Как найти сторону треугольника зная его вершины

Elena Schatz

Высший разум

(140343)


13 лет назад

Решение:
Для нахождения длин сторон треугольника воспользуемся формулой нахождения расстояния между двумя данными точками

s = ((x2 – x1)^2+(y2-y1)^2)^(1/2)

где (x1,y1) и (x2, y2) – это координаты начала и конца отрезка.

Елена Гужвенко

Гений

(53581)


13 лет назад

Найти координаты векторов, образующих каждую сторону:
АВ=(х2-х1; у2-у1)
АС и АД аналогично.
Найти длины векторов |AB|=корень из суммы квадратов соответствующих координат векторов
Удачи!

Дядя ВаняПрофи (959)

13 лет назад

Спасибо большое… но не могли бы Вы немного по подробнее…
я не совсем понял… пожалуйста )))

Решить треугольник Онлайн по координатам

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Как найти уравнения и длины сторон треугольника по координатам вершин

Уравнения сторон треугольника

Как составить уравнение сторон треугольника по координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

Таким образом, уравнение стороны AB

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

Отсюда уравнение стороны BC —

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik

http://www.matburo.ru/ex_ag.php?p1=agtr

[/spoiler]

Как составить уравнение сторон треугольника по  координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Пример.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

Решение:

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

    [left{ begin{array}{l} 1 = k cdot ( - 5) + b; \ - 4 = k cdot 7 + b; \ end{array} right. Rightarrow k = - frac{5}{{12}};b = - frac{{13}}{{12}}.]

Таким образом, уравнение стороны AB

    [y = - frac{5}{{12}}x - frac{{13}}{{12}}.]

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

    [left{ begin{array}{l} - 4 = k cdot 7 + b; \ 7 = k cdot 3 + b; \ end{array} right. Rightarrow k = - frac{{11}}{4};b = frac{{61}}{4}.]

Отсюда уравнение стороны BC —

    [y = - frac{{11}}{4}x + frac{{61}}{4}.]

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

    [left{ begin{array}{l} 1 = k cdot ( - 5) + b; \ 7 = k cdot 3 + b; \ end{array} right. Rightarrow k = frac{3}{4};b = frac{{19}}{4}.]

Уравнение стороны AC —

    [y = frac{3}{4}x + frac{{19}}{4}.]

Пример 1:

Построить треугольник, вершины которого находятся в точках А (2; 4), В (-3; 2), С (-3; -4). Найти:

1) уравнения сторон треугольника АВС;

2) координаты точки пересечения медиан;

3) длину и уравнение высоты, опущенной из вершины А;

4) площадь треугольника.

Решение от преподавателя:

Уравнение, прямой проходящей через две точки
1) Уравнения сторон треугольника АВС

2) Координаты точки пересечения медиан

Медиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Координаты т. E как середины отрезка ВС.

Уравнение АЕ

Координаты т. К как середины отрезка АВ.

Уравнение СК

3) Длина и уравнение высоты, опущенной из вершины А

Расстояние от точки до прямой

Уравнение прямой, проходящей через точку перпендикулярно другой прямой

Уравнение AN

4) Площадь треугольника

Длина ВС

Пример 2:

Решение от преподавателя:


Пример 3:

По координатам вершин треугольника ABC найти:

  • периметр треугольника;
  • уравнения сторон AB и BC;
  • уравнение высоты AD; угол ABC;
  • площадь треугольника.

Сделать чертеж.

А(1; 2); В (–1; 2); С(3; 0).

Решение от преподавателя:



Пример 4:

Даны координаты вершин треугольникаА, В, С.

Требуется найти:

1) уравнение и длину стороны ВС;

2) уравнение и длину высоты, проведённой из вершиныА;

3) уравнение медианы, проведённой из вершиныА;

4) площадь треугольника.

Сделать чертёж.

А(4;-3), B(-2;-1), C(3;-2).

