У этого термина существуют и другие значения, см. Прогрессия.
Арифмети́ческая прогре́ссия — числовая последовательность вида
то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага, или разности прогрессии):
[1]
Любой член арифметической прогрессии равен первому её члену, сложенному с произведением разности прогрессии на число членов, предшествующих определяемому, т. е. он выражается формулой[2]:
Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.
Свойства[править | править код]
Общий член арифметической прогрессии[править | править код]
Член арифметической прогрессии с номером может быть найден по формулам
- где — первый член прогрессии, — её разность, — член арифметической прогрессии с номером .
Доказательство формулы общего члена арифметической прогрессии
Пользуясь соотношением выписываем последовательно несколько членов прогрессии, а именно:
Заметив закономерность, делаем предположение, что . С помощью математической индукции покажем, что предположение верно для всех :
База индукции :
— утверждение истинно.
Переход индукции:
Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :
Итак, утверждение верно и при . Это значит, что для всех .■
Отметим, что в формулах общего члена -й член прогрессии есть линейная функция. Об этом говорит следующая теорема.
Для того чтобы последовательность являлась арифметической прогрессией, необходимо и достаточно, чтобы являлась линейной функцией (от )[3].
Доказательство
Необходимость. Пусть арифметическая прогрессия. Тогда, как было уже показано, , то есть . Так как есть линейная функция и , это значит, что и , т. е. — линейная функция, где .
Достаточность. Пусть есть линейная функция, т. е. . Так как и , то , тогда .
Рассмотрим .
Отсюда следует, что , где — величина постоянная. Тогда , а это значит по определению, что — арифметическая прогрессия.■
Суммы членов арифметической прогрессии с равными суммами номеров равны, т. е. .
Характеристическое свойство арифметической прогрессии[править | править код]
Последовательность есть арифметическая прогрессия для любого её элемента выполняется условие
Доказательство характеристического свойства арифметической прогрессии
Необходимость.
Поскольку — арифметическая прогрессия, то для выполняются соотношения:
.
Сложив эти равенства и разделив обе части на 2, получим .
Достаточность.
Имеем, что для каждого элемента последовательности, начиная со второго, выполняется . Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду . Поскольку соотношения верны при всех , с помощью математической индукции покажем, что .
База индукции :
— утверждение истинно.
Переход индукции:
Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :
Но по предположению индукции следует, что . Получаем, что
Итак, утверждение верно и при . Это значит, что .
Обозначим эти разности через . Итак, , а отсюда имеем для . Поскольку для членов последовательности выполняется соотношение , то это есть арифметическая прогрессия.■
Тождество арифметической прогрессии[править | править код]
Пусть — соответственно -й, -й, -й члены арифметической прогрессии, где . Тогда для всякой такой тройки выполняется комплементарное свойство арифметической прогрессии[нет в источнике], называемое тождеством арифметической прогрессии:
Доказательство тождества арифметической прогрессии
С помощью формулы общего члена выразим -й, -й, -й члены:
Вычитая почленно из первого равенства второе, а из второго третьего, получим:
Выражая из этих равенств и приравнивая полученные выражения, получим:
По основному свойству пропорции:
Откуда следует доказываемое тождество:
■
Следствие 1. Всякий член арифметической прогрессии вырази́м[5] через любую пару других членов.
Доказательство
Преобразовав тождество арифметической прогрессии
к виду
можно заметить, что -й член есть линейная комбинация двух других членов ( и ), поскольку оно равносильно
■
Следствие 2. Для того, чтобы число являлось членом данной арифметической прогрессии с членами и , необходимо и достаточно, чтобы было натуральным число
Формулировка ещё одного признака арифметической прогрессии.
Следствие 3 [критерий]. Числовая последовательность является арифметической прогрессией в том и только в том случае, если выполняется тождество арифметической прогрессии для всех членов данной последовательности. Другими словами, чтобы каждый член был вырази́м через любую пару остальных членов последовательности.
