Как найти стороны, если известен периметр
Периметром плоской фигуры называют сумму длин всех ее сторон. Но найти стороны фигуры, зная только периметр – не всегда выполнимая задача. Часто требуются дополнительные данные.
Инструкция
Для квадрата или ромба задача найти стороны из периметра решается очень просто. Известно, что у этих двух фигур по 4 стороны и все они равны между собой, поэтому периметр p квадрата и ромба равен 4a, где a – сторона квадрата или ромба. Тогда длина стороны равна одной четвертой периметра: a = p/4.
Легко разрешима эта задача и для равностороннего треугольника. У него три одинаковых по длине стороны, поэтому периметр p равностороннего треугольника равен 3a. Тогда сторона равностороннего треугольника a = p/3.
Для остальных фигур понадобятся дополнительные данные. Например, можно найти стороны прямоугольника, зная его периметр и площадь. Предположим, что длина двух противолежащих сторон прямоугольника равна a, а длина двух других сторон – b. Тогда периметр p прямоугольника равен 2(a+b), а площадь s равна ab. Получим систему уравнений с двумя неизвестными:
p = 2(a+b)
s = ab.Выразим из первого уравнения а: а = p/2 – b. Подставим во второе уравнение и найдем b: s = pb/2 – b². Дискриминант этого уравнения D = p²/4 – 4s. Тогда b = (p/2±D^1/2)/2. Отбросьте тот корень, который будет меньше ноля, и подставьте в выражение для стороны a.
Источники:
- Найти стороны прямоугольника
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Периметр любого прямоугольника составляет 2а+2с. То есть сумме удвоенных произведений противоположных сторон. Кроме того, по свойствам прямоугольника известно, что у него противоположные стороны попарно равны. То есть а=а, с=с. Отсюда имеем: 2а, 2с.
По условию задачи, 2а=1/5*400. то есть 2а=80.
Подставляем 2а в формулу периметра прямоугольника: 2а+2с. Получаем 80+2с=200. Отсюда находим с: с=(200-80):2. с=60. Вот мы нашли одну сторону прямоугольника (с).
Теперь находим сторону а. При этом снова используем формулу периметра прямоугольника, подставив туда найденное значение с. Получаем:
2а+2с=200
2а+120=200
2а=200-120
2а=80
а=40
Вот мы нашли вторую сторону (а).
Итак, стороны прямоугольника равны: а=40, с=60.
Проверка:
Находим периметр, имея заданные стороны (а и с)
Р=2а+2с. Подставляем известные нам а и с. Получаем:
Р=2*40+2*60
Р=80+120
Р=200
Итак, у нас периметр получился равным 200 см., что соответсвует условиям задачи. Значит, найденные значения а и с у нас правильные. а=40, с=60
Периметром плоской фигуры называют сумму длин всех ее сторон. Но найти стороны фигуры, зная только периметр – не всегда выполнимая задача. Часто требуются дополнительные данные.
Инструкция
1
Для квадрата или ромба задача найти стороны из периметра решается очень просто. Известно, что у этих двух фигур по 4 стороны и все они равны между собой, поэтому периметр p квадрата и ромба равен 4a, где a – сторона квадрата или ромба. Тогда длина стороны равна одной четвертой периметра: a = p/4.
2
Легко разрешима эта задача и для равностороннего треугольника. У него три одинаковых по длине стороны, поэтому периметр p равностороннего треугольника равен 3a. Тогда сторона равностороннего треугольника a = p/3.
3
Для остальных фигур понадобятся дополнительные данные. Например, можно найти стороны прямоугольника, зная его периметр и площадь. Предположим, что длина двух противолежащих сторон прямоугольника равна a, а длина двух других сторон – b. Тогда периметр p прямоугольника равен 2(a+b), а площадь s равна ab. Получим систему уравнений с двумя неизвестными:
p = 2(a+b)
s = ab.
Выразим из первого уравнения а: а = p/2 – b. Подставим во второе уравнение и найдем b: s = pb/2 – b². Дискриминант этого уравнения D = p²/4 – 4s. Тогда b = (p/2±D^1/2)/2. Отбросьте тот корень, который будет меньше ноля, и подставьте в выражение для стороны a.
Школьная математика » Блог » Как найти стороны прямоугольника при известных периметре и площади
В этой статье я хочу рассмотреть две математические задачи повышенной сложности для 4 класса.
Видеоурок по теме этой статьи можно посмотреть по ссылке.
Площадь прямоугольника 32 см2, а периметр – 24 см. Найти стороны прямоугольника.
Площадь прямоугольника 126 см2, а периметр – 46 см. Найти его длину и ширину.
С этими задачами, я уверен, без труда справится более старший школьник, знакомый с решением системы уравнений и квадратных уравнений. Кстати, подобная задача есть в учебнике по геометрии Атанасяна, глава VI № 454 пункт б за 8 класс.
Но почему же эти задачи указаны в математических сборниках как задачи для 4 класса, в котором еще не изучают алгебраические понятия и методы решения? Нет ли здесь ошибки?
Нет, никакой ошибки здесь нет. Эти, и аналогичные им задачи можно решить и без использования алгебраических знаний.