Решение от преподавателя:

Пример 5:

Решение от преподавателя:

1)

2)

3) Находим координаты точки М – середины стороны ВС:

       

Определяем длину медианы АМ:

4) Составляем уравнение медианы – прямой АМ:

5) Если ВН – высота, проведенная из вершины В к стороне АС, то, поскольку ВН проходит через точку В перпендикулярно вектору , то составляем уравнение высоты по формуле , где (a,b) – координаты вектора перпендикулярного искомой прямой,  – координаты точки, принадлежащей этой прямой. Находим координаты вектора АС:

и подставляем в формулу, ,

6) Длину высоты ВН находим как расстояние от точки В до прямой АС:

7) Площадь треугольника АВС:

8) Находим угол ВАС треугольника:

9) Составляем уравнение прямой, проходящей через т.А параллельно ВС:

Ответ:

Пример 6:

Решение от преподавателя:

  1. Уравнение прямой 
    Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b1%7d%7d%7bx_%7b2%7d%20-%20x_%7b1%7d%7d%20=%20frac%7by%20-%20y_%7b1%7d%7d%7by_%7b2%7d%20-%20y_%7b1%7d%7d
    Уравнение прямой AB 
    Каноническое уравнение прямой: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%2010%7d%7b-4%20-%2010%7d%20=%20frac%7by%20%2B%202%7d%7b4%20-%20(-2)%7d
    или 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%2010%7d%7b-14%7d%20=%20frac%7by%20%2B%202%7d%7b6%7d
    или 
    y = -3/7x + 16/7 или 7y + 3x – 16 = 0 
  2. Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 
    https://chart.googleapis.com/chart?cht=tx&chl=x_%7bm%7d%20=%20frac%7bx_%7bA%7d%20%2B%20x_%7bB%7d%7d%7b2%7d%20=%20frac%7b10%20%2B%20(-4)%7d%7b2%7d%20=%203
    https://chart.googleapis.com/chart?cht=tx&chl=y_%7bm%7d%20=%20frac%7by_%7bA%7d%20%2B%20y_%7bB%7d%7d%7b2%7d%20=%20frac%7b-2%20%2B%204%7d%7b2%7d%20=%201
    M(3;1) 
    Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-8;2) и М(3;1), поэтому: 
    Каноническое уравнение прямой: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%208%7d%7b3%20-%20(-8)%7d%20=%20frac%7by%20-%202%7d%7b1%20-%202%7d
    или 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%208%7d%7b11%7d%20=%20frac%7by%20-%202%7d%7b-1%7d
    или 
    y = -1/11x + 14/11 или 11y + x – 14 = 0 
  3. Уравнение высоты через вершину C 
    Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d
    Найдем уравнение высоты через вершину C 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-8)%7d%7b3%7d%20=%20frac%7by%20-%202%7d%7b7%7d
    y = 7/3x + 62/3 или 3y -7x – 62 = 0
  4. уравнение параллельной прямой AB, проходящей через точку (-8,2)
    Уравнение прямой AB: y = -3/7x + 16/7
    Уравнение KN параллельно AB находится по формуле:
    y – y0 = k(x – x0)
    Подставляя x0 = -8, k = -3/7, y0 = 2 получим:
    y-2 = -3/7(x-(-8))
    или
    y = -3/7x – 10/7 или 7y + 3x +10 = 0

Пример 7:

Даны координаты вершин треугольника: A(1,1), B(4,13), C(10,5). 

Решение от преподавателя:

4) Уравнение высоты через вершину C 
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 

Найдем уравнение высоты через вершину C 

y = -1/4x + 15/2 или 4y +x -30 = 0 
Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k1 прямой AB. 
Уравнение AB: y = 4x -3, т.е. k1 = 4 
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. 
Подставляя вместо k1 угловой коэффициент данной прямой, получим: 
4k = -1, откуда k = -1/4 
Так как перпендикуляр проходит через точку C(10,5) и имеет k = -1/4,то будем искать его уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 10, k = -1/4, y0 = 5 получим: 
y-5 = -1/4(x-10) 
или 
y = -1/4x + 15/2 или 4y + x – 30 = 0 
Найдем точку пересечения с прямой AB: 
Имеем систему из двух уравнений: 
y -4x +3 = 0 
4y + x – 30 = 0 
Из первого уравнения выражаем y и подставим во второе уравнение. 
Получаем: 
x = 42/17 
y = 117/17 
D(42/17;117/17
Длина высоты треугольника, проведенной из вершины C 
Расстояние d от точки M1(x1;y1) до прямой Ax + By + С = 0 равно абсолютному значению величины: 

Найдем расстояние между точкой C(10;5) и прямой AB (y -4x +3 = 0) 

5,7) Уравнение медианы треугольника 
Обозначим середину стороны BC буквой Е. Тогда координаты точки Е найдем по формулам деления отрезка пополам. 