Доказательство
Необходимость. Утверждение
очевидно (см. доказательство тождества арифметической прогрессии).
Достаточность. Докажем, что
Равенство
можно преобразовать к виду
Если все три номера различны, тогда
Обозначим выражение, например, в левой части равенства за , то есть
Откуда можно прийти к следующему предложению:
Наконец, методом математической индукции, например, по нетрудно убедиться, что данное соотношение описывает именно арифметическую прогрессию.
Действительно, при (база индукции) получаем формулу общего члена арифметической прогрессии:
Предположим истинность утверждения (для ): формула характеризует арифметическую прогрессию. Тогда покажем, что и при формула верна для арифметической прогрессии (переход, или шаг, индукции). Рассмотрим левую часть формулы
По предположению индукции () заменим на выражение . Итак, получим следующее:
Методом тождественных преобразований имеем равносильное предложение
А это, в свою очередь, рекуррентное соотношение для арифметической прогрессии.
Значит, по принципу математической индукции можно утвердать, что для всякого соотношение верно только и только для членов арифметической прогрессии.
Аналогичные рассуждения проводятся для формулы .
Данное следствие целиком и полностью считается доказанным.■
Сумма первых n членов арифметической прогрессии[править | править код]
Сумма первых членов арифметической прогрессии может быть найдена по формулам
- , где — первый член прогрессии, — член с номером , — количество суммируемых членов.
- — где — первый член прогрессии, — второй член прогрессии — член с номером .
- , где — первый член прогрессии, — разность прогрессии, — количество суммируемых членов.
- , если — нечётное натуральное число.
Доказательство |
---|
Запишем сумму двумя способами:
— та же сумма, только слагаемые идут в обратном порядке. Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:
Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде . Воспользуемся формулой общего члена арифметической прогрессии:
Получили, что каждое слагаемое не зависит от и равно . В частности, . Поскольку таких слагаемых , то
Третья формула для суммы получается подстановкой вместо . Что и так непосредственно следует из выражения для общего члена. Замечание: Вместо в первой формуле для суммы можно взять любое из других слагаемых , так как они все равны между собой. |
Формулировка ещё одного факта: для всякой арифметической прогрессии при любом выполняется равенство:
Примечание: — сумма первых членов арифметической прогрессии.
Доказательство |
---|
1. Очевидно, что или Прибавим к обеим частям и получим, что 2. Покажем, что Это так, поскольку можно написать верное равенство:
3. Теперь докажем, что Но гораздо лучше представить это равенство в виде Видно, что это характеристическое свойство арифметической прогрессии. 4. А следовательно, 5. Тем самым, что и требовалось доказать. |
Предыдущее свойство имеет обобщение.
Для любых натуральных , , выполняется комплементарное свойство сумм:
Ещё один признак арифметической прогрессии.
Для того чтобы последовательность являлась арифметической прогрессией, необходимо и достаточно, чтобы сумма первых членов последовательности была функцией не выше второй степени относительно [6].
Сумма членов арифметической прогрессии от n-го до m-го[править | править код]
Сумма членов арифметической прогрессии с номерами от до может быть найдена по формулам
- , где — член с номером , — член с номером , — количество суммируемых членов.
где — член с номером , — разность прогрессии, — количество суммируемых членов.
Произведение членов арифметической прогрессии[править | править код]
Произведением первых членов арифметической прогрессии называется произведение от до , то есть выражение вида Обозначение: .
Свойство произведения:
Число множителей-скобок равно , а в самом произведении их составляет «штук».[10]
Сходимость арифметической прогрессии[править | править код]
Арифметическая прогрессия расходится при и сходится при . Причём
Доказательство |
---|
Записав выражение для общего члена и исследуя предел , получаем искомый результат. |
Связь между арифметической и геометрической прогрессиями[править | править код]
Пусть — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .
Доказательство |
---|
Проверим характеристическое свойство для образованной геометрической прогрессии:
Воспользуемся выражением для общего члена арифметической прогрессии: Итак, поскольку характеристическое свойство выполняется, то — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения . |
Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.
