение 3).

Решение прямоугольных треугольников

Нахождение неизвестных сторон прямоугольного треугольника

Пусть дан прямоугольный треугольник с катетами Решение прямоугольных треугольников с формулами и примерами вычисления  гипотенузой Решение прямоугольных треугольников с формулами и примерами вычисления и острыми углами Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 175).

Решение прямоугольных треугольников с формулами и примерами вычисления

Зная градусную меру угла Решение прямоугольных треугольников с формулами и примерами вычисления и длину любой из сторон треугольника, мы имеем возможность найти две другие его стороны. Правила нахождения неизвестных сторон прямоугольного треугольника непосредственно следуют из определений тригонометрических функций и могут быть обобщены в виде справочной таблицы.

Решение прямоугольных треугольников с формулами и примерами вычисления

Заметим, что для нахождения неизвестных сторон прямоугольного треугольника можно использовать и Решение прямоугольных треугольников с формулами и примерами вычисления (соответствующие правила и формулы получите самостоятельно).

Запоминать содержание справочной таблицы не обязательно. Для нахождения неизвестной стороны прямоугольного треугольника можно действовать по такому плану.

1. Выбрать формулу определения той тригонометрической функции данного угла, которая связывает искомую сторону с известной (этот этап можно выполнить устно).

2. Выразить из этой формулы искомую сторону.

3. Провести необходимые вычисления.

Пример №20

В прямоугольном треугольнике с гипотенузой 12 м найдите катет, прилежащий к углу Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть в прямоугольном треугольнике (см. рисунок) Решение прямоугольных треугольников с формулами и примерами вычисления Найдем катет Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Ответ: 6 м.

Примеры решения прямоугольных треугольников

Решить треугольник означает найти его неизвестные стороны и углы по известным сторонам и углам. Прямоугольный треугольник можно решить по стороне и острому углу или по двум сторонам. Рассмотрим примеры конкретных задач на решение прямоугольных треугольников, пользуясь обозначениями рисунка 175. При этом договоримся округлять значения тригонометрических функций до тысячных, длины сторон — до сотых, а градусные меры углов — до единиц.

Пример №21

Решите прямоугольный треугольник по гипотенузе Решение прямоугольных треугольников с формулами и примерами вычисления и острому углу Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления 

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №22

Решите прямоугольный треугольник по катету Решение прямоугольных треугольников с формулами и примерами вычисления и острому углу Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение:

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления 

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №23

Решите прямоугольный треугольник по гипотенузе Решение прямоугольных треугольников с формулами и примерами вычисления и катету Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение:

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №24

Решите прямоугольный треугольник по катетам Решение прямоугольных треугольников с формулами и примерами вычисления (см. рисунок).

Решение:

По теореме Пифагора Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления откуда Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку сумма острых углов прямоугольного треугольника равна Решение прямоугольных треугольников с формулами и примерами вычисления

На отдельных этапах решения задач 1—4 можно использовать другие способы. Но следует заметить, что в том случае, когда одна из двух сторон треугольника найдена приближенно, для более точного нахождения третьей стороны целесообразно использовать определения тригонометрических функций.

Рассмотрим примеры применения решения треугольников в практических задачах.

Пример №25

Найдите высоту данного предмета (рис. 176).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На определенном расстоянии от данного предмета выберем точку Решение прямоугольных треугольников с формулами и примерами вычисления и измерим угол Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку в прямоугольном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Для определения высоты предмета необходимо прибавить к Решение прямоугольных треугольников с формулами и примерами вычисления высоту Решение прямоугольных треугольников с формулами и примерами вычисления прибора, с помощью которого измерялся угол. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №26

Насыпь шоссейной дороги имеет ширину 60 м в верхней части и 68 м в нижней. Найдите высоту насыпи, если углы наклона откосов к горизонту равны Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Рассмотрим равнобедренную трапецию Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 177), в которой Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Проведем высоты Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления (докажите это самостоятельно), то Решение прямоугольных треугольников с формулами и примерами вычисления В треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления

т.е. Решение прямоугольных треугольников с формулами и примерами вычисления

Ответ: Решение прямоугольных треугольников с формулами и примерами вычисления

Итоги главы IV

Синусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение противолежащего катета к гипотенузе: 

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Косинусом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение прилежащего катета

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Тангенсом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение противолежащего катета к прилежащему: 

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Котангенсом острого угла Решение прямоугольных треугольников с формулами и примерами вычисления называется отношение прилежащего катета к противолежащему:

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Тригонометрические тождества

Решение прямоугольных треугольников с формулами и примерами вычисления

Значения тригонометрических функций некоторых углов

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Историческая справка

Умение решать треугольники необходимо при рассмотрении многих практических задач, возникающих в связи с потребностями географии, астрономии, навигации. Поэтому элементы тригонометрии появились еще в Древнем Вавилоне в период интенсивного развития астрономии. В работе греческого ученого Птолемея «Альмагест» (II в. н. где изложена античная система мира, содержатся элементы сферической тригонометрии.

В Древней Греции вместо синуса угла Решение прямоугольных треугольников с формулами и примерами вычисления рассматривали длину хорды, соответствующей центральному углу Решение прямоугольных треугольников с формулами и примерами вычисления Действительно, если радиус окружности равен единице, то Решение прямоугольных треугольников с формулами и примерами вычисления измеряется половиной такой хорды (проверьте это самостоятельно). Первые тригонометрические таблицы были составлены Гиппархом во II в. н.э.

Синус и косинус как вспомогательные величины использовались индийскими математиками в V в., а тангенс и котангенс впервые появились в работах арабского математика X в. Абу-аль-Вефы.

Как отдельный раздел математики тригонометрия выделилась в произведениях персидского ученого Насреддина Туси (1201-1274), а системное изложение тригонометрии первым из европейцев представил немецкий математик и механик Иоганн Мюллер (1436-1476), более известный под псевдонимом Региомонтан.

