Как найти сумма двух натуральных чисел

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 декабря 2021 года; проверки требуют 9 правок.

У этого термина существуют и другие значения, см. сумма.

Су́мма (лат. summa — итог, общее количество) в математике — результат применения операции сложения величин (чисел, функций, векторов, матриц и т. д.), либо результат последовательного выполнения нескольких операций сложения (суммирования). Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:

{displaystyle a+b=b+a,}
{displaystyle a+(b+c)=(a+b)+c,}
{displaystyle (a+b)cdot c=acdot c+bcdot c,}
{displaystyle ccdot (a+b)=ccdot a+ccdot b,}

В теории множеств суммой (или объединением) множеств называется множество, элементами которого являются все элементы объединяемых множеств, взятые без повторений.

Также сложение (нахождение суммы) может быть определено для более сложных алгебраических структур (сумма групп, сумма линейных пространств, сумма идеалов, и другие примеры). В теории категорий определяется понятие суммы объектов.

Сумма натуральных чисел[править | править код]

Пусть в множестве mathbb {N} находится a элементов, образующих подмножество A, и b элементов, образующих подмножество B ({displaystyle Asubset mathbb {N} ,Bsubset mathbb {N} }, a и b — натуральные числа). Тогда арифметической суммой a+b будет количество элементов c, образующих подмножество {displaystyle Csubset mathbb {N} }, полученное при дизъюнктном объединении двух исходных подмножеств {displaystyle C=Asqcup B.}

Алгебраическая сумма[править | править код]

Сумму математически обозначают заглавной греческой буквой Σ (сигма).

{displaystyle sum _{imathop {=} m}^{n}a_{i}=a_{m}+a_{m+1}+a_{m+2}+cdots +a_{n-1}+a_{n}}

где: i — индекс суммирования; ai — переменная, обозначающая каждый член в серии; m — нижняя граница суммирования, n — верхняя граница суммирования. Обозначение «i = m» под символом суммирования означает, что начальное (стартовое) значение индекса i эквивалентно m. Из этой записи следует, что индекс i инкрементируется на 1 в каждом члене выражения и остановится, когда i = n.[1]

В программировании данной процедуре соответствует цикл for.

Примеры записи
{displaystyle sum _{imathop {=} 1}^{100}i=1+2+3+4+{...}+99+100}
{displaystyle sum _{imathop {=} 3}^{6}i^{2}=3^{2}+4^{2}+5^{2}+6^{2}=86}

Границы могут опускаться из записи, если они ясны из контекста:

{displaystyle sum a_{i}^{2}=sum _{imathop {=} 1}^{n}a_{i}^{2}.}

Итератор может быть выражением — тогда переменная оформляется со скобками как функция «f()». Например, сумма всех f(k) при натуральных числах k в определённом диапазоне:

{displaystyle sum _{0leq k<100}f(k).}

Сумма f(x) элементов x множества S:

{displaystyle sum _{xmathop {in } S}f(x).}

Сумма {displaystyle mu (d)} всех положительных чисел d, являющихся делителями числа n:

{displaystyle sum _{d|n};mu (d).}

Под знаком итеративного суммирования может использоваться несколько индексов, например:

{displaystyle sum _{i,j}=sum _{i}sum _{j},}

причём набор из нескольких индексов можно сократить в виде так называемого мультииндекса.

Бесконечная сумма[править | править код]

В математическом анализе определяется понятие ряда — суммы бесконечного числа слагаемых.

Примеры последовательных сумм[править | править код]

1. Сумма арифметической прогрессии:

sum _{{i=0}}^{n}(a_{0}+bcdot i)=(n+1){frac  {a_{0}+a_{n}}{2}}

2. Сумма геометрической прогрессии:

sum _{{i=0}}^{n}a_{0}cdot b^{i}=a_{0}cdot {frac  {1-b^{{n+1}}}{1-b}}

3.sum limits _{{k=1}}^{n}k^{3}=left[{frac  {n(n+1)}{2}}right]^{2}=left(sum limits _{{k=1}}^{n}kright)^{2}


4. sum _{{i=0}}^{n}{left({frac  {1}{p}}right)}^{i}={frac  {p}{p-1}}left(1-{frac  {1}{p^{{n+1}}}}right),quad pneq 1,ngeq 0

Доказательство

sum _{{i=0}}^{n}{left({frac  {1}{p}}right)}^{i}=sum _{{i=0}}^{n}{1cdot {{frac  {1}{p^{i}}}}}=1cdot {frac  {1-{left({frac  {1}{p}}right)}^{{n+1}}}{1-{frac  {1}{p}}}}={frac  {{frac  {p^{{n+1}}-1}{p^{{n+1}}}}}{{frac  {p-1}{p}}}}={frac  {p^{{n+1}}-1}{p^{n}(p-1)}}={frac  {p}{p-1}}left(1-{frac  {1}{p^{{n+1}}}}right)