Арифметические прогрессии высших порядков[править | править код]
Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:
- 1, 4, 9, 16, 25, 36, …
разности которых образуют простую арифметическую прогрессию с разностью 2:
- 3, 5, 7, 9, 11, …
Треугольные числа также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию
Тетраэдральные числа образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.
Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.
Если — арифметическая прогрессия порядка , то существует многочлен , такой, что для всех выполняется равенство [11]
Примеры[править | править код]
Формула для разности[править | править код]
Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как
- .
Сумма чисел от 1 до 100[править | править код]
Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле
то есть к формуле суммы первых чисел натурального ряда.
См. также[править | править код]
- Геометрическая прогрессия
- Арифметико-геометрическая прогрессия
Примечания[править | править код]
- ↑ Такое соотношение называют рекуррентным соотношением первого порядка. Поэтому арифметическая прогрессия есть множество последовательностей, задающихся именно таким образом.
- ↑ Фильчаков П. Ф. Глава II. Алгебра и элементарные функции. Функции натурального аргумента (§ 75. Арифметическая прогрессия) // Справочник по элементарной математике: для поступающих в вузы : книга / под ред. чл.-кор. АН УССР П. Ф. Фильчакова. — Киев : «Наукова думка», 1972. — С. 303. — 528 с. — 400 000 экз. — УДК 51 (08)(G).
- ↑ Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 135. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
- ↑ Соотношение между любыми тремя членами арифметической прогрессии и их номерами (Мусинов В. А.) // Материалы студенческой научной сессии Института математики и информатики МПГУ. 2021–2022 учебный год : сборник статей / под общ. ред. Е. С. Крупицына. — М.: МПГУ, 2022. — С. 91—93. — 156 с. — ISBN 978-5-4263-1109-1, ББК 22.1я431+32.81я431+22.1р30я431+74.262.21я431+74.263.2я431.
- ↑ Это означает, что выражаемый член есть комбинация любых двух других членов данной последовательности, причём эта комбинация составлена с помощью арифметических операций и конечного набора символов. Для арифметической последовательности такая комбинация будет линейной.
- ↑ Шахмейстер А. Х. Прогрессии. Арифметическая прогрессия // Множества. Функции. Последовательности. Прогрессии : книга / А. Х. Шахмейстер, под общ. ред. Б. Г. Зива. — 2-е изд., испр. и доп. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2008. — С. 141. — 296 с. : илл. — (Математика. Элективные курсы). — 3000 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-94057-423-1. — ISBN 978-5-98712-027-9. — ISBN 978-5-91673-006-7.
- ↑ Из доказательства необходимости следует, что , поэтому, если , то необходимо сделать проверку. Например, если — сумма первых членов последовательности, то такая последовательность НЕ является арифметической прогрессией. А последовательность, заданная суммой первых членов, будет арифметической прогрессией.
- ↑ При произведение равно , что безусловно верно.
- ↑ Эту формулу удобно использовать для выполнения итераций в программном коде, так как результат зависит от значения только двух величин: постоянного числа — разности, и члена, стоящего ровно по середине между первым и -м членом.
- ↑
Пример применения формулы
.
Пусть , где .
По формуле найдём произведение пяти первых членов. Количество сомножителей должно равняться . Причём первым сомножителем будет .
Далее .
Наконец, . - ↑ Бронштейн, 1986, с. 139.
Литература[править | править код]
- Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1986. — 544 с.
Ссылки[править | править код]
- Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.
Арифметическая прогрессия — коротко о главном
Определение арифметической прогрессии:
Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).
Например:
- ( {{a}_{1}}=3)
- ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
- ( displaystyle {{a}_{3}}=7+4=11) и т.д.
Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).
Формула нахождения n-ого члена арифметической прогрессии:
( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.
Как найти член прогрессии, если известны его соседние члены:
( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.
Сумма членов арифметической прогрессии:
1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.
2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.