Современную форму изложения и современную символику тригонометрия приобрела благодаря Леонарду Эйлеру в XVIII в. Кроме известных вам четырех тригонометрических  функций иногда рассматриваются еще две:

секанс Решение прямоугольных треугольников с формулами и примерами вычисления

и косеканс Решение прямоугольных треугольников с формулами и примерами вычисления

Приложения

Обобщенная теорема Фалеса и площадь прямоугольника

В ходе доказательства некоторых геометрических теорем используется процедура деления отрезка на некоторое количество равных частей. Это позволяет дать числовые оценки в виде неравенств и с их помощью получить противоречие.

В курсе геометрии 8 класса такой подход целесообразно применить для доказательства двух приведенных ниже теорем.

Теорема (обобщенная теорема Фалеса)

Параллельные прямые, пересекающие стороны угла, отсекают на сторонах этого угла пропорциональные отрезки.

Доказательство:

 По данным рисунка 180 докажем три формулы:

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Докажем сначала формулу 1. Пусть отрезок Решение прямоугольных треугольников с формулами и примерами вычисления можно разделить на Решение прямоугольных треугольников с формулами и примерами вычисления равных отрезков так, что одна из точек деления совпадет с точкой Решение прямоугольных треугольников с формулами и примерами вычисления причем на отрезке Решение прямоугольных треугольников с формулами и примерами вычисления будут лежать Решение прямоугольных треугольников с формулами и примерами вычисления точек деления. Тогда, проведя через точки деления прямые, параллельные Решение прямоугольных треугольников с формулами и примерами вычисления по теореме Фалеса получим деление отрезков Решение прямоугольных треугольников с формулами и примерами вычисления соответственно наРешение прямоугольных треугольников с формулами и примерами вычисления равных отрезков. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления что и требовалось доказать.

Если описанное деление отрезка Решение прямоугольных треугольников с формулами и примерами вычисления невозможно, то докажем формулу 1 от противного. Пусть Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим случай, когда Решение прямоугольных треугольников с формулами и примерами вычисления (другой случай рассмотрите самостоятельно).

Отложим на отрезке Решение прямоугольных треугольников с формулами и примерами вычисления отрезок Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 181).

Решение прямоугольных треугольников с формулами и примерами вычисления

Разобьем отрезок Решение прямоугольных треугольников с формулами и примерами вычисления на такое количество равных отрезков чтобы одна из точек деления Решение прямоугольных треугольников с формулами и примерами вычисления попала на отрезок Решение прямоугольных треугольников с формулами и примерами вычисления Проведем через точки деления прямые, параллельные Решение прямоугольных треугольников с формулами и примерами вычисления Пусть прямая,   проходящая через точку Решение прямоугольных треугольников с формулами и примерами вычисленияпересекает луч Решение прямоугольных треугольников с формулами и примерами вычисления в точке Решение прямоугольных треугольников с формулами и примерами вычисления Тогда по доказанному Решение прямоугольных треугольников с формулами и примерами вычисления Учитывая, что в этой пропорции Решение прямоугольных треугольников с формулами и примерами вычисления имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Это неравенство противоречит выбору длины отрезка Решение прямоугольных треугольников с формулами и примерами вычисления Следовательно, формула 1 доказана полностью.

Докажем формулы 2 и 3. Пользуясь обозначениями рисунка 180,
по формуле 1 имеем Решение прямоугольных треугольников с формулами и примерами вычисления Разделив в каждом из этих равенств числитель на знаменатель, получим: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Откуда Решение прямоугольных треугольников с формулами и примерами вычисления Таким образом, доказано, что Решение прямоугольных треугольников с формулами и примерами вычисления т.е. формулы 2 и 3 выполняются.

Теорема доказана полностью. 

Из курса математики 5 класса известно, что площадь прямоугольника равна произведению двух его соседних сторон. Так, на рисунке 182 дан прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления который делится на 15 квадратов площадью 1. Следовательно, по аксиомам площади, его площадь равна 15 кв. ед., то есть Рис- 182. Решение прямоугольных треугольников с формулами и примерами вычисления кв. ед.

Решение прямоугольных треугольников с формулами и примерами вычисления

Таким способом легко найти площадь прямоугольника, у которого длины сторон выражены любыми целыми числами. Но справедливость этой формулы при условии, что длины сторон прямоугольника не являются целыми числами,— совсем неочевидная теорема. Докажем ее.

Теорема (формула площади прямоугольника)

Площадь прямоугольника равна произведению его соседних сторон:

Решение прямоугольных треугольников с формулами и примерами вычисления — стороны прямоугольника.

Доказательство:

 Докажем сначала, что площади прямоугольников с одним равным измерением относятся как длины других измерений.

Пусть прямоугольники Решение прямоугольных треугольников с формулами и примерами вычисления имеют общую сторону Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 183,
Решение прямоугольных треугольников с формулами и примерами вычисления

Разобьем сторону Решение прямоугольных треугольников с формулами и примерами вычисления равных частей. Пусть на отрезке Решение прямоугольных треугольников с формулами и примерами вычисления лежит Решение прямоугольных треугольников с формулами и примерами вычисления точек деления, причем точка деления Решение прямоугольных треугольников с формулами и примерами вычисления имеет номер Решение прямоугольных треугольников с формулами и примерами вычисления а точка Решение прямоугольных треугольников с формулами и примерами вычисления —номер Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления откуда — Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Теперь проведем через точки деления прямые, параллельные Решение прямоугольных треугольников с формулами и примерами вычисления Они разделят прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления равных прямоугольников (т. е. таких, которые совмещаются при наложении). Очевидно, что прямоугольник Решение прямоугольных треугольников с формулами и примерами вычислениясодержится внутри прямоугольника Решение прямоугольных треугольников с формулами и примерами вычисления а прямоугольник Решение прямоугольных треугольников с формулами и примерами вычислениясодержит прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Имеем: Решение прямоугольных треугольников с формулами и примерами вычисления

Сравнивая выражения для Решение прямоугольных треугольников с формулами и примерами вычисления убеждаемся, что оба эти отношения расположены между Решение прямоугольных треугольников с формулами и примерами вычисления т.е. отличаются не больше чем на Решение прямоугольных треугольников с формулами и примерами вычисления натуральное число). Докажем от противного, что эти отношения  равны.