5. sum _{{i=0}}^{n}ip^{i}={frac  {np^{{n+2}}-(n+1)p^{{n+1}}+p}{(p-1)^{2}}},quad pneq 1


6. sum _{{i=0}}^{n}p^{i}=(p-1)sum _{{i=0}}^{{n-1}}((n-i)p^{i})+n+1,quad pneq 1

Например, при {displaystyle p=10} получается {textstyle sum _{i=0}^{n}10^{i}=9cdot sum _{i=0}^{n-1}((n-i)10^{i})+n+1}, а это последовательность равенств следующего вида:
1=9cdot 0+1,quad 11=9cdot 1+2,quad 111=9cdot 12+3,quad 1111=9cdot 123+4,quad 11111=9cdot 1234+5

Неопределённая сумма[править | править код]

Неопределённой суммой a_{i} по i называется такая функция f(i), обозначаемая
{textstyle sum _{i}^{}a_{i}},
что {textstyle forall i:f(i+1)-f(i)=a_{i}}.

«Дискретная» формула Ньютона — Лейбница[править | править код]

Если найдена «производная» {displaystyle a_{i}=f(i+1)-f(i)}, то {textstyle sum _{i=a}^{b}a_{i}=f(b+1)-f(a)}.

Этимология[править | править код]

Латинское слово summa переводится как «главный пункт», «сущность», «итог». С XV века слово начинает употребляться в современном смысле, а также появляется глагол «суммировать» (1489 год).

Это слово проникло во многие современные языки: сумма в русском, sum в английском, somme во французском.

Специальный символ для обозначения суммы (Σ) первым ввёл Леонард Эйлер в 1755 году, его поддержал Лагранж, однако долгое время с этим символом конкурировал знак S. Окончательно обозначение Σ для суммы утвердили уже в XVIII веке Фурье и Якоби[2].

Кодировка[править | править код]

В Юникоде есть символ суммы U+2211 n-ary summation (HTML  • &sum;).

См. также[править | править код]

  • Сложение
  • Произведение

Примечания[править | править код]

  1. Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren. Chapter 2: Sums // Concrete Mathematics: A Foundation for Computer Science (2nd Edition) (англ.). — Addison-Wesley Professional, 1994. — ISBN 978-0201558029. (недоступная ссылка)
  2. Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник. — 3-е изд. — СПб.: ЛКИ, 2008. — С. 175. — 248 с. — ISBN 978-5-382-00839-4.

Литература[править | править код]

  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — 7-е. — М.: Наука, 1969. — Т. 1. — 608 с. — 100 000 экз.

Всем привет! Добро пожаловать на канал любителей математики! Сегодня Вас ждёт увлекательная тема.

Большинство из нас в старших классах школы или другом учебном заведении изучали пределы. О них мы ещё как-нибудь поговорим подробнее. При их изучении мы сталкивались с таким понятием, как бесконечность. Понятие это довольно абстрактное, но, тем не менее, в математике оно используется нередко. Главное, понять его суть. Бесконечность – это то, что никогда не прекратит увеличиваться (или уменьшаться, если говорить о минус бесконечности). Как только Вы где-то остановитесь, это уже будет не бесконечность. Это, скорее всего, будет какое-то колоссальное число больше гугола или даже гуголплекса. Слышали про такие числа? Если нет, то гугол – это 10 в степени 100, а гуголплекс – это 10 в степени гугол )) Так вот, бесконечность, важно понять, – это не какое-то очень большое число, это идея. Но с этой идеей можно работать. Это была предыстория к сегодняшней теме ))

Вы когда-нибудь задумывались о том, что получится, если сложить все натуральные числа? 1+2+3+4+5+…=? Сколько это будет? Бесконечность? Бесконечность в степени бесконечность? Как найти или оценить эту сумму? Ответ на этот вопрос, как Вы увидите, абсолютно неочевиден. Более того, он большинству покажется бредом)) Тем не менее это факт. Который, кстати, используется в некоторых областях физики: в частности, в квантовой механике и теории струн.

Сколько это будет?
Сколько это будет?

Существует несколько способов для нахождения суммы всех натуральных чисел. Например, через дзета-функцию и эта-функцию Дирихле. Но это относится к области математического анализа и для большинства будет очень сложно в понимании. Но есть и довольно простой и наглядный способ показать, как найти эту сумму, не углубляясь при этом в глубины матанализа.

Для того, чтобы найти сумму всех натуральных чисел, нам понадобятся два других вспомогательных бесконечных ряда чисел, точнее их сумма. Первый ряд – это так называемый ряд Гранди, и выглядит он так: 1-1+1-1+1-1+1… и т. д. Второй ряд выглядит так: 1-2+3-4+5-6+7… Он ещё называется знакочередующийся натуральный ряд. Если мы найдём суммы этих двух рядов, то этого будет достаточно, чтобы найти сумму ряда всех натуральных чисел.