Числовая последовательность
Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.
Это и есть пример числовой последовательности.
Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.
Например, для нашей последовательности:
Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.
Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.
Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).
Арифметическая прогрессия — определения
Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.
Например:
( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})
Такая числовая последовательность называется арифметической прогрессией.
Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.
Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.
Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.
Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:
- ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
- ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
- ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
- ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )
Разобрался? Сравним наши ответы:
Является арифметической прогрессией – 2, 3.
Не является арифметической прогрессией – 1, 4.
Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.
Существует два способа его нахождения.
Нахождения n-ого члена арифметической прогрессии
Способ I
Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:
( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})
Итак, 6-ой член описанной арифметической прогрессии равен 23.
Способ II
А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.
Это и есть математика!
Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка.
Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.
Что мы знаем?
- У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
- У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
- Мы все время прибавляем 4, значит разница прогрессии d = 4.
Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.
7=3+4 или 7=3+d
Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?
11=3+4+4 или 11=3+d+d
Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.
Давай проверим? Чему равен 4-й член арифметической прогрессии?
15=3+4+4+4 или 15=3+d+d+d
Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!
Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа.
А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.
Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:
( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})
Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.
Рассчитал? Сравни свои записи с ответом:
( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})
Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.
Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:
( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.
Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).
Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.
( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})
Возрастающие и убывающие арифметические прогрессии
Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего.
Например:
( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})
Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Например:
( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})
Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)
Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:
( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))
Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.
( displaystyle d=8-13=-5)
( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))
Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)
Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.
Сравним полученные результаты:
( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})
Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)
Усложним задачу — выведем свойство арифметической прогрессии.
Допустим, нам дано такое условие:
( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).
Легко, скажешь ты и начнешь считать по уже известной тебе формуле:
( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))
Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:
( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})
Абсолютно верно.
Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).
Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?
Согласись, есть вероятность ошибиться в вычислениях.
А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?
Конечно да, и именно ее мы попробуем сейчас вывести.
Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:
( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:
- предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
- последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)
Просуммируем предыдущий и последующий члены прогрессии:
( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })
Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.
Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).
( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.
Попробуем посчитать значение ( x), используя выведенную формулу:
( x=frac{4+12}{2}=8)
Все верно, мы получили это же число. Закрепим материал.
Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.
( x=frac{4024+6072}{2}=5048)
Молодец! Ты знаешь о прогрессии почти все!
Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…
Сумма первых n членов арифметической прогрессии
Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:
«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».
Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…
Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)
Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.
Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?
Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.
Попробовал? Что ты заметил? Правильно! Их суммы равны
А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?
Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).
Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:
( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).
Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:
( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.
В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))
Что у тебя получилось?
( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.
Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.
Сколько у тебя получилось?
У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).
Так ли ты решал?
- ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
- ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)
На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.
Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.
Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.
Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?
В данном случае прогрессия выглядит следующим образом:
( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).
Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).
Количество членов арифметической прогрессии ( displaystyle=6).
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).
Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).
Количество членов арифметической прогрессии ( displaystyle=6).
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).
Способ 1.
( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})
Способ 2.
( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)
( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)
А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.
Сошлось?
Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.
Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?
Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
Справился?
Верный ответ – ( displaystyle 1830) блоков:
( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})
План урока:
Арифметическая прогрессия
Сумма первых членов арифметической прогрессии
Арифметическая прогрессия
Изучим послед-ть, где для получения следующего члена к предыдущему надо добавить определенное число. Например, таковым является следующий ряд:
11, 15, 19, 23, 27, 31, 35…
Здесь 1-ый член равен 11, а последующие члены получают добавлением четверки:
15 = 11 + 4
19 = 15 + 4
23 = 19 + 4
В математике такую послед-ть именуют арифметической прогрессией.
Из определения очевидно, что ариф. прог-сию можно задать рекуррентным способом, указав первое число прог-сии b1 и формулу bn = bn–1 + d, где d – некоторое число, которое называют разностью прогрессии. Например, если b1 = 24, а d = 11, то прог-сия будет выглядеть так:
24, 35, 46, 57, 68, 79…
Стоит отметить, что разность прог-сии может быть и отрицательным числом. В этом случае получится убывающая послед-ть.