Первое, что приходит на ум – это по значению периметра прямоугольника (а периметр – это удвоенная сумма двух его сторон) найти сумму двух сторон, а после простым подбором определить два числа, произведение которых равно данной по условию площади прямоугольника, а сумма – половине периметра.
Я хочу показать вам математически точное решение, которое безо всяких подборов приводит к правильному результату.
Нахождение сторон прямоугольника при известных периметре и площади
Рассмотрим первую задачу:
Площадь прямоугольника 32 см2, а периметр – 24 см. Найти стороны прямоугольника.
Как известно, периметр прямоугольника находится по формуле ({color{red} P=2cdot (a+b)}) , площадь – по формуле ({color{red} S=acdot b}) .
Так как периметр прямоугольника – это удвоенное произведение суммы двух сторон прямоугольника, то мы можем найти эту сумму, разделив значение периметра на 2:
({color{red} a + b = 24 : 2 = 12}) см.
А дальше мы рассуждаем так.
Найдем максимально возможную площадь прямоугольника при данном значении суммы двух его сторон, то есть, полупериметра. Так как полупериметр – четное число, то очевидно, что прямоугольник с максимально возможным значением площади при сумме его двух сторон, равной 12, – это квадрат со стороной ({color{red} 12 : 2 = 6}) см.
Тогда площадь этого квадрата равна
({color{red}S_{k}=6cdot 6=36}) см2.
По условию нашей задачи площадь прямоугольника составляет 32 см2. Находим разницу между полученной площадью квадрата и заданной площадью прямоугольника.
({color{red} S–S _{k}=36-32=4}) см2.
Это значит, что нам нужно изменить стороны рассматриваемого квадрата со стороной 6 см так, чтобы уменьшилась его площадь, но не изменился периметр.
Так как квадрат имеет самую большую площадь среди прямоугольников с одинаковым периметром, то для уменьшения площади нам нужно увеличить разницу между его длиной и шириной. То есть, ширину уменьшить, а длину увеличить на одно и то же число.
Но на какое?
Площадь 4 см2 – это квадрат со стороной 2 см. Это и есть нужное нам число.
Тогда, ширина искомого прямоугольника будет равна:
({color{red} a=6-2=4}) см
а длина:
({color{red} b=6+2=8}) см.
Проверим найденные длины сторон, определив периметр и площадь полученного прямоугольника:
({color{red} P=2cdot (4+8)=2cdot 12=24}) см
({color{red} S=4cdot 8=32}) см2.
Задача решена верно.
Теперь рассмотрим вторую задачу.
Площадь прямоугольника 126 см2, а периметр – 46 см. Найти его длину и ширину.
Находим полупериметр, то есть, сумму двух сторон прямоугольника.
({color{red} a+b=46:2=23}) см.
Найдем максимально возможную площадь прямоугольника при данном значении суммы двух его сторон, то есть, полупериметра. Так как полупериметр – нечетное число, значит, нам нужен такой прямоугольник, разница между значениями ширины и длины которого в натуральных числах минимальна, то есть, единица. Это прямоугольник со сторонами 11 и 12, т.к. ({color{red} 23=11+12}).
Площадь такого прямоугольника равна:
({color{red}S_{2}=11cdot 12=132}) см2.
Разница между полученной площадью и заданной по условию задачи составляет:
({color{red}S_{2}-S=132-126=6}) см2.
6 см2 – это площадь прямоугольника со сторонами 2 и 3 см. Чтобы уменьшить площадь нашего прямоугольника со сторонами 11 см и 12 см, нужно увеличить разницу между значениями этих сторон, а именно, уменьшить его короткую сторону, то есть, ширину. При этом длину также нужно увеличить на это же число, чтобы сохранить значение периметра.
Для этого ширину 11 мы уменьшаем на одноименное значение, то есть, тоже на ширину прямоугольника с площадью 6 см2, а именно, на 2.
Кстати, подумайте и напишите в комментарии к этой статье, почему мы рассматриваем разницу в площадях именно как прямоугольник с максимальной площадью (например, в этой задаче как прямоугольник 2 на 3, а не 1 на 6, а в первой – как квадрат 2 на 2, а не прямоугольник 1 на 4), и почему ширину уменьшаем именно на ширину (в этой задаче 11 – 2, а не 11 – 3).
Находим ширину искомого прямоугольника:
({color{red} a=11-2=9}) см.
Длину нужно увеличить также на это число, чтобы не изменился периметр прямоугольника:
({color{red} b=12+2=14}) см.
Проведем проверку:
({color{red} P=2cdot (9+14)=2cdot 23=46}) см.
({color{red}S=9cdot 14=126}) см2.
И эта задача решена тоже верно.
На этом все. Не забудьте написать в комментарии ответы на вопросы, почему мы рассматриваем разницу в площадях именно как прямоугольник с максимальной площадью, и почему ширину уменьшаем именно на ширину.
Вам также пригодится:
Стороны треугольника
Свойства
Зная стороны треугольника, можно найти все остальные его параметры по выведенным для треугольника формулам, просто подставив их значения. Периметр треугольник будет представлять собой сумму всех его сторон, а площадь выводится по формуле Герона, как квадратный корень из произведения полупериметра на его разность с каждой стороной по очереди, и деленному на два. P=a+b+c S=√(p(p-a)(p-b)(p-c)/2)
Все углы в треугольнике, зная стороны, можно найти через теорему косинусов. (рис.75) cosα=(b^2+c^2-a^2)/2bc
В произвольном треугольнике также есть три медианы m (делящие противоположную сторону пополам), три биссектрисы l (делящие угол пополам) и три высоты h (перпендикуляры из угла к стороне или ее проекции). Все их можно вычислить, имея в распоряжении значения трех сторон. Формула медианы, которая опущена на сторону c.(рис.75.1) m_c=√(2a^2+2b^2-c^2 )/2
Найти медиану, опущенную на сторону a или b, можно заменив необходимые стороны в формуле так, чтобы сторона, поделенная медианой пополам, была со знаком «–». m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2
Формула биссектрисы, которая выходит из угла γ и опущена на сторону с. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b)
Чтобы найти биссектрисы, которые выходят из двух других углов, нужно преобразовать формулу аналогично формуле медианы, где противоположная сторона со знаком «–». l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)
Формула высоты, которая опущена на сторону a, b или c видоизменяется таким образом, чтобы в знаменателе была нужная сторона.(рис.75.3) h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c
Также в любом треугольнике можно провести среднюю линию, которая также как медиана обозначается буквой m, поэтому для их разделения, будем использовать заглавную M для средней линии. Средняя линия параллельна той стороне, которая выбрана основанием треугольника, и равна ее половине. Среди свойств средней линии можно отметить, что боковые стороны она делит на две равные части, поэтому если начертить все три средние линии в треугольнике, то получится еще один треугольник, подобный первому, в два раза меньше. (рис. 75.7) M_a=a/2 M_b=b/2 M_c=c/2
В каждый треугольник можно вписать окружность и описать ее вокруг него. Центр вписанной в треугольник окружности будет находиться на пересечении его биссектрис, а радиус будет опущен под прямым углом к любой стороне и его формула выводится также по Герону. (рис.75.5) r=√(((p-a)(p-b)(p-c))/p)
Центр описанной вокруг произвольного треугольника окружности находится на пересечении его медиатрисс (срединных перпендикуляров, радиус опущен в любую вершину или угол, и вычисляется по следующей формуле. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))
Все формулы для треугольника
1. Как найти неизвестную сторону треугольника
Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.
a , b , c – стороны произвольного треугольника
α , β , γ – противоположные углы
Формула длины через две стороны и угол (по теореме косинусов), ( a ):
* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение
Формула длины через сторону и два угла (по теореме синусов), ( a):
2. Как узнать сторону прямоугольного треугольника
Есть следующие формулы для определения катета или гипотенузы
a , b – катеты
c – гипотенуза
α , β – острые углы
Формулы для катета, ( a ):
Формулы для катета, ( b ):
Формулы для гипотенузы, ( c ):
Формулы сторон по теореме Пифагора, ( a , b ):
3. Формулы сторон равнобедренного треугольника
Вычислить длину неизвестной стороны через любые стороны и углы
b – сторона (основание)
a – равные стороны
α – углы при основании
β – угол образованный равными сторонами
Формулы длины стороны (основания), (b ):
Формулы длины равных сторон , (a):
4. Найти длину высоты треугольника
Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).
Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.
H – высота треугольника
a – сторона, основание
b, c – стороны
β , γ – углы при основании
p – полупериметр, p=(a+b+c)/2
R – радиус описанной окружности
S – площадь треугольника
Формула длины высоты через стороны, ( H ):
Формула длины высоты через сторону и угол, ( H ):
Формула длины высоты через сторону и площадь, ( H ):
Формула длины высоты через стороны и радиус, ( H ):
Формулы периметра треугольника
Как найти периметр любого треугольника? Существует
множество способов сделать это, но мы расскажем про
основные. В этой статье вы узнаете, как найти периметр
любого треугольника через известные величины, по формулам.
Ⅰ. Через площадь и радиус вписанной окружности
Известно: площадь и радиус вписанной окружности треугольника.
Чтобы найти периметр любого треугольника,
нужно две площади треугольника разделить
на радиус вписанной окружности.
Как видим, для этой формулы нужно знать всего
лишь радиус вписанной окружности и площадь.
Ⅱ. Через три стороны
Известно: три стороны треугольника.
Чтобы найти периметр любого треугольника,
нужно сложить все стороны треугольника.
Результатом и будет периметр.
Это самая простая формула.
Ⅲ. Через Теорему Косинусов
Известно: две стороны и угол между ними.
Чтобы найти периметр любого треугольника,
нужно для начала найти третью сторону треугольника,
затем косинус угла, если косинус неизвестен.
Это формулу удобней применить,
если вам известны две стороны
и косинус между ними.
[spoiler title=”источники:”]
http://www-formula.ru/2011-10-09-11-08-41
http://colibrus.ru/formuly-perimetra-treugolnika/
[/spoiler]