Найдём сумму первого ряда:

Сумма ряда Гранди равна 1/2
Сумма ряда Гранди равна 1/2

Почему сумма равна 1/2? Всё просто: если остановиться на нечётном члене ряда, сумма получится равной 1, если на чётном – 0. Поскольку ряд бесконечен, то берётся среднее значение от 0 и 1. Это равно 1/2.

Теперь разберёмся с суммой знакочередующегося натурального ряда.

Сумма знакочередующегося натурального ряда равна 1/4
Сумма знакочередующегося натурального ряда равна 1/4

Для того, чтобы найти сумму ряда, находится его удвоенное значение. Для этого складываем два одинаковых ряда столбиком, но второй сдвигаем относительно первого вправо на один член. Складывая почленно, получим, что удвоенная сумма второго ряда равна сумме ряда Гранди, т. е. 1/2. Тогда сумма знакочередующегося ряда равна половине суммы ряда Гранди, т. е. 1/4.

Что ж, мы нашли суммы вспомогательных рядов. Теперь мы сможем найти сумму всех натуральных чисел.

Сумма всех натуральных чисел равна -1/12
Сумма всех натуральных чисел равна -1/12

Для того, чтобы найти искомую сумму, вычтем из неё ряд № 2, сумму которого мы нашли ранее. Вычитая столбиком почленно получаем, что разность нечётных членов равна 0, а чётных: 4, 8, 12, и т. д. Тогда если из полученной суммы вынести за скобку 4, получим, что в скобке остаётся сумма того же ряда всех натуральных чисел. Получится уравнение с одной неизвестной. Решая его, находим, что сумма всех натуральных чисел равна -1/12. Как я и говорил в самом начале, ответ получился абсолютно неочевидным, пожалуй, даже безумным! Но это на самом деле так ))

Теперь Вы можете, спрашивая у Ваших друзей, чему равна сумма всех натуральных чисел, приводить им ответ, который вызывает просто взрыв мозга! ))) Причём, Вы сможете это доказать!

Надеюсь, друзья, Вам понравилась статья. Буду благодарен за лайки, комментарии и подписки.

P.S. Хотите напоследок интересную задачку из древности? Она должна Вам понравиться. Вот она. Летела стая гусей. Навстречу ей – один гусь. «Здравствуйте, сто гусей», – говорит он им. Вожак отвечает: «Нас не сто гусей; вот если бы нас было столько, сколько сейчас, да ещё столько, да ещё полстолька, да ещё четвертьстолька, да ещё ты, гусь, с нами, вот тогда нас было бы сто гусей». Сколько гусей летело в стае? Ответ будет в конце следующей статьи.

Предыдущая статья

Следующая статья



Содержание
Определение действия сложение и компоненты сложения
Переместительный и сочетательный законы сложения
Правило прибавления слагаемого к сумме или суммы к слагаемому
Изменение суммы чисел с изменением слагаемых
Сложение однозначных чисел
Сложение многозначного и однозначного чисел
Сложение двух многозначных чисел в столбик
Сложение в столбик нескольких многозначных чисел

Пройти тест по теме «Сложение и вычитание натуральных чисел» можно по ссылке. Проверьте свои знания!

Как вы уже знаете, любое натуральное число представляет собой единицу или собрание нескольких единиц. Так вот, мы можем взять несколько чисел и объединить все единицы, которые их составляют, в одно большое собрание. Число, которое получилось в результате этого объединения, называется суммой.

Сумма чисел – это такое число, которое получается после объединения всех единиц других данных натуральных чисел.

Слагаемые – это числа, над которыми мы выполняем действие сложения. Иными словами, это те числа, количество единиц которых мы объединяем в новом числе.

Арифметическое действие – это нахождение нового числа при помощи двух или нескольких других данных чисел.

В курсе математики 5 класса изучаются основные арифметические действия – сложение, вычитание, умножение и деление.

Определение

Сложение – это арифметическое действие, которое выполняется для получения суммы нескольких чисел.

Или другими словами:

Сложение – это действие увеличения числа на количество единиц, содержащихся в другом числе.

Сумма – это результат действия сложения.

На записи действие сложения обозначается знаком + (плюс). То есть, если записано 3+2+5, то это означает, что нам нужно найти сумму этих трех чисел: 3, 2 и 5. Сумма записывается обычно справа от слагаемых после знака = (равно): 3+2+5 = 10.

Сумма чисел состоит (слагается, складывается, – можно говорить по-разному) из двух или более слагаемых. Понятно, что сумма всегда больше любого ее слагаемого.

Слагаемые – это не что иное, как состав числа, обозначающего сумму этих слагаемых.

Компоненты действия сложения для двух слагаемых:

Компоненты сложения для трех слагаемых:

сложение 5 класс

Действие сложения можно выполнить всегда. Действительно, так как натуральный ряд бесконечен, то мы всегда можем любые числа этого ряда объединить в другое, какое угодно большое число.

Действие сложения всегда имеет единственный результат. Действительно, если мы, к примеру, отметим на координатном луче с началом в точке O и единичным отрезком 1 см отрезок OA длиной 5 см, а потом построим еще один отрезок AB длиной 7 см, то у нас получится только единственный отрезок OB длиной 12 см.