Пример. Первый член арифметической прогрессии равен 5, а ее разность равна(– 10). Запишите первые 5 членов прог-сии.
Решение. Вычислим первые несколько чисел прог-сии:
Получается, что прог-сия будет иметь вид:
-5, -15, -25, -35, -45…
Ответ: -5, -15, -25, -35, -45
Ариф. прог-сию можно задать не только рекуррентным способом, но и с помощью формулы n-ого члена. Попытаемся получить её, используя рекуррентную формулу. Сначала запишем выражения для вычисления первых членов прог-сии:
Прослеживается закономерность: каждое число bn можно записать в виде
Докажем это, используя индукцию.
Для n = 1 формула, очевидно, работает:
Мы доказали базис индукции. Далее покажем, что если для произвольного n = k справедлива формула
то и для n = k + 1 справедлива формула
Для доказательства применим рекуррентную формулу, задающую ариф. прог-сию:
Получили нужную формулу и тем самым показали, что n-ый член арифметической прогрессии вычисляется следующим образом
Пример. Разность прогрессии равна 9, а её первый член t1 = 7. Найдите 10001-ый член этой ариф. прог-сии.
Решение. Подставим исходные данные в формулу n-ого члена:
Ответ: 90007.
Пример. Известны два члена ариф. прог-сии: z8 = 15 и z20 = 33. Определите разность арифметической прогрессии, а также ее 1-ое и 5-ое число.
Решение. Используем формулу n-ого члена для n = 8 и n = 20:
Получили два линейных уравнения с двумя неизвестными:
Для решения системы вычтем из второго ур-ния первое:
Удалось найти разность прог-сии. Далее, используя первое ур-ниеz1 + 7d = 15, определим z1:
Удалось вычислить и z1. Теперь можно рассчитать z5 с помощью формулы n-ого члена арифм. прогр-сии:
Сумма первых членов арифметической прогрессии
Интересный случай произошел с Карлом Гауссом, известным математиком, ещё в третьем классе. Учитель предложил ученикам найти сумму первых 100 натуральных чисел. Однако Гаусс почти сразу сказал ответ: 5050. Как он смог так быстро сложить 100 чисел?
Он догадался, что в сумме
1 + 2 + 3 + 4…+ 99 + 100
можно поменять местами слагаемые, чтобы после первого было записано последнее слагаемое, после второго – предпоследнее и т.д. В итоге получится сумма
(1 + 100) + (2 + 99) + (3 + 98) + … (50 + 51)
В каждой скобке сумма слагаемых равна 101:
1 + 100 = 101
2 + 99 = 101
3 + 98 = 101
Всего же есть 50 таких скобок, каждая из которых равна 101, поэтому общая сумма равна 101•50 = 5050.
Так как натуральные числа образуют ариф. прог-сию, в которой b1 = 1 и d = 1, то Гаусс, по сути, нашел сумму первых 100 членов ариф. прог-сии. Иногда ее просто называют суммой арифметической прогрессии. Обозначают эту сумму буквой Sn, где n – это количество первых членов прог-сии, которые надо сложить. Вычислить Sn можно так:
S1 = b1
S2 = b1 + b2 = S1 + b2
S3 = b1 + b2 + b3 = S2 + b3
…
Sn = b1 + b2 + b3 + … + bn = Sn–1 + bn
Однако такой способ требует, очевидно, большого объема вычислений. Есть и более короткий способ – воспользоваться формулой
Докажем ее справедливость, используя индукцию. Подставим в формулу n=1 и убедимся, что в этом случае она работает:
Получили верную формулу S1 = b1
Базис индукции доказан. Далее покажем, что если формула справедлива при n = k, то она истинна и при n = k + 1. То есть надо доказать, что
Действительно, сумма (k + 1) слагаемых равна
Слагаемые справа можно представить так:
Sk = (2b1 + d(k – 1))•k/2 (потому что мы предполагаем, что формула справедлива для n = k)
bk+1= b1 + (k + 1 – 1)•d = b1 + kd (формула n-ого члена ариф. прог-сии)
Тогда можно записать:
Докажем, что выр-ния (1) и (2) тождественно равны друг другу:
Умножим на двойку обе части равенства:
Раскроем скобки:
И справа, и слева стоят одинаковые выр-ния, поэтому равенство является тождеством. Значит, используемая нами формула справедлива.
Посмотрим, как использовать эту формулу на практике. Начнем с задачи, решенной в третьем классе Гауссом. Послед-ть натуральных чисел – это ариф. прог-сия, в котором 1-ый член b1 = 1, разность d = 1. Гауссу надо было найти сумму первых 100 чисел, поэтому n = 100. Подставляем в формулу эти данные и получаем:
Получили тот же результат, что и Гаусс.
Пример. Сложите первую тысячу нечетных натуральных чисел.
Решение. Послед-ть нечетных натуральных чисел выглядит так:
1, 3, 5, 7…
Очевидно, что это ариф. прог-сия, ведь каждое следующее число получается добавлением двойки к предыдущему. У этой прог-сии b1 = 1, d = 2. Тогда сумма 1000 чисел будет равна:
Ответ: 1000000.
Пример. Сложите все трехзначные натуральные числа.
Решение. Нам надо сложить числа от 100 до 999. Здесь можно предложить два алгоритма решения.
Первый способ. Сложим числа от 1 до 99:
Далее сложим числа от 1 до 999:
Для того, чтобы найти сумму от 100 до 999, вычтем из S999 сумму S99:
Второй способ. Трехзначные нат. числа образуют ариф. прог-сию:
100, 101, 102, 103…
у которой b1 = 100, а разность d = 1. Сколько всего есть трехзначных чисел? Всего есть 999 чисел от 1 до 999, для записи которых хватает 3 цифр. Однако для первых 99 из них достаточно двух или даже одной цифры. Поэтому трехзначных чисел всего 999 – 99 = 900.
По этой причине примем n = 900. Далее подставим параметры прогрессии в формулу и получим:
Ответ: 494550
Пример. Задана ариф. прог-сия, у которой b1 = 125, d = – 19:
125, 106, 87, 68, 49…
Чему равна сумма первых 50-ти ее членов? Какова сумма вторых 50-ти членов послед-ти?
Решение. Для нахождения суммы первых 50-ти членов подставим в формулу условия задачи:
Для ответа на второй вопрос задачи предварительно вычислим сумму 100 первых чисел:
Сумма вторых 50-ти чисел равна разнице S100– S50:
Ответ: – 64525
Пример. Решите уравнение, зная, что слева записана арифм. прог-сия:
2 + 8 + 14 + 20 + … + х = 184
Решение. Ясно, что в данной прог-сии b1 = 2. Разность прог-сии можно определить, просто вычтя из второго члена прог-сии первый:
d = 8 – 2 = 6
Слева записана сумма первых n слагаемых (n нам неизвестно). Заменим это выражение формулой:
По условию эта сумма равна 184. Тогда можно записать равенство:
Имеем уравнение, из которого можно найти n. Сначала умножим обе части на 2:
По таблице квадратов можно узнать, что квадратный корень из 8836 равен 94, ведь 942 = 8836. Тогда корни квадр. ур-ния будут равны:
Первый корень – лишний, ведь n может быть только нат. числом. Поэтому n = 8.
Если слева в исходном ур-нии
стоит сумма n = 8 членов ариф. прог-сии, то х – это восьмой ее член. Найти его можно, используя формулу:
Подставим х в ур-ние и убедимся, что мы не ошиблись:
Проверка подтвердила правильность решения.
Ответ: 44
Сумма n первых членов арифметической прогрессии — штука довольно простая и понятная. Как по смыслу, так и по формуле. Но задания на эту тему встречаются самые разные. От примитивных до вполне себе серьёзных. Имеет смысл разобраться, правда?)
Очень часто во всевозможных задачках на арифметическую прогрессию требуется найти сумму некоторого количества её членов. Если этих самых членов мало, то складывать, конечно, и безо всяких формул можно. А вот если много, то сложение “вручную” уже напрягает, да… В этих случаях и выручает формула.)
Итак, вот она, формула суммы n первых членов арифметической прогрессии:
Для начала, как водится, разберёмся с названием и со смыслом формулы суммы. А потом и задачки порешаем. В своё удовольствие.)
Ключевыми словами в названии формулы являются слова “n первых членов”. Эти слова всего лишь означают, что берётся последовательность
(an): a1, a2, a3, a4, a5, …, an
и аккуратно суммируются (т.е. складываются) все её члены. С первого члена (a1) по последний (an). Причём складываются именно все члены подряд, без пропусков! Это важно.
Смысл формулы суммы прост до неприличия. Эта формула позволяет легко и быстро находить сумму любого количества членов любой арифметической прогрессии с первого по n-й. Не складывая все числа по порядочку.)
А теперь, традиционно, разбираемся со всеми буковками и символами, сидящими в формуле. Это очень многое прояснит.
Sn — та самая сумма n первых членов, которую мы ищем. Результат сложения всех членов арифметической прогрессии с первого по последний. Ещё раз напоминаю, что сумма считается именно (и только) с первого члена. Дело всё в том, что частенько встречаются задачки типа: “найти сумму пятого и восьмого членов”. Или: “найти сумму всех членов с десятого по тридцатый”. В таких задачках прямое применение формулы суммы не катит, да…)
a1 — первый член прогрессии. Здесь, думаю, комментарии излишни.)
an — последний член прогрессии. Под номером n. Да, не очень привычное название, но для работы с суммой — очень удобное.) Что это такое — об этом ниже.
n — номер последнего члена.
Вот и всё. Все обозначения расшифрованы. Осталось лишь разобраться, что же такое последний член.
Для начала задам такой хитрый вопрос: как вы думаете, какой член будет последним, если нам дана бесконечная арифметическая прогрессия? Ответ очевиден: никакой.) Какой бы член an и с каким бы номером n мы ни взяли, для него всегда найдётся следующий, (n+1)-й член.
Поэтому говорить о конкретной конечной сумме для бесконечной арифметической прогрессии (с бесконечным числом членов) попросту нету никакого смысла. Не существует такой суммы. Бесконечная она… Кстати, в отличие от геометрической прогрессии, сумму бесконечного числа членов которой, в некоторых случаях, найти… можно.) Но о геометрической прогрессии и о такой интересной бесконечной сумме — в соответствующих уроках.)
Короче говоря, когда мы имеем дело с суммой арифметической прогрессии, то нам всегда требуется некоторый конечный член. Тот член, на котором следует остановиться. Которым следует ограничиться. Чтобы не складывать все члены до бесконечности.) Вот именно этот граничный член an — и есть последний член прогрессии. И все дела.)
Номер этого самого последнего члена (т.е. n) определяется исключительно заданием. Либо он указан в условии прямым текстом, либо же косвенно, в зашифрованном виде.) А составители заданий, порой, шифруют эту ценную информацию (последний член и номер последнего члена) с безграничной фантазией, да…) Для грамотной расшифровки надо, во-первых, понимать смысл арифметической прогрессии, во-вторых, не бояться и думать головой и… внимательно читать задание.) Иначе — никак. Чуть ниже, в конкретных задачках мы все эти секреты пораскрываем.
Как выводится формула суммы?
Вывод формулы суммы n первых членов арифметической прогрессии хоть и прост, но весьма оригинален по сравнению с выводом формулы n-го члена.) Для этого придётся нам запустить машину времени и плавно переместиться… нет, не в будущее.) Мы переместимся в Германию конца XVIII века. Жил-был в то время великий немецкий математик Карл Фридрих Гаусс. Король математики! Одарённость его просто не знала границ!
Так вот, согласно легенде, когда Гаусс был ещё школьником, учитель дал детям задание. Скучно им, видите ли, было на уроке… А именно — посчитать сумму всех натуральных чисел от 1 до 100. Для всего класса это задание и впрямь оказалось работёнкой не из лёгких. На целый урок.) Но… только не для юного вундеркинда Гаусса с его нестандартным мышлением.) Как он выкрутился? Он заметил, что попарные суммы чисел с противоположных концов всегда одинаковы: 1+100=101, 2+99=101, 3+98=101 и так далее.) Всего таких попарных сумм, очевидно, будет 50. Рассуждая таким образом, Гаусс, к удивлению учителя, дал верный ответ за полминуты:
1+2+3+…+100 = 50·101 = 5050
И всё! Здорово, правда?)
Для вывода нашей формулы, мы поступим так же мудро, как и Гаусс. По такому же принципу. Смотрите, сейчас интересно будет! Запишем сначала нашу прогрессию (an) в виде прямой последовательности:
a1, a2, a3, …, an-2, an-1, an.
А теперь запишем эту же прогрессию, но в виде обратной последовательности. Член an будет на первом месте, а a1 — на последнем.
Вот так:
an, an-1, an-2, …, a3, a2, a1.
А теперь (внимание!) берём и попарно складываем между собой члены обеих последовательностей — прямой и обратной.
Вот так:
Получаем ровно “n” попарных сумм. Как вы думаете, что в итоге мы получим, если сложим между собой все эти n сумм? Очевидно, нужную нам сумму n первых членов арифметической прогрессии Sn, но… удвоенную. Что правда то правда: сначала мы складываем все члены с 1-го по n-й, а затем — наоборот. И, если сложить оба результата, то получим, как раз, удвоенную сумму членов с 1-го по n-й. То есть, 2Sn.
Можно смело записать:
2Sn = (а1+an)+(a2+an-1)+(a3+an-2)+…+(an-2+a3)+(an-1+a2)+(an+a1)
А теперь разберёмся со всеми “лишними” скобочками и буковками. Сейчас будет ещё интереснее!
Как вы уже, возможно, заметили, скобки, стоящие в сумме на одинаковых местах с начала и с конца, совершенно одинаковые! Только слагаемые переставлены местами.) Первые и последние скобки мы трогать не будем. Посмотрим, что получается во вторых и предпоследних скобках. Для этого представим a2 как a1+d, а an-1 представим как an–d. Прямо по смыслу арифметической прогрессии:
a2 = a1 + d
an-1 = an — d
Подставим это добро во вторую (и предпоследнюю) скобки. Что получим:
(a2+an-1) = (an-1+a2) = a1 + d + an — d = a1 + an
Рассуждая аналогичным образом, для третьих скобок с начала и с конца мы получим:
(a3+an-2) = (an-2+a3) = a1 + 2d + an — 2d = a1 + an
Ну как? Улавливаете идею? Да! Каждая из попарных сумм членов, стоящих на одинаковых местах с начала и с конца в нашей общей сумме 2Sn, всегда будет одна и та же. И равна a1 + an. То есть, сумме первого и последнего членов. А всего таких попарных сумм у нас сколько? Правильно, “n” штук! Столько же, сколько и членов в прогрессии, да…) Не зря же я картинки рисую иногда.
Вот и пишем:
2Sn = (а1+an)·n
Выражая из этого равенства Sn, получаем требуемую формулу:
Вот и всё.)
Ну что, со смыслом формулы разобрались. С выводом — тоже. Я вижу, вам уже не терпится начать решать задачки. Что ж, поехали!
Решение задач на сумму арифметической прогрессии.
Начнём с несложной задачки. Безо всяких фокусов.)
1. Дана арифметическая прогрессия:
24; 23,2; 22,4; 21,6; …
Найти сумму первