Как найти сторону вписанного многоугольника зная радиус

В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

  • Расчет длины стороны

    • Через радиус вписанной окружности

    • Через радиус описанной окружности

Расчет длины стороны

Правильный многоугольник и вписанная/описанная окружность

Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

Через радиус вписанной окружности

Формула расчета

Формула расчета стороны правильного многоугольника через радиус вписанной окружности

Через радиус описанной окружности

Формула расчета

Формула расчета стороны правильного многоугольника через радиус описанной окружности

От нашего нового пользователя поступил вот такой запрос:
«Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».

Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.

PLANETCALC, Определение длины стороны правильного многоугольника по радиусу описанной окружности

Определение длины стороны правильного многоугольника по радиусу описанной окружности

Радиус описанной окружности

Число сторон правильного многоугольника

Точность вычисления

Знаков после запятой: 2

Длина стороны правильного многоугольника

P.S. В комментариях некто Александр поинтересовался, а как же найти длину стороны по радиусу вписанной окружности?

Отвечаю — с вписанной окружностью все гораздо проще. Надо рассмотреть треугольник, образованный перпендикуляром к точке касания окружности и многоугольника, половиной стороны многоугольника и линией от центра окружности до ближайшей к перпендикуляру вершины многоугольника. Этот треугольник перпендикулярный, и острый угол его равен 360, деленное на число вершин правильного многоугольника и еще пополам. Половина длины стороны находится легко — это радиус (прилежащий катет), умноженный на тангенс острого угла. Домножаем затем на два — получаем искомую длину стороны. Результат — ниже.

PLANETCALC, Определение длины стороны правильного многоугольника по радиусу вписанной окружности

Определение длины стороны правильного многоугольника по радиусу вписанной окружности

Радиус вписанной окружности

Число сторон правильного многоугольника

Точность вычисления

Знаков после запятой: 2

Длина стороны правильного многоугольника

Вы здесь

  • Сторона правильного многоугольника

    Правильные многоугольники часто фигурируют в задачах с вписанными или описанными окружностями. Отрезок, проведенный из центра окружности в угол или середину стороны, является радиусом описанной или вписанной окружности соответственно.

    Зная количество сторон многоугольника, ключевой задачей является нахождение центрального угла между этими двумя радиусами, так как они с половиной стороны образуют прямоугольный треугольник. Такой угол будет равен 180 градусам, разделенным на количество сторон многоугольника n:

    Из тригонометрических отношений в треугольнике, сторона будет равна удвоенному произведению радиуса описанной окружности на синус центрального угла или радиуса вписанной окружности на тангенс того же угла.

Смотрите также

Калькулятор расчета стороны правильного многоугольника через радиусы окружностей

В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

Расчет длины стороны

Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

Длина стороны правильного многоугольника

Определение длины стороны правильного многоугольника по радиусу вписанной окружности

От нашего нового пользователя поступил вот такой запрос:
«Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».

Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.

Правильный многоугольник

Формулы, признаки и свойства правильного многоугольника

Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.

Многоугольники отличаются между собой количеством сторон и углов.

Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.

Признаки правильного многоугольника

Многоугольник будет правильным, если выполняется следующее условие: все стороны и углы одинаковы.

a 1 = a 2 = a 3 = … = a n-1 = a n ,

α 1 = α 2 = α 3 = … = α n-1 = α n

где a1 … an — длины сторон правильного многоугольника,
α 1 … α n — внутренние углы между стронами правильного многоугольника.

Основные свойства правильного многоугольника

  1. Все стороны равны: a 1 = a 2 = a 3 = … = a n-1 = a n
  2. Все углы равны: α 1 = α 2 = α 3 = … = α n-1 = α n
  3. Центр вписанной окружности Oв совпадает с центром описанной окружности Oо, что и образуют центр многоугольникаO.
  4. Сумма всех углов n-угольника равна: 180° · n – 2
  5. Сумма всех внешних углов n-угольника равна 360°: β 1 + β 2 + β 3 + … + β n-1 + β n = 360°
  6. Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины: D n = n · n – 3 2
  7. В любой многоугольник можно вписать окружность и описать круг; при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника: S = π 4 · a 2
  8. Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O .

Формулы правильного n-угольника

Формулы длины стороны правильного n-угольника

Формула стороны правильного n-угольника через радиус вписанной окружности

a = 2 · r · tg 180° n (через градусы),

a = 2 · r · tg π n (через радианы)

Формула стороны правильного n-угольника через радиус описанной окружности

a = 2 · R · sin 180° n (через градусы),

a = 2 · R · sin π n (через радианы)

Формулы радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны

r = a : 2 · tg 180° n (через градусы),

r = a : 2 · tg π n (через радианы)

Формула радиуса описанной окружности правильного n-угольника

Формула радиуса описанной окружности n-угольника через длину стороны

R = a : 2 · sin 180° n (через градусы),

R = a : 2 · sin π n (через радианы)

Формулы площади правильного n-угольника

Формула площади n-угольника через длину стороны

Формула площади n-угольника через радиус вписанной окружности

Формула площади n-угольника через радиус описанной окружности

Формула периметра правильного многоугольника

Формула периметра правильного n-угольника

Периметр правильного n-угольника равен произведению длины одной стороны правильного n-угольника на количество его сторон.

Формула определения угла между сторонами правильного многоугольника

Формула угла между сторонами правильного n-угольника

Правильный треугольник

Правильный треугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°.

Формулы правильного треугольника

Формула стороны правильного треугольника через радиус вписанной окружности

Сторона правильного треугольника равна удвоенному произведению радиуса вписанной окружности на корень из трёх.

Формула стороны правильного треугольника через радиус описанной окружности

Сторона правильного треугольника равна произведению радиуса описанной окружности на корень из трёх.

Формула площади правильного треугольника через длину стороны

Формула площади правильного треугольника через радиус вписанной окружности

Формула площади правильного треугольника через радиус описанной окружности

Углы между сторонами правильного треугольника

Правильный четырехугольник

Правильный четырехугольник — это квадрат.

Формулы правильного четырехугольника

Формула стороны правильного четырехугольника через радиус вписанной окружности

Сторона правильного четырехугольника равна двум радиусам вписанной окружности.

Формула стороны правильного четырехугольника через радиус описанной окружности

Сторона правильного четырехугольника равна произведению радиуса описанной окружности на корень из двух.

Формула радиуса вписанной окружности правильного четырехугольника через длину стороны

Радиус вписанной окружности правильного четырехугольника равен половине стороны четырехугольника.

Формула радиуса описанной окружности правильного четырехугольника через длину стороны

Радиус описанной окружности правильного четырехугольника равен половине произведения стороны четырехугольника на корень из двух.

Формула площади правильного четырехугольника через длину стороны

Площадь правильного четырехугольника равна квадрату стороны четырехугольника.

Формула площади правильного четырехугольника через радиус вписанной окружности

Площадь правильного четырехугольника равна четырем радиусам вписанной окружности четырехугольника.

Формула площади правильного четырехугольника через радиус описанной окружности

Площадь правильного четырехугольника равна двум квадратам радиуса описанной окружности.

Углы между сторонами правильного четырехугольника

Правильный шестиугольник

Правильный шестиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного шестиугольника равны между собой, все углы также равны и составляют 120°.

Формулы правильного шестиугольник

Формула стороны правильного шестиугольника через радиус вписанной окружности

Формула стороны правильного шестиугольника через радиус описанной окружности

Длина стороны правильного шестиугольника равна радиусу описанной окружности.

Формула радиуса вписанной окружности правильного шестиугольника через длину стороны

Формула радиуса описанной окружности правильного шестиугольника через длину стороны

Формула площади правильного шестиугольника через длину стороны

Формула площади правильного шестиугольника через радиус вписанной окружности

Формула площади правильного шестиугольника через радиус описанной окружности

Углы между сторонами правильного шестиугольника

Правильный восьмиугольник

Правильный восьмиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного восьмиугольник равны между собой, все углы также равны и составляют 135°.

[spoiler title=”источники:”]

http://planetcalc.ru/92/

http://urokmatematiki.ru/reference-information/formuly-po-geometrii/pravilny-mnogougolnik.php

[/spoiler]

bezdelnik
[34.1K]

8 лет назад 

r – радиус вписанной в N-угольник окружности

В любой правильный многоугольник можно вписать окружность. От длины стороны будет зависеть радиус вписанной окружности. Или наоборот – длина стороны зависит радиус вписанной окружности.

Посмотрите на формулу, которая связывает эти величины

текст при наведении

Чтобы посчитать количество сторон, надо найти из этой формулы N. Получите ответ.

в избранное

ссылка

отблагодарить

Rafail
[136K]

Вокруг окружности ЛЮБОГО радиуса можно описать ЛЮБОЙ правильный N-угольник. 
—  8 лет назад 

bezdelnik
[34.1K]

spin, в приведенной Вами формуле два неизвестных a и n, поэтому по ней нельзя найти n. 
—  8 лет назад 

spin
[16.3K]

а – длина стороны, n – число сторон многоугольника. Если задан многоугольник с известным количеством сторон, радиус вписанной окружности, то получается одно неизвестное.
Конечно, если неизвестно количество сторон, то одно уравнение с двумя неизвестными не решается и надо иметь еще какие-то данные.
 
—  8 лет назад 

Rafail
[136K]

О чём спорите, господа? разве Вы не прочитали мой комментарий, или не поняли смысл сказанного? Вокруг ЛЮБОЙ окружности можно описать ЛЮБОЙ многоугольник, поэтому вопрос вообще бессмысленен. При ЛЮБОМ радиусе r число сторон N может быть ЛЮБЫМ. 
—  8 лет назад 

spin
[16.3K]

Никто не спорит. Понятно, что по тем данным, которые есть в вопросе однозначно посчитать количество сторон не получится.
Если задана только окружность, то вокруг нее можно построить многоугольник с любым количеством сторон (ясное дело, что количество сторон будет больше двух 🙂 ). Именно из этого утверждения я и начал свой ответ. От количества сторон многоугольника будет зависеть длина стороны: чем больше N – тем меньше длина стороны.
 
—  8 лет назад 

все комментарии (еще 5)

Знаете ответ?

Добавить комментарий