Сложение чисел

Рисунок 1. Сумма двух чисел на координатном луче.

Основные свойства суммы натуральных чисел

Есть два основных закона суммы, из которых следуют остальные ее свойства:

  • переместительный закон сложения,
  • сочетательный закон сложения.

Переместительный закон сложения

Сумма двух или нескольких чисел от изменения порядка сложения слагаемых не меняется.
Это значит, что значение суммы не зависит от порядка выполнения действия сложение.

Например, в каком бы порядке мы ни складывали числа 2, 3 и 5, результат неизменно будет 10:

Переместительный закон сложения

сложение чисел

сложение натуральных чисел

сумма нескольких чисел

Свойства арифметических действия

Сочетательный закон сложения

Сумма нескольких чисел не поменяется, если некоторые слагаемые заменить их суммой.
Это значит, что мы можем группировать слагаемые как угодно, а также выполнять действия сложения в любом порядке.

Например, если в нашем примере мы заменим слагаемые 2 и 3 их суммой, то результат останется такой же, как и при обычном сложении слагаемых:

Сумма натуральных чисел

То же самое будет, если мы заменим слагаемые 3 и 5, или 2 и 5 их суммами:

Сумма чисел
или
Сложение чисел
или

Из этих законов вытекает правило прибавления слагаемого к сумме или суммы к слагаемому.

Правило

Для прибавления суммы некоторых чисел к числу или некоторого числа к сумме чисел, нужно сложить это число с одним из слагаемых суммы, а получившийся результат сложить последовательно с остальными слагаемыми.

Пример 1. Прибавление числа к сумме чисел:

Можно сразу вычислить сумму чисел в скобках и сложить ее с первым слагаемым:

325+(12+64+5) = 325+81 = 406

Также можно использовать правило прибавления слагаемого и суммы. Результат при этом не поменяется

325+12 = 337;
337+64 = 401;
401+5 = 406
или
325+64 = 389;
389+12 = 401;
401+5 = 406.

Пример 2. Прибавление суммы чисел к другому числу:

Можно сразу вычислить сумму чисел в скобках и сложить ее со вторым слагаемым

(54+240+189)+37 = 483+37 = 520

Или можно использовать правило прибавления суммы чисел к числу. Результат останется тот же.

54+37 = 91;
91+240 = 331;
331+189 = 520
или
240+37 = 277;
277+54 = 331;
331+189 = 520.

Изменение суммы чисел с изменением слагаемых

Чтобы понять, как изменится сумма чисел, если изменить одно или несколько ее слагаемых, нужно вспомнить, что сумма представляет собой собрание всех единиц, из которых состоят слагающие ее числа. Поэтому, легко можно понять, что:

При увеличении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже увеличится на это же число (на это же количество единиц).

При уменьшении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже уменьшится на это же число (на это же количество единиц).

Эти два свойства справедливы и в обратную сторону. То есть, если увеличить или уменьшить сумму на какое-то число, тогда для сохранения равенства нужно соответственно увеличить или уменьшить одно из слагаемых.

Если увеличить одно из слагаемых на какое-то число (на какое-то количество единиц), а другое уменьшить на это же число (на это же количество единиц), то в результате сумма не поменяется.

Простой пример увеличения суммы при увеличении слагаемого: у вас есть 700 рублей; 200 рублей лежит в левом кармане, а 500 – в правом. Вы нашли на улице 300 рублей и положили их в левый карман, после чего там стало 200+300=500 рублей. Таким образом, всего у вас оказалось 500+500=1000 рублей, то есть, сумма всех ваших денег увеличилась на 300 рублей.

Попробуйте самостоятельно придумать примеры для всех трех правил.

Сложение однозначных чисел

Сложение двух однозначных чисел выполняется так: одно число увеличивается на количество единиц другого числа. То есть, единицы одного числа присоединяются к единицам другого числа.

Например, для нахождения суммы 5+2 нужно к числу 5 присоединить 2 единицы. Тогда получим 5+2=7. А если нужно к числу 7 прибавить число 8, или другими словами, найти сумму 7+8, то после присоединения к 7 единиц числа 8 получим 1 десяток единиц и еще 5 единиц, то есть, число 15.

Сложение однозначных чисел – это первый и очень важный шаг в освоении этого арифметического действия. Если хорошо выучить все результаты сложения однозначных чисел между собой, тогда вы сможете намного быстрее складывать в уме любые числа.

Сложение многозначного числа с однозначным

Чтобы найти сумму многозначного числа и однозначного, можно действовать двумя способами. Оба они основаны на свойствах суммы чисел. Рассмотрим их на примерах.

Допустим, нам нужно найти сумму чисел 88 и 5.

Способ 1.