Е(7;9) 
Уравнение медианы AЕ найдем, используя формулу для уравнения прямой, проходящей через две заданные точки A(1;1) иЕ(7;9), поэтому: 
Каноническое уравнение прямой: 

или 

или 
y = 4/3-1/3 или 3y -4x +1 = 0 
Найдем длину медианы. 
Расстояние между двумя точками выражается через координаты формулой: 

6) CDдиаметр окружности. Центр окружности точка О лежит в середине отрезка CD

Уравнение окружности  (x-x0)2+(y-y0)2=r2

(x-106/17)2+(y-101/17)2=256/17 

8) Уравнение прямой, параллельной CD, проходящей через точку A 

Так как прямая  проходит через точку А(1,1) и имеет k = -1/4, ( так как уравнение CD:y = -1/4x + 15/2 или 4y + x – 30 = 0 ),
то будем искать уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 1, k = -1/4, y0 = 1получим: 
y-1 = -1/4(x-1) 
или 
y = -1/4x + ¼+1 или 4y + x – 5 = 0 

Пример 8:

Решение от преподавателя:

Точка D – середина стороны АВ , ее координаты равны полусумме координат А и В. Получим D(1, -1)

Пример 9:

Даны координаты вершин треугольника АВС: А (3,-2), В (-5,-4),  С (-1,6).

Найдите: 1) уравнения сторон треугольника АВ, ВС и АС;

2) периметр (сумму длин) треугольника;

3) уравнение высоты СН;

4) расстояние d от точки С до прямой АВ;

5) сделайте чертеж.

Решение от преподавателя:

Решение.

1) уравнения сторон треугольника АВ, ВС и АС

Уравнение, прямой проходящей через две точки

2) периметр (сумму длин) треугольника

Расстояние между двумя точками

3) уравнение высоты СН

Уравнение прямой, проходящей через точку перпендикулярно другой прямой

4) расстояние d от точки С до прямой АВ

Расстояние от точки до прямой

Пример 10:

Даны вершины A (x1; y1), B (x2; y2), C (x3; y3)    треугольника.

Найти: 1) уравнение стороны AB;

2) уравнение медианы, проведенной из вершины C;

3) уравнение высоты, проведенной из вершины C ;

4) уравнение прямой, проходящей через вершину C параллельно стороне AB .

A (6; 0), B (2; − 6), C (−3; −9).

Решение от преподавателя:

Пример 11:

Решение от преподавателя:

Пример 12:

Дан треугольник  с координатами вершин найти:

а) длину стороны AB;

б) косинус угла ABC;

в) площадь треугольника ABC (через векторное произведение);

Решение от преподавателя:

Пример 13:

Решение от преподавателя:

Даны координаты вершин треугольника: A(6,0), B(2,-6), C(-3,-9). 
1) Уравнение прямой 
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 

Уравнение прямой AB 
Каноническое уравнение прямой: 

или 

или 
y = 3/2x -9 или 2y -3x +18 = 0 

2) Уравнение медианы треугольника 
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 


M(4;-3) 
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-3;-9) и М(4;-3), поэтому: 
Каноническое уравнение прямой: 

или 

или 
y = 6/7-45/7 или 7y -6x +45 = 0 
3) Уравнение высоты через вершину C 
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 

Найдем уравнение высоты через вершину C 

y = -2/3x -11 или 3y +2x + 33 = 0 
4) Уравнение прямой, параллельной AB, проходящей через С(-3,-9) 
Уравнение прямой AB: 2y -3x +18 = 0 
Уравнение СN параллельно AB находится по формуле: 

Или     2y -3x +9 = 0 

Пример 14:

Даны вершины треугольника А(8,1), В(0,3), С(-2,-3). Напишите уравнения стороны AB, медианы AD, высоты BE.

Решение от преподавателя:

Даны координаты вершин треугольника: A(8,1), B(0,3), C(-2,-3). 
1) Уравнение прямой (АВ)
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 

Уравнение прямой AB 


или 

или 
 4y + x – 12 = 0 

2)Уравнение медианы (АD)

Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 


M(-1;0) 
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(8;1) и М(-1;0), поэтому: 

или 

или 
y = 1/9x + 1/9 или 9y -x – 1 = 0 
3) Уравнение высоты через вершину B

Найдем уравнение высоты через вершину B 

Для этого найдем угловой коэффициент k1 прямой AC. 

Уравнение прямой AC 
уравнение прямой, проходящей через 2 точки: 

или 

или 
y = 2/5-11/5  т.е. k1 = 2/5 
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. 
Подставляя вместо k1 угловой коэффициент данной прямой, получим: 
2/5k = -1, откуда k = -5/2 
Так как перпендикуляр проходит через точку B(0,3) и имеет k = -5/2,то будем искать его уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 0, k = -5/2, y0 = 3 получим: 
y-3 = -5/2(x-0) 
или 
y = -5/2x + 3 или 2y + 5x – 6 = 0    – уравнение (ВЕ)

Пример 15:

Дан треугольник АВС. Найти:

а) величину угла А;

б) уравнение стороны АС;

в) уравнение высоты и медианы, опущенных из вершины В.

Сделать чертеж.

А(-1,2); В(1,3); С(3,-4).

Решение от преподавателя:

Пример 16:

Треугольник задан вершинами А(-6; -2);  В(4; 8); С(2; -8). Найти:

а) уравнение прямой BN, параллельной  стороне АС;

б) уравнение медианы CD;

в) уравнение высоты АЕ;

Решение от преподавателя:

а) уравнение прямой BN, параллельной  стороне АС;

Уравнение прямой AC:

Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%206%7d%7b2%20-%20(-6)%7d%20=%20frac%7by%20%2B%202%7d%7b-8%20-%20(-2)%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%206%7d%7b8%7d%20=%20frac%7by%20%2B%202%7d%7b-6%7d
или
y = -3/4-13/2 или 4y + 3x +26 = 0

Уравнение BN параллельно AC находится по формуле:
y – y0 = k(x – x0)
Подставляя x0 = 4, k = -3/4, y0 = 8 получим:
y-8 = -3/4(x-4)
или
y = -3/4x + 11 или 4y + 3x – 44 = 0

б) уравнение медианы CD;

Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
https://chart.googleapis.com/chart?cht=tx&chl=x_%7bm%7d%20=%20frac%7bx_%7bA%7d%20%2B%20x_%7bB%7d%7d%7b2%7d%20=%20frac%7b-6%20%2B%204%7d%7b2%7d%20=%20-1
https://chart.googleapis.com/chart?cht=tx&chl=y_%7bm%7d%20=%20frac%7by_%7bA%7d%20%2B%20y_%7bB%7d%7d%7b2%7d%20=%20frac%7b-2%20%2B%208%7d%7b2%7d%20=%203
M(-1;3)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(2;-8) и М(-1;3), поэтому:
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%202%7d%7b-1%20-%202%7d%20=%20frac%7by%20%2B%208%7d%7b3%20-%20(-8)%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%202%7d%7b-3%7d%20=%20frac%7by%20%2B%208%7d%7b11%7d
или
y = -11/3-2/3 или 3y + 11x +2 = 0

в) уравнение высоты АЕ;

Прямая, проходящая через точку Е0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d
Найдем уравнение высоты через вершину A
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-6)%7d%7b-8%7d%20=%20frac%7by%20-%20(-2)%7d%7b1%7d
y = -1/8x – 11/4 или 8y +x + 22 = 0

Пример 17:

A(1, 2), В(5, 8), С(11, 3).

Решение от преподавателя:


Пример 18:

В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1).

Составить уравнения стороны (AB), высоты (ВК)  и медианы (CМ).

Решение от преподавателя:

Уравнение прямой AB
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b-4%20-%20(-4)%7d%20=%20frac%7by%20-%204%7d%7b-3%20-%204%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b0%7d%20=%20frac%7by%20-%204%7d%7b-7%7d
или
x +4 = 0 или x = -4
Уравнение прямой AC
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b8%20-%20(-4)%7d%20=%20frac%7by%20-%204%7d%7b1%20-%204%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b12%7d%20=%20frac%7by%20-%204%7d%7b-3%7d
или
y = -1/4x + 3 или 4y + x – 12 = 0

Найдем уравнение высоты через вершину B
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-4)%7d%7b1%7d%20=%20frac%7by%20-%20(-3)%7d%7b4%7d
y = 4x + 13 или y -4x – 13 = 0

Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(8;1) и М(-4;1/2), поэтому:
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%208%7d%7b-4%20-%208%7d%20=%20frac%7by%20-%201%7d%7b%7b1%20over%202%7d%20-%201%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%208%7d%7b-12%7d%20=%20frac%7by%20-%201%7d%7b%7b-1%20over%202%7d%7d
или
y = 1/24x + 2/3 или 24y -x – 16 = 0

Пример 19:

Дан треугольник ABC с координатами вершин A(-5;-3; 2), B(-2;-6;-3) и C(-2; 2;-1).
Найти:
а) длину стороны АВ;
б) косинус угла ABC;
в) площадь треугольника АВС (через векторное произведение).

Решение от преподавателя:

Добавить комментарий