Действительно, если это не так, т.е. Решение прямоугольных треугольников с формулами и примерами вычисления такое натуральное число Решение прямоугольных треугольников с формулами и примерами вычисления что Решение прямоугольных треугольников с формулами и примерами вычисления Полученное противоречие доказывает, что площади прямоугольников с одним равным измерением относятся как длины других измерений.

Рассмотрим теперь прямоугольники Решение прямоугольных треугольников с формулами и примерами вычисления со сторонами Решение прямоугольных треугольников с формулами и примерами вычисления Решение прямоугольных треугольников с формулами и примерами вычисления со сторонами Решение прямоугольных треугольников с формулами и примерами вычисления и 1 и квадрат Решение прямоугольных треугольников с формулами и примерами вычисления со стороной 1 (рис. 183, б).

Тогда по доказанному Решение прямоугольных треугольников с формулами и примерами вычисления

Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления кв. ед., то, перемножив полученные отношения, имеем Решение прямоугольных треугольников с формулами и примерами вычисления

Теорема доказана.

Золотое сечение

С давних времен люди старались познать мир путем поиска гармонии и совершенства. Одним из вопросов, которыми задавались еще древние греки, был поиск наилучшего соотношения неравных частей одного целого. Таким соотношением еще со времен Пифагора считали гармоническое деление, при котором меньшая часть относится к большей, как большая часть относится ко всему целому. Такое деление отрезка на части описано во II книге «Начал» Евклида и названо делением в среднем и крайнем отношении. Рассмотрим деление отрезка Решение прямоугольных треугольников с формулами и примерами вычисления точкой Решение прямоугольных треугольников с формулами и примерами вычисления при котором Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 184). Пусть длина отрезка Решение прямоугольных треугольников с формулами и примерами вычисления равна Решение прямоугольных треугольников с формулами и примерами вычисления а длина отрезка Решение прямоугольных треугольников с формулами и примерами вычисления равна Решение прямоугольных треугольников с формулами и примерами вычисления Тогда

Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления то геометрический смысл имеет только значение  Решение прямоугольных треугольников с формулами и примерами вычисления Значит, если длина данного отрезка равна 1, то при делении в крайнем и среднем отношении его большая часть приблизительно равна 0,6. Полученное число обозначают греческой буквой Решение прямоугольных треугольников с формулами и примерами вычисления Кроме того, часто рассматривают и отношение Решение прямоугольных треугольников с формулами и примерами вычисления Заметим, что Решение прямоугольных треугольников с формулами и примерами вычисления — первая буква имени древнегреческого скульптора Фидия, который часто использовал такое деление в своем творчестве (в частности, в знаменитой статуе Зевса Олимпийского, которую считают одним из семи чудес света).

В эпоху Возрождения (XV—XVII вв.) интерес к гармоническому делению чрезвычайно возрос. Выдающийся ученый и художник Леонардо да Винчи (1452—1519) назвал такое деление золотым сечением, а его современник и соотечественник, итальянский монах-математик Лука Па-чоли (1445—1514) — божественной пропорцией. Золотое сечение и близкие к нему пропорциональные отношения составляли основу композиционного построения многих произведений мирового искусства, в частности архитектуры Античности и Возрождения. Одно из величайших сооружений Древней Эллады — Парфенон в Афинах (V в. до н. э.) — содержит в себе золотые пропорции (в частности, отношение высоты к длине этого сооружения равно Решение прямоугольных треугольников с формулами и примерами вычисления

Итак, дадим определение золотому сечению.

Определение:

Золотым сечением называется такое деление величины на две неравные части, при котором меньшая часть относится к большей, как большая часть относится ко всему целому.

Иначе говоря, золотое сечение — это деление величины в отношении Решение прямоугольных треугольников с формулами и примерами вычисления (или Решение прямоугольных треугольников с формулами и примерами вычисления

Построить золотое сечение отрезка заданной длины Решение прямоугольных треугольников с формулами и примерами вычисления с помощью циркуля и линейки довольно просто: для этого достаточно построить прямоугольный треугольник с катетами Решение прямоугольных треугольников с формулами и примерами вычисления и провести две дуги из вершин острых углов так, как показано на рисунке 185.

Решение прямоугольных треугольников с формулами и примерами вычисления

По теореме о пропорциональности отрезков секущей и касательной Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку по построению Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления по определению золотого сечения. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления Убедиться в правильности построения можно также с помощью теоремы Пифагора (сделайте это самостоятельно.)

С золотым сечением связывают геометрические фигуры, при построении которых используются отношения Решение прямоугольных треугольников с формулами и примерами вычисления Рассмотрим некоторые из них.

Равнобедренный треугольник называется золотым, если две его стороны относятся в золотом сечении. Докажем, что треугольник с углами Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 186, а) является золотым. Действительно, пусть в треугольнике  Решение прямоугольных треугольников с формулами и примерами вычисления биссектриса. Тогда Решение прямоугольных треугольников с формулами и примерами вычисления по двум углам. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления т. е. треугольник Решение прямоугольных треугольников с формулами и примерами вычисления — золотой.

И наоборот: если в равнобедренном треугольнике Решение прямоугольных треугольников с формулами и примерами вычисления то такой треугольник подобен треугольнику Решение прямоугольных треугольников с формулами и примерами вычисления т. е. имеет углы Решение прямоугольных треугольников с формулами и примерами вычисления

Предлагаем самостоятельно убедиться в том, что золотым является также треугольник с углами Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 186, б) и других золотых треугольников не существует.

Решение прямоугольных треугольников с формулами и примерами вычисления

Золотые треугольники связаны с правильным пятиугольником (т.е. выпуклым пятиугольником, у которого все стороны равны и все углы равны).

В правильном пятиугольнике:

1) диагональ относится к стороне в золотом сечении;

2) точка пересечения диагоналей делит каждую из них в золотом сечении;

3) диагональ делит другую диагональ на два отрезка, один из которых делится в золотом сечении еще одной диагональю.

Решение прямоугольных треугольников с формулами и примерами вычисления

Согласно обозначениям рисунка 187 это означает, что Решение прямоугольных треугольников с формулами и примерами вычисления Для доказательства этих свойств достаточно заметить, что в правильном пятиугольнике все углы равны Решение прямоугольных треугольников с формулами и примерами вычисленияследовательно, треугольники Решение прямоугольных треугольников с формулами и примерами вычисления являются золотыми. Подробные доказательства предлагаем провести самостоятельно.

Диагонали правильного пятиугольника образуют звезду, которая в древние времена олицетворяла совершенство и имела мистическое значение. Пифагорейцы называли ее пентаграммой и избрали символом своей научной школы. В наши дни пятиконечная звезда — самая распространенная геометрическая фигура на флагах и гербах многих стран (приведите соответствующие примеры из истории и географии).

Прямоугольник называется золотым, если его стороны относятся в золотом сечении. Для построения золотого прямоугольника произвольный квадрат перегибаем пополам (рис. 188, а), проводим диагональ одного из полученных прямоугольников (рис. 188, б) и радиусом, равным этой диагонали, проводим дугу окружности с центром Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 188, в). Полученный прямоугольник Решение прямоугольных треугольников с формулами и примерами вычисления — золотой (убедитесь в этом самостоятельно).

Решение прямоугольных треугольников с формулами и примерами вычисления
Если от золотого прямоугольника отрезать квадрат со стороной, равной меньшей стороне прямоугольника, то оставшийся прямоугольник также будет золотым. Действительно, на рисунке 189, а имеем Решение прямоугольных треугольников с формулами и примерами вычисления тогда Решение прямоугольных треугольников с формулами и примерами вычисления Неограниченно продолжая этот процесс (рис. 189, б), можно получить так называемые вращающиеся квадраты, и весь данный прямоугольник будет составлен из таких квадратов.Решение прямоугольных треугольников с формулами и примерами вычисления

Через противолежащие вершины квадратов проходит так называемая золотая спираль, которая часто встречается в природе. Например, по принципу золотой спирали располагаются семена в подсолнечнике; по золотой спирали закручены раковины улиток, рога архаров, паутина отдельных видов пауков и даже наша Солнечная система, как и некоторые другие галактики.

Отметим также, что золотое сечение имеет немало алгебраических свойств. Отношение Решение прямоугольных треугольников с формулами и примерами вычисления приближенно может быть выражено дробями Решение прямоугольных треугольников с формулами и примерами вычисления так называемые числа Фибоначчи. Приведем без доказательства две алгебраические формулы, связанные с числами Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Золотое сечение, золотые многоугольники и золотая спираль являются математическими воплощениями идеальных пропорций в природе. Недаром великий немецкий поэт Иоганн Вольфганг Гете считал их математическими символами жизни и духовного развития.
Приложение 3. Таблица значений тригонометрических функций

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Значение тригонометрических функций острых углов можно приближенно определять с помощью специальных таблиц. Одна из таких таблиц представлена выше.

Таблица составлена с учетом формул дополнения. В двух крайних столбцах указаны градусные меры углов (в левом — от Решение прямоугольных треугольников с формулами и примерами вычисления в правом — от Решение прямоугольных треугольников с формулами и примерами вычисления Между этими столбцами содержатся четыре столбца значений тригонометрических функций:

1-й    — синусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или косинусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

2-й    — тангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или котангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

3-й    — котангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или тангенсы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

4-й    — косинусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления (или синусы углов от Решение прямоугольных треугольников с формулами и примерами вычисления

Рассмотрим несколько примеров применения данной таблицы. 1) Определим Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления найдем в крайнем левом столбце значение 25 и рассмотрим соответствующую строку первого столбца значений. Углу Решение прямоугольных треугольников с формулами и примерами вычисления в ней соответствует число 0,423. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

2) Определим Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку 45° < 72° <90°, найдем в крайнем правом столбце значение 72 и рассмотрим соответствующую строку четвертого столбца значений. Углу Решение прямоугольных треугольников с формулами и примерами вычисления в нем соответствует число 0,951. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

3) Определим угол, синус которого равен 0,839. Для этого в первом или четвертом столбце значений найдем число 0,839. Оно содержится в четвертом столбце, т. е. искомый угол больше Решение прямоугольных треугольников с формулами и примерами вычисления и меньше Решение прямоугольных треугольников с формулами и примерами вычисления В соответствующей строке правого столбца значений находим число 57. Следовательно, искомый угол приблизительно равен Решение прямоугольных треугольников с формулами и примерами вычисления

4) Определим Решение прямоугольных треугольников с формулами и примерами вычисления Поскольку Решение прямоугольных треугольников с формулами и примерами вычисления найдем в крайнем левом столбце значений 14 и рассмотрим соответствующую строку четвертого столбца значений. Углу Решение прямоугольных треугольников с формулами и примерами вычисления в нем соответствует число 0,970. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

5) Определим угол, тангенс которого равен 0,7. Для этого во втором или третьем столбце значений найдем число 0,700. Оно находится во втором столбце, т.е. искомый угол меньше Решение прямоугольных треугольников с формулами и примерами вычисления В соответствующей строке левого столбца значений находим число 35. Следовательно, искомый угол приблизительно равен Решение прямоугольных треугольников с формулами и примерами вычисления

С большей точностью значения тригонометрических функций можно определять по «Четырехзначным математическим таблицам» В. М. Брадиса или с помощью калькулятора.

Теорема Пифагора. Перпендикуляр и наклонная с решением

Докажем теорему, открытие которой связано с именем древнегреческого учёного Пифагора (VI в. до н. э.).

Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано:

∆АВС, ےC = 90° (рис. 412).

Доказать: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательство. Проведём из вершины прямого угла С высоту CD. Каждый катет прямоугольного треугольника является средним пропорциональным между гипотенузой и его проекцией на гипотенузу. Поэтому Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления. Сложив равенства почленно и зная, что AD+ DB= АВ, получим: Решение прямоугольных треугольников с формулами и примерами вычисления. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Если а и b — катеты прямоугольного треугольника, с – его гипотенуза, то из формулы Решение прямоугольных треугольников с формулами и примерами вычисления получим следующие формулы:

Решение прямоугольных треугольников с формулами и примерами вычисления

Используя эти формулы, по двум любым сторонам прямоугольного треугольника находим его третью сторону (табл. 28).

Решение прямоугольных треугольников с формулами и примерами вычисления

Например:

Решение прямоугольных треугольников с формулами и примерами вычисления

Справедлива и теорема, обратная теореме Пифагора: если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то этот треугольник – прямоугольный.

Согласно теореме, обратной теореме Пифагора, треугольник со сторонами 3 см, 4 см и 5 см – прямоугольный, поскольку Решение прямоугольных треугольников с формулами и примерами вычисления. Такой треугольник иногда называют египетским.

Пример №27

Сторона ромба равна 10 см, а одна из его диагоналей — 16 см. Найдите другую диагональ ромба.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть ABCD— ромб (рис. 413), АС= 16см,AD = 10см. Найдём диагональ BD. Как известно, диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. Поэтому ∆AOD — прямоугольный (ے0= 90°). АС 16

В нём: катет Решение прямоугольных треугольников с формулами и примерами вычислениягипотенуза AD= 10 см.

Решение прямоугольных треугольников с формулами и примерами вычисления

Для того чтобы найти определённый элемент фигуры (сторону, высоту, диагональ), выделите на рисунке прямоугольный треугольник, воспользовавшись свойствами фигуры, и примените теорему Пифагора.

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Пусть ВС – перпендикуляр, проведённый из точки В на прямую а (рис. 414). Возьмём произвольную точку А на прямой а, отличную от точки С, и соединим точки А и В. Отрезок АВ называется наклонной, проведённой из точки В на прямую а. Точка А называется основанием наклонной, а отрезок АС – проекцией наклонной.

Наклонные имеют следующие свойства. Если из данной точки к прямой провести перпендикуляр и наклонные, то:

  1. любая наклонная больше перпендикуляра;
  2. равные наклонные имеют равные проекции;
  3. из двух наклонных больше та, проекция которой больше.

Решение прямоугольных треугольников с формулами и примерами вычисления

Покажем, что свойства наклонных следуют из теоремы Пифагора.

  1. По теореме Пифагора, Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 415), тогда Решение прямоугольных треугольников с формулами и примерами вычисления или АВ > ВС.
  2. Из прямоугольных треугольников ABD и CBD (рис. 416) имеем:
  3. Решение прямоугольных треугольников с формулами и примерами вычисленияПоскольку в этих равенствах АВ = ВС (по условию), то AD = DC.
  4. Из прямоугольных треугольников ABD и CBD (рис. 417) имеем: Решение прямоугольных треугольников с формулами и примерами вычисления. В этих равенствах AD > DC. Тогда АВ > ВС.

Пример №28

Из точки к прямой проведены две наклонные, проекции которых равны 5 см и 9 см. Найдите наклонные, если одна из них на 2 см больше другой.

Решение:

Пусть AD = 5 см, DC = 9 см (рис. 418). Поскольку AD < DC, то, по свойству трёх наклонных, АВ < ВС. Обозначим АВ через х, тогда ВС = х + 2. Из прямоугольных треугольников ABD и CBD находим Решение прямоугольных треугольников с формулами и примерами вычисления. Решение прямоугольных треугольников с формулами и примерами вычисления

Приравниваем правые части равенств и получаем: Решение прямоугольных треугольников с формулами и примерами вычисления Отсюда 4х=52, х= 13см. Следовательно, АВ= 13см, ВС=х+2= 15(см).

Если в условии задачи даны две наклонные, проведённые из одной точки к прямой, то рассматриваем два прямоугольных треугольника, общим катетом которых является перпендикуляр, проведённый из общей точки к этой прямой.

Теорема Пифагора — одна из наиболее значимых теорем математики. На протяжении многих столетий она являлась толчком для важнейших математических исследований. Предлагаем вам несколько интересных фактов, связанных с этой теоремой и её автором.

Пифагор (570 — 496 гг. до н. э.) родился на острове Самос (южная часть Эгейского моря). Длительное время изучал математику в Египте и Вавилоне. В г. Кротоне, на юге Италии, основал научную школу — так называемый пифагорейский союз. Пифагор и его ученики занимались математикой, философией, астрономией и теорией музыки. Вследствие противоречий и противодействия со стороны общества здание школы было разгромлено, а сам Пифагор убит. Среди важнейших достижений пифагорейцев — теорема, которую называют теоремой Пифагора, и её доказательство. (Ныне установлено, что эта теорема была известна за 1500 лет до Пифагора в древнем Вавилоне.) Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах (рис. 419).

Решение прямоугольных треугольников с формулами и примерами вычисления

Доказательством теоремы Пифагора занимались многие математики на протяжении столетий. Известно более 150 доказательств этой теоремы. Так, индийский математик Бхаскара (XII в.) предложил такую фигуру, как на рисунке 420, без каких-либо объяснений. Под рисунком лишь одно слово — «смотри». Попытайтесь объяснить справедливость теоремы по этому рисунку. Теорема Пифагора допускает интересные обобщения. Одно из них: если на сторонах прямоугольного треугольника построить произвольные, подобные между собой фигуры, то справедливо равенство Решение прямоугольных треугольников с формулами и примерами вычисления и Решение прямоугольных треугольников с формулами и примерами вычисления~ площади построенных фигур.

Решение прямоугольных треугольников с формулами и примерами вычисления

С теоремой Пифагора связаны школьные шутки: рисунок к теореме для случая равнобедренного прямоугольного треугольника ученики называли «пифагоровы штаны» (рис. 422), а также изображали в виде смешных фигурок (рис. 423 и 424).

Синус, косинус и тангенс острого угла прямоугольного треугольника

Пусть ABC – прямоугольный треугольник с катетами ВС = а, АС = by гипотенузой АВ = с и ےA = a (рис. 441). Вы знаете, что катет а – противолежащий углу а, катет b – прилежащий к углу a. Отношение каждого катета к гипотенузе, а также катета к катету имеют специальные обозначения:

  • – отношение Решение прямоугольных треугольников с формулами и примерами вычисления обозначают sin а и читают «синус альфа»;
  • – отношение Решение прямоугольных треугольников с формулами и примерами вычисления обозначают cos а и читают «косинус альфа»;
  • – отношение Решение прямоугольных треугольников с формулами и примерами вычисления обозначают tg а и читают «тангенс альфа».

Решение прямоугольных треугольников с формулами и примерами вычисления

Сформулируем определения sin a, cos а и tg а.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Отношение сторон прямоугольного треугольника и их обозначения указаны в Решение прямоугольных треугольников с формулами и примерами вычисления

Зависят ли синус, косинус и тангенс острого угла от размеров треугольника?

Решение прямоугольных треугольников с формулами и примерами вычисления

Нет, не зависят. Итак, пусть ABC и Решение прямоугольных треугольников с формулами и примерами вычисления -два прямоугольных треугольника, в которых Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 442). Тогда Решение прямоугольных треугольников с формулами и примерами вычисления по двум углам (Решение прямоугольных треугольников с формулами и примерами вычисления). Соответствующие стороны этих треугольников пропорциональны: Решение прямоугольных треугольников с формулами и примерами вычисления

Из этих равенств следует:

Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, в прямоугольных треугольниках с одним и тем же острым углом синусы этого утла равны, косинусы и тангенсы – равны. Если градусную меру угла изменить, то изменится и соотношение сторон прямоугольного треугольника. Это означает, что синус, косинус и тангенс острого угла прямоугольного треугольника зависят только от градусной меры угла и не зависят от размеров треугольника.

По исходному значению sin A, cos А или tg А можно построить угол А.

Пример №29

Постройте угол, синус которого равен Решение прямоугольных треугольников с формулами и примерами вычисления.

Решение:

Выбираем некоторый единичный отрезок (1 мм, 1 см, 1 дм). Строим прямоугольный треугольник, катет ВС которого равен двум единичным отрезкам, а гипотенуза АВ — трём (рис. 443). Угол А, лежащий против катета ВС, — искомый, поскольку sin А = Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

В прямоугольном треугольнике любой из двух катетов меньше гипотенузы. Поэтому sin а < 1 и cos а < 1 для любого острого угла а. Поскольку один катет может быть и больше, и меньше другого катета, и быть равный ему, то tg а может быть и больше 1, и меньше 1, и быть равным 1.

1. Кроме косинуса, синуса и тангенса угла а есть ещё одно соотношение сторон прямоугольного треугольника, имеющее особое название — котангенс. Это отношение катета b, прилежащего к углу а, к противолежащему катету а (рис. 444). Обозначается: ctg а. СледовательноРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

2. Индийский математик Ариабхата (V в.) отношение противолежащего катета к гипотенузе назвал ordhajyo — ардхажиа (полухорда), в переводе — тетива лука. В XII в. европейские учёные перевели это название на латинский язык как sinus — синус. Слово cosinus— косинус состоит из двух слов: complement — дополнение и sinus — синус, то есть дополнительный синус. Почему — узнаете из § 23 этой главы. Арабские астрономы-математики аль-Баттани (858 — 929 гг.) и Абу-ль-Вефа (940 — 998 гг.) определили понятие тангенса, измеряя угловую высоту Солнца по тени от жерди. Поэтому отношение катета, противолежащего углу а, к прилежащему катету они называли словом «тень». Позднее, в XVI в., это отношение получило название «тангенс», что в переводе с латинского означает «касательная». Знаки «sin», «cos», «tg» ввёл Леонард Эйлер в XVIII веке.

Соотношения между сторонами и углами прямоугольного треугольника

Вы знаете, что Решение прямоугольных треугольников с формулами и примерами вычисления(рис. 451). Отсюда: 1) а=с sina, 2) b=c cosa, 3) a=b tga.

Решение прямоугольных треугольников с формулами и примерами вычисления

Эти равенства формулируются следующим образом.

  1. Катет, противолежащий углу а, равен произведению гипотенузы на sin a.
  2. Катет, прилежащий к углу а, равен произведению гипотенузы на cos a.
  3. Катет, противолежащий углу а, равен произведению другого катета на tg a.

Из равенств 1) и 2) можно найти гипотенузу с прямоугольного треугольника по катету а или b и острому углу Решение прямоугольных треугольников с формулами и примерами вычисления

Из равенства 3) можно найти катет b по прилежащему к нему углу а и катету а: Решение прямоугольных треугольников с формулами и примерами вычисления

Для того чтобы найти по одной из сторон прямоугольного треугольника и острому углу две другие его стороны, используйте равенства 1) — 6) (табл.33). Таблица 3 3 Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №30

Найдите основание равнобедренного треугольника с боковой стороной о и углом а при основании.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть ABC— равнобедренный треугольник с боковой стороной ВС = а и ےC = а (рис. 452). Проведём высоту BD. В прямоугольном треугольнике DBCкатет DC, прилежащий к углу а, равен произведению гипотенузы а на cos a: DC = a cos а. Поскольку высота равнобедренного треугольника, опущенная на основание, является медианой, то DC = AD. Тогда основание АС = 2 DC =2 a cos а.

В этой главе вы ознакомились с новыми приёмами вычисления длин сторон и градусных мер углов прямоугольного треугольника. Может возникнуть вопрос: Какова необходимость использования этих приёмов? Вы знаете, что в древности расстояния и углы сначала измеряли непосредственно инструментами. Например, транспортиром пользовались вавилоняне ещё за 2 ООО лет до н. э.

Но на практике непосредственно измерять расстояния и углы не всегда возможно. Как вычислить расстояние между двумя пунктами, которые разделяет препятствие (река, озеро, лес), расстояние до Солнца, Луны, как измерить высоту дерева, горы, как найти угол подъёма дороги либо угол при спуске с горы? Поэтому были открыты приёмы опосредствованного измерения расстояний и углов. При этом использовали равные либо подобные треугольники и геометрические построения. Строили на местности вспомогательный треугольник и измеряли необходимые его элементы.

Итак, вы знаете, как определить расстояние между пунктами А и В, разделёнными препятствием (рис. 453). Для этого строим ∆COD = ∆АОВ и вместо искомого расстояния Ив измеряем равное ему расстояние CD.

Решение прямоугольных треугольников с формулами и примерами вычисления

Но при использовании этих приёмов получали недостаточно точные результаты, особенно при измерении значительных расстояний на местности. Кроме того, без угломерных инструментов нельзя найти градусные меры углов по длинам тех или других отрезков. Поэтому возникла необходимость в таких приёмах, когда непосредственные измерения сводились к минимуму, а результаты получали преимущественно вычислением элементов прямоугольного треугольника. В основе таких приёмов лежит использование cos а, sin а и tg а. Накопление вычислительных приёмов решения задач обусловило создание нового раздела математики, который в XVI в. назвали тригонометрией. Слово «тригонометрия» происходит от греческих слов trigonon — треугольник и metreo — измеряю. Греческих математиков Гиппарха (II в. до н. э.) и Птолемея (II в.) считают первыми, кто использовал тригонометрические приёмы для решения разных задач. В дальнейшем их усовершенствовали индийский математик Брамагупта (VI в.), узбекские математики аль-Каши и Улугбек (XII в.). В работах академика Леонарда Эйлера (XVIII в.) тригонометрия приобретает тот вид, который в основном имеет и в наше время.

Вычисление значений sin a, cos а и tg а

ЕЭ| Пусть в прямоугольном треугольнике ABC ZA = а, тогда ZB – 90° – а (рис. 467). Из определения синуса и косинуса следует:

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления Сравнивая эти два столбца, находим: sin а = cos (90° – а), cos а = sin (90° – а).

Как видим, между синусом и косинусом углов а и 90° – а, которые дополняют друг друга до 90°, существует зависимость: синус одного из этих углов равен косинусу другого.

Например: Решение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Найдём значения синуса, косинуса и тангенса для углов 45°, 30°, 60°. 1) Для угла 45°. Пусть ABC – прямоугольный треугольник с гипотенузой С и ےA = 45° (рис. 468). Тогда ےB = 45°. Следовательно, ∆ABC – равнобедренный. Пусть АС = ВС = а. Согласно теореме Пифагора,

Решение прямоугольных треугольников с формулами и примерами вычисления

2) Для углов 30° и 60°.

Пусть ABC – прямоугольный треугольник с гипотенузой с и ےA = 30″ (рис. 469). Найдём катеты АС и ВС.

ВС = Решение прямоугольных треугольников с формулами и примерами вычисления как катет, лежащий против угла 30°.

Согласно теореме Пифагора, Решение прямоугольных треугольников с формулами и примерами вычисления

ТогдаРешение прямоугольных треугольников с формулами и примерами вычисления

Решение прямоугольных треугольников с формулами и примерами вычисления

Если в прямоугольном треугольнике ABC ےA = 30° (рис. 469),

Решение прямоугольных треугольников с формулами и примерами вычисления

Составим таблицу 35 значений синуса, косинуса и тангенса для углов 30°, 45°, 60°

Таблица 35 Решение прямоугольных треугольников с формулами и примерами вычисления

Из таблицы видно, что при увеличении угла синус и тангенс острого угла возрастают, а косинус — уменьшается. При уменьшении угла синус и тангенс острого угла уменьшаются, а косинус – увеличивается. Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №31

Сторона ромба равна 6 см, а один из его углов Найдите высоту ромба.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Пусть ABCD — ромб (рис. 470), в котором АВ = 6 см, ےА = 60°. Проведём высоту ВМ. Из прямоугольного треугольника АВМ: Решение прямоугольных треугольников с формулами и примерами вычисления Как вычислить значения синусов, косинусов и тангенсов углов, отличных от 30°, 45°, 60°?

При помощи инженерных калькуляторов (или программы «калькулятор» компьютера) либо специальных таблиц можно решить две задачи:

1) для заданного угла а найти sin a, cos а, tg а;

2) по заданному значению sin a, cos а, tg а найти угол а.

Если вы используете калькулятор, а угол указан в градусах и минутах, то минуты переведите в десятые доли градуса (разделите их на 60). Например, для угла 55°42° получите 55,7°. Если, например, для cos Решение прямоугольных треугольников с формулами и примерами вычисления 0,8796 нашли Решение прямоугольных треугольников с формулами и примерами вычисления28,40585° то доли градуса переведите в минуты (умножьте дробную часть на 60). Округлив, получите: Решение прямоугольных треугольников с формулами и примерами вычисления 28°24°.

Значение sin a, cos а, tg а находим по таблицам.

Таблица синусов и косинусов (см. приложение 1) состоит из четырёх столбцов. В первом столбце слева указаны градусы от 0° до 45°, а в четвёртом – от 90° до 45°. Над вторым и третьим столбцами указаны названия «синусы» и «косинусы», а в нижней части этих столбцов – «косинусы» и «синусы».

Верхние названия «синусы» и «косинусы» отображают значения углов, которые меньше 45°, а нижние – больше 45°. Например, по таблице находим: sin34° Решение прямоугольных треугольников с формулами и примерами вычисления 0,559, cos67°Решение прямоугольных треугольников с формулами и примерами вычисления 0,391, sin85° Решение прямоугольных треугольников с формулами и примерами вычисления 0,996 и т. д. По таблице можно найти угол а по заданному значению sin a, cos а. Например, нужно найти угол а, если sin Решение прямоугольных треугольников с формулами и примерами вычисления 0,615. В столбцах синусов находим число, приближённое к 0,615. Таким числом является 0,616. Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления 38″.

Таблица тангенсов (см. приложение 2) состоит из двух столбцов: в одном указаны углы от 0° до 89°, в другом – значения тангенсов этих углов.

Например, tg 19° Решение прямоугольных треугольников с формулами и примерами вычисления0,344. Если tg Решение прямоугольных треугольников с формулами и примерами вычисления0,869, то Решение прямоугольных треугольников с формулами и примерами вычисления41°.

1. Вы уже знаете, что каждой градусной мере угла а прямоугольного треугольника соответствует единственное значение sin a, cos а, tg а. Поэтому синус, косинус и тангенс угла а являются функциями данного угла. Эти функции называются тригонометрическими функциями, аргумент которых изменяется от О° до 90°.

2. Уточним происхождение слова «косинус». Именно равенство cos а = sin (90° — а) явилось основой образования латинского слова cosinus — дополнительный синус, то есть синус угла, дополняющий заданный до 90°.

3. Первые таблицы синусов углов от 0° до 90° составил греческий математик Гиппарх (II в. до н. э.). Эти таблицы не сохранились. Нам известны только тригонометрические таблицы, помещённые в работе «Альмагест» александрийского учёного Клавдия Птолемея (II в.). Птолемей Также сохранились таблицы синусов и косинусов индийского учёного Ариаб-хаты (V в.), таблицы тангенсов арабских учёных аль-Баттани и Абу-ль-Вефа (X в.).

Как решать прямоугольные треугольники

Решить прямоугольный треугольник – это означает по заданным двум сторонам либо стороне и острому углу найти другие его стороны и острые углы.

Возможны следующие виды задач, в которых требуется решить прямоугольный треугольник по: 1) катетам; 2) гипотенузе и катету; 3) гипотенузе и острому углу; 4) катету и острому углу. Алгоритмы решения этих четырёх видов задач изложены в таблице 36.

Таблица 36

Решение прямоугольных треугольников с формулами и примерами вычисления

Пример №32

Решите прямоугольный треугольник по гипотенузе с= 16 и углу а = 76°21′ (рис. 482).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение. Это задача третьего вида. Алгоритм её решения указан в таблице 38.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение многих прикладных задач основано на решении прямоугольных треугольников. Рассмотрим некоторые виды прикладных задач.

1. Задачи на нахождение высоты предмета, основание которого доступно.

Пример №33

Найдите высоту дерева (рис. 483).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На некотором расстоянии MN= а от дерева устанавливаем угломерный прибор AM (например, теодолит) и находим угол а между горизонтальным направлением АС и направлением на верхнюю точку В дерева. Из прямоугольного треугольника ABC получим: ВС= a • tg а. С учётом высоты угломерного прибора AM= h имеем формулу для вычисления высоты дерева: BN= о • tg а + h.

Пусть результаты измерения следующие: Решение прямоугольных треугольников с формулами и примерами вычисления.

Тогда Решение прямоугольных треугольников с формулами и примерами вычисления(м).

2. Задачи на нахождение высоты предмета, основание которого недоступно.

Пример №34

Найдите высоту башни, которая отделена от вас рекой (рис. 484).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На горизонтальной прямой, проходящей через основание башни (рис. 484), обозначим две точки М и N, измерим отрезок MN= а и углы Решение прямоугольных треугольников с формулами и примерами вычисления. Из прямоугольных треугольников ADC и BDC получим: Решение прямоугольных треугольников с формулами и примерами вычисления

Почленно вычитаем полученные равенства: Решение прямоугольных треугольников с формулами и примерами вычисления

Отсюда Решение прямоугольных треугольников с формулами и примерами вычисления

Следовательно, Решение прямоугольных треугольников с формулами и примерами вычисления

Прибавив к DC высоту прибора AM= Н, которым измеряли углы, получим

формулу для вычисления высоты башни: Решение прямоугольных треугольников с формулами и примерами вычисления

Пусть результаты измерения следующие: Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда Решение прямоугольных треугольников с формулами и примерами вычисления

3. Задачи на нахождение расстояния между двумя пунктами, которые разделяет препятствие.

Пример №35

Найдите расстояние между пунктами А и В, разделёнными рекой (рис. 485).

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

Провешиваем прямую Решение прямоугольных треугольников с формулами и примерами вычисления и отмечаем на ней точку С. Измеряем расстояние АС= а и угол а. Из прямоугольного треугольника ABC получим формулу АВ= a- tg а для определения расстояния между пунктами А и В. Пусть результаты измерения следующие: Решение прямоугольных треугольников с формулами и примерами вычисления

Тогда АВ = Решение прямоугольных треугольников с формулами и примерами вычисления

4. Задачи на нахождение углов (угла подъёма дороги; угла уклона; угла, под которым виден некоторый предмет, и т. д.).

Пример №36

Найдите угол подъёма шоссе, если на расстоянии 200 м высота подъёма составляет 8 м.

Решение прямоугольных треугольников с формулами и примерами вычисления

Решение:

На рисунке 486 угол a — это угол подъёма дороги, АС— горизонтальная прямая. Проведём Решение прямоугольных треугольников с формулами и примерами вычисления, тогда ВС- высота подъёма дороги. По условию, АВ = 200 м, ВС = 8 м. Угол a найдём из прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления Тогда Решение прямоугольных треугольников с формулами и примерами вычисления

У вас может возникнуть вопрос: Почему в геометрии особое внимание уделяется прямоугольному треугольнику, хотя не часто встречаются предметы подобной формы?

Итак, поразмышляем. Как в химии изучают вначале элементы, а затем — их соединения, в биологии — одноклеточные, а потом — многоклеточные организмы, так и в геометрии изучают сначала простые геометрические фигуры — точки, отрезки и треугольники, из которых состоят другие геометрические фигуры. Среди этих фигур прямоугольный треугольник играет особую роль. Действительно, любой многоугольник можно разбить на треугольники (рис. 487).

Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

Умея находить угловые и линейные элементы этих треугольников, можно найти все элементы многоугольника. В свою очередь, любой треугольник можно разбить одной из его высот на два прямоугольных треугольника, элементы которых связаны более простой зависимостью (рис. 488). Найти элементы треугольника можно, если свести задачу к решению этих двух прямоугольных треугольников. Проиллюстрируем это на примере.

Пример №37

Решение прямоугольных треугольников с формулами и примерами вычисления (рис. 489). Найдите ےB, ےC и сторону а.

Решение:

Проведём высоту BD. Точка D будет лежать между точками А и С, поскольку ےA — острый и b> с.

Решение прямоугольных треугольников с формулами и примерами вычисления

Из прямоугольного треугольника ABD:

Решение прямоугольных треугольников с формулами и примерами вычисления

Из прямоугольного треугольника Решение прямоугольных треугольников с формулами и примерами вычисления

Из прямоугольного треугольника BDC:Решение прямоугольных треугольников с формулами и примерами вычисленияРешение прямоугольных треугольников с формулами и примерами вычисления

  • Параллелограмм
  • Теорема синусов и  теорема косинусов
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Площадь трапеции
  • Центральные и вписанные углы
  • Углы и расстояния в пространстве
  • Подобие треугольников

Добавить комментарий