Представим число 88 в виде суммы 80+8 и прибавим к ней число 5. После этого, найдем сумму однозначных чисел 8 и 5, получится 13. Прибавим этот результат к числу 80. Число 13 – это 10+3, поэтому мы к 8 десяткам прибавляем 1 десяток, получаем 9 десятков, или число 90, а к нему прибавляем еще 3 (оставшиеся от числа 13), и получим 93.

То есть, мы проделываем такие действия:

88+5 = 80+8+5 = 80+13 = 80+10+3 = 90+3=93.

Способ 2.

Замечаем, что если к 88 прибавить 2, то получим полный десяток, то есть, число 90. Тогда представляем число 5 в виде суммы 2+3; число 2 складываем с 88, получаем замеченное нами ранее число 90. Добавляем к нему оставшееся число 3, и получаем результат 93.

То есть, ход вычисления был такой:

88+5 = 88+2+3 = 90+3 = 93.

Сложение в столбик многозначных чисел

Сумма многозначных чисел удобно вычисляется, если использовать так называемое сложение в столбик.

Сложение в столбик – это способ нахождения суммы чисел путем их записи друг под другом таким образом, чтобы соответствующие разряды разных чисел находились на одной вертикали (один под другим).

Этот способ простой, и он помогает не запутаться во время вычисления, не допустить ошибки. Но, чтобы складывать быстро, как я и говорил раньше, вам нужно очень хорошо знать все попарные суммы однозначных чисел.

Итак, допустим, что нам нужно найти сумму : 5728+803

Запишем их друг под другом таким образом, чтобы совпадали соответствующие разряды обоих чисел, т.е. единицы под единицами, десятки под десятками и т.д. После этого, под вторым слагаемым проводим горизонтальную черту, а между слагаемыми ставим знак действия, т.е. плюс. У нас получилась такая запись:

сложение натуральных многозначных чисел

Теперь нам нужно сложить между собой единицы каждого разряда, начиная с первого: сперва простые единицы, потом десятки единиц, потом сотни единиц и т.д. Результаты этих сложений записываем под чертой в том разряде, единицы которого мы складывали.

Начинаем с простых единиц: 8+3=11. У нас получилось число 11, то есть, 1 десяток и 1 единица. 1 единицу мы записываем под чертой в разряде единиц, а 1 получившийся десяток нужно будет дополнительно прибавить к сумме единиц разряда десятков. Чтобы не забыть совершить это действие, мы пишем над цифрами разряда десятков маленькую цифру 1 или ставим там точку.

сложение чисел

Про подобное действие обычно говорят: «один пишем, один в уме» , то есть, оставляем в памяти, чтобы не забыть добавить при следующем действии.

Далее переходим к десяткам. У первого слагаемого 2 единицы разряда десятков, а у второго 0, поэтому: 2+0=2. Мы помним, что после сложения простых единиц у нас образовался дополнительно 1 десяток, поэтому к этому результату добавляем еще единицу: 2+1=3. У нас получилось 3 десятка, поэтому записываем цифру 3 под чертой в разряде десятков.

Сложение многозначных чисел

Следующими идут сотни: 7+8=15. Первым делом проверяем, не нужно ли нам дополнительно добавлять единицу? В нашем случае нет, потому что на предыдущем шаге при сложении десятков мы получили однозначное число. Поэтому, пишем под чертой в разряде сотен цифру 5. И у нас получилось дополнительно 10 сотен, то есть, 1 тысяча единиц. Значит, нам нужно отметить эту получившуюся 1 тысячу как дополнительную, поставив маленькую цифру 1 над цифрами разряда тысяч.

Сложение натуральных чисел

В разряде тысяч у первого слагаемого стоит цифра 5, а у второго ничего не стоит. Но мы помним, что при отсутствии разрядов в начале числа (слева) нули не пишутся, но подразумевается, что в этих разрядах по 0 единиц. Поэтому мы находим сумму 5+0=5, т.е. 5 единиц разряда тысяч и добавляем к ней дополнительную 1 единицу тысяч, полученную после сложения разрядов сотен. 5+1=6. Записываем эту цифру под чертой в разряде тысяч.

Сложение чисел в столбик

После нахождения суммы чисел методом сложения столбиком, записываем результат решения в исходном строчном примере:

5728+803 = 6531

Сложение в столбик нескольких многозначных чисел

Этим способом так же легко можно найти сумму нескольких многозначных чисел.

Рассмотрим пример: 12044+28609+1358

Сложив простые единицы, мы получим 21, то есть, 2 десятка и 1 единицу. Записываем под чертой в разряде единиц цифру 1, а 2 отмечаем «в уме».

математика 5 класс

Сложив десятки этих трех чисел, мы получим 4+0+5=9 единиц разряда десятков. Добавив 2 десятка единиц, которые у нас были «в уме», получаем 11, то есть, 10 десятков и ещё 1 десяток. Под чертой мы записываем цифру 1 в разряде десятков, а так как 10 десятковэто не что иное как 1 сотня, то мы отмечаем «единицу в уме», то есть, ставим над всеми тремя числами в разряде сотен маленькую цифру 1.

Школьная математика

Теперь складываем 0 сотен первого числа, 6 сотен второго и 3 сотни третьего. Получается 9 сотен. Добавляем 1 сотню, которая была «в уме» после сложения всех десятков, и у нас выходит 10 сотен, то есть, 1 тысяча единиц. Значит, под чертой в разряде сотен мы пишем 0 (так как у нас не получилось ни одной единицы сотен, только десяток сотен), а над всеми числами в разряде тысяч отмечаем дополнительную 1 тысячу.

Школьная математика 5 класс

В разряде тысяч мы находим сумму 2+8+1, это будет 11 тысяч единиц, добавляем 1 тысячу, которая получилась после сложения сотен. Получаем 12 тысяч единиц, то есть, 10 тысяч и 2 тысячи. Цифру 2 пишем в разряде тысяч единиц под чертой, а единицу десятка тысяч (наши 10 тысяч единиц) отмечаем сверху в соответствующем разряде.

уроки математики 5 класс

Нам осталось сложить десятки тысяч единиц: 1+2+0=3 десятка тысяч, и прибавить к результату 1 десяток тысяч, получившийся после прошлого шага. У нас вышло 4 десятка тысяч, поэтому в этом разряде под чертой мы пишем цифру 4.

математика 5 класс уроки

Нам остается только записать результат в начальном примере:

12044+28609+1358

Хочу обратить внимание, что при сложении в столбик все шаги (сложение единиц каждого разряда) совершаются последовательно в одной записи. Я расписывал их отдельными только для лучшего понимания сути процесса сложения. И конечно же, не нужно выделять каждый разряд отдельным цветом. В случае рассмотренных выше примеров все решение выглядит так:

Математика в школе

Содержание:

  • Определение суммы чисел
  • Свойства суммы чисел

Определение суммы чисел

Суммой $s$ (лат. summa – итог, общее количество) чисел $a_{1}, a_{2}, dots, a_{n}$ называется результат
суммирования этих чисел: $s=a_{1}+a_{2}+ldots+a_{n}$ . В частности, если складывается два числа $a$ и $b$, то

Пример

Задание. Найти сумму чисел:

1)  $12$  и $15$      2)  $1,1 ; 2,2 ; 3,3$  и $4,4$ 

Ответ.

$12+15=27$

$1,1+2,2+3,3+4,4=11$

Свойства суммы чисел

  1. Коммутативность: $n+m=m+n$
  2. Ассоциативность: $(n+m)+k=n+(m+k)$

    На основании этих свойств можем заключить, что от перестановки мест слагаемых сумма не изменяется.

  3. Дистрибутивность по отношению к умножению

    $$(n+m) cdot k=n cdot k+m cdot k$$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти сумму чисел удобным способом:

1)  $15+17+13$   ;   2)  $34+22+16+18$ 

Решение. По свойствам сложения имеем

$$15+17+13 =15+(17+13)=15+30=45 $$

$$34+22+16+18 =(34+16)+(22+18)=50+40=90 $$

Ответ. 1)  $15+17+13=45$

            2)  $34+22+16+18=90$

При сложении больших чисел или
десятичных дробей используется сложение в столбик.

Пример

Задание. Найти сумму чисел удобным способом:

1)  $1562+13827$   ;   2)  $34,71+356,161$ 

Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом.
В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем
числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном
столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:

Ответ. 1)  $1562+13827=15389$

            2)  $34,71+356,161=390,871$

Сложение рациональных дробей производится по правилу

$$frac{m}{n}+frac{p}{q}=frac{m cdot q+n cdot p}{n cdot q}$$

Пример

Задание. Найти сумму чисел:

1)  $frac{1}{4}+frac{1}{6}$   ;   2)  $frac{2}{3}+1 frac{1}{2}$ 

Решение. Вычислим первую сумму используя правило сложения рациональных чисел

$$frac{1}{4}+frac{1}{6}=frac{1 cdot 6+1 cdot 4}{4 cdot 6}=frac{6+4}{24}=frac{10}{24}$$

Числитель и знаменатель полученной дроби можно сократить на 2, тогда в ответе получим

$$frac{1}{4}+frac{1}{6}=frac{5}{12}$$

Для вычисления второй суммы, преобразуем сначала второе слагаемое в неправильную дробь, для этого
умножим целую часть на знаменатель и прибавим полученное число к числителю. Далее применим
правило сложение рациональных дробей

$$frac{2}{3}+1 frac{1}{2}=frac{2}{3}+frac{3}{2}=frac{2 cdot 2+3 cdot 3}{3 cdot 2}=frac{4+9}{6}=frac{13}{6}$$

Выделим в полученной дроби целую часть, для этого разделим числитель на знаменатель с остатком.
Полученное частное запишем в целую часть, а остаток от деления в числитель.

$$frac{2}{3}+1 frac{1}{2}=2 frac{1}{6}$$

Ответ. 1)  $frac{1}{4}+frac{1}{6}=frac{5}{12}$   ;   
2)  $frac{2}{3}+1 frac{1}{2}=2 frac{1}{6}$ 

Читать дальше: что такое произведение чисел.

Содержание

  1. Что такое сумма двух чисел
  2. Что такое сумма чисел (определение)
  3. Свойства суммы чисел
  4. Сложение чисел в столбик
  5. Что такое вычислить сумму чисел
  6. Вычислить сумму чисел до данного
  7. Определение суммы чисел
  8. Свойства суммы чисел
  9. Что такое сумма чисел
  10. Определение суммы чисел
  11. Свойства суммы чисел
  12. Сумма и разность чисел
  13. Что такое сумма, и как ее найти
  14. Как найти разность чисел
  15. Числа. Сложение чисел.
  16. Свойства суммы чисел.
  17. Сложение отрицательных чисел (чисел с разными знаками). Правила.

Что такое сумма двух чисел

pre cifra1В то время когда мы с вами не задумываясь манипулируем операциями над числами, нам совсем невдомек, как же легко и подсознательно нам даются эти самые простые математические вычисления.
Однако для тех, кто только всего лишь учится, делает свои первые шаги в логике складывания, в голове порой происходит непонятная каша. Конечно, со времени все встанет на свои места, «каша сварится» и будет вполне себе! Однако чтобы это произошло быстрее, необходимо направить обучающихся, подсказать и рассказать им о процессах сложения, суммирования чисел.

Начнем вначале как всегда с определений

Что такое сумма чисел (определение)

9

Заметьте, что здесь указано не только правило сложения, где собственно все числа лишь относительные величины, но что более важно, есть наименование компонентов суммы (слагаемое, еще одно слагаемое и сама сумма)

Теперь приведем несколько примеров и правил сложения для разных чисел.

Пример Найти сумму чисел:

1) 12 и 15 2) 1,1;2,2;3,3 и 4,4

Можно плавно перейти к свойствам суммы чисел

Свойства суммы чисел

У суммы чисел есть 3 основных свойства

1. Коммутативность: n+m=m+n
2. Ассоциативность: (n+m)+k=n+(m+k)

На основании этих свойств можем заключить известную догму, что от перестановки мест слагаемых сумма не изменяется.

3. Дистрибутивность по отношению к умножению

На основании этого свойства можем заключить, что произведение числа и суммы чисел, это все равно как если бы число умножить на каждое число из суммы в отдельности и после сложить эти произведения.

Пример Найти сумму чисел удобным способом:

1) 16+17+14 ; 2) 34+22+16+18

Решение. По свойствам сложения имеем

Сложение чисел в столбик

При сложении больших чисел или десятичных дробей используется сложение в столбик.

Пример Найти сумму чисел удобным способом:

1) 1562+13827 ; 2) 34,71+356,161

Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом. В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:

3

1) 1562+13827=15389
2) 34,71+356,161=390,871

Сложение рациональных дробей производится по правилу

4

Побалуемся с сложением чисел!?

Цифра к которой будем прибавлять (слагаемое)

Цифра которую будем прибавлять (слагаемое)

Источник

Что такое вычислить сумму чисел

Сумма чисел – это простое (базовое) математическое решение, выражающееся в увеличении исходного числа на заданное.

Визуально операцию суммирования можно представить следующим образом – положите на стол одно яблоко, а затем положите ещё два яблока. Итого получится три яблока. Это и есть сумма чисел яблок.

Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлено определение суммы чисел и самый простой онлайн калькулятор расчета расчета суммы чисел.

Вычислить сумму чисел до данного

Сделайте три варианта решения:

Пример работы вашей функции:

P.S. Какой вариант решения самый быстрый? Самый медленный? Почему?

Решение с помощью цикла:

Решение через рекурсию:

Решение по формуле: sumTo(n) = n*(n+1)/2 :

P.S. Надо ли говорить, что решение по формуле работает быстрее всех? Это очевидно. Оно использует всего три операции для любого n, а цикл и рекурсия требуют как минимум n операций сложения.

Вариант с циклом – второй по скорости. Он быстрее рекурсии, так как операций сложения столько же, но нет дополнительных вычислительных затрат на организацию вложенных вызовов. Поэтому рекурсия в данном случае работает медленнее всех.

Определение суммы чисел

formules 4195

Задание. Найти сумму чисел:

Ответ.

Свойства суммы чисел

На основании этих свойств можем заключить, что от перестановки мест слагаемых сумма не изменяется.

Дистрибутивность по отношению к умножению

$$(n+m) cdot k=n cdot k+m cdot k$$

Задание. Найти сумму чисел удобным способом:

Решение. По свойствам сложения имеем

При сложении больших чисел или десятичных дробей используется сложение в столбик.

Задание. Найти сумму чисел удобным способом:

Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом. В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:

formules 4210

Сложение рациональных дробей производится по правилу

Задание. Найти сумму чисел:

Решение. Вычислим первую сумму используя правило сложения рациональных чисел

Числитель и знаменатель полученной дроби можно сократить на 2, тогда в ответе получим

Для вычисления второй суммы, преобразуем сначала второе слагаемое в неправильную дробь, для этого умножим целую часть на знаменатель и прибавим полученное число к числителю. Далее применим правило сложение рациональных дробей

Выделим в полученной дроби целую часть, для этого разделим числитель на знаменатель с остатком. Полученное частное запишем в целую часть, а остаток от деления в числитель.

Источник

Что такое сумма чисел

Определение суммы чисел

formules 4195

Задание. Найти сумму чисел:

Ответ.

Свойства суммы чисел

На основании этих свойств можем заключить, что от перестановки мест слагаемых сумма не изменяется.

Дистрибутивность по отношению к умножению

$$(n+m) cdot k=n cdot k+m cdot k$$

Что такое сумма чисел не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Найти сумму чисел удобным способом:

Решение. По свойствам сложения имеем

При сложении больших чисел или десятичных дробей используется сложение в столбик.

Задание. Найти сумму чисел удобным способом:

Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом. В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:

formules 4210

Сложение рациональных дробей производится по правилу

Задание. Найти сумму чисел:

Решение. Вычислим первую сумму используя правило сложения рациональных чисел

Числитель и знаменатель полученной дроби можно сократить на 2, тогда в ответе получим

Для вычисления второй суммы, преобразуем сначала второе слагаемое в неправильную дробь, для этого умножим целую часть на знаменатель и прибавим полученное число к числителю. Далее применим правило сложение рациональных дробей

Выделим в полученной дроби целую часть, для этого разделим числитель на знаменатель с остатком. Полученное частное запишем в целую часть, а остаток от деления в числитель.

Источник

Сумма и разность чисел

Что такое сумма, и как ее найти

Чтобы наглядно показать ребенку, как сложить числа, возьмите конфеты или любые другие вещи. Покажите ребенку две конфеты, а затем прибавьте к этим конфетам еще две. Пусть ребенок посчитает и скажет, что теперь конфет оказалось четыре. Объясните ему, что он только что сложил эти числа, то есть прибавил к одному числу другое число и в конечном итоге получил сумму.

Немного сложнее объяснить сложение разрядных слагаемых, эта тема может быть непонятна ребенку. Итак, существует множество разрядов: единицы, десятки, тысячи. Возьмите, к примеру, число 2564. Если разложить его на разряды, то получится: 2564 = 2000 + 500 + 60 + 4. Чтобы прибавить к этому числу, например, число 305, воспользуйтесь сложением в столбик. При таком сложении нужно прибавлять одни разряды к другим, начиная с конца: единицы к единицам, десятки к десяткам, тысячи к тысячам. То есть, для начала складываем 4 и 5, затем 6 и 0, после 5 и 3, и в конце 2 и 0. В конечном итоге получаем число 2869.

Как найти разность чисел

1533419760 vychitanie nayti raznostРазность – результат вычитания одного числа из другого. В отличие от суммы, здесь мы не можем воспользоваться правилом «от перестановки слагаемых разность не меняется», так как в вычитании всегда есть уменьшаемое и вычитаемое. Чтобы найти вычитаемое и разность, для начала нужно разобраться с этими понятиями. Уменьшаемое – это то, из чего мы «вычитаем», то есть убираем, а вычитаемое – количество того, что мы у этого уменьшаемого вернем.

А что касается разрядных слагаемых, то здесь мы делаем то же самое, что и с суммой, только теперь не прибавляем, а вычитаем. Возьмем число 6845 и вычтем из него 4231. Для этого мы вычитаем один разряд из другого разряда, производя вычитание с конца: 5-1 = 4, 4-3 = 1, 8-2 = 6, 6-4 = 2. В ответе получим 2614.

Источник

Числа. Сложение чисел.

Сумма итог складывания величин (чисел, функций, векторов, матриц и т.д.). Свойства для всякого случая – это свойства коммутативности, ассоциативности и дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение существует), т.е. выполнение соотношений:

В теории множеств суммой (или объединением) множеств является множество, в котором элементы – это все элементы слагаемых множеств, которое берутся без повторов.

Суммой s чисел 967 54e3c4ea276a38d5a7a2d3beea562492будет итог складывания таких чисел: 732 af1e12425fa280f5c26aefc0a3ca030c. На примере, если складываем 2 числа a и b, то расписать можно так:

944 edd4e612bfaa136d6d60179577d81d4e

Свойства суммы чисел.

Основываясь на выше приведенных свойствах сложения натуральных чисел можно сделать вывод, что от перестановки мест слагаемых сумма не меняется.

599 b896ec1c72a614f22069e59c753e0bc8

580 868bd4bb83121e8d2d9adb7431efbcbe

Сложение отрицательных чисел (чисел с разными знаками). Правила.

Для сложения двух натуральных чисел чисел с разными знаками, нужно:

2) поставить перед результатом знак того слагаемого, у которого модуль больше.

Источник

Добавить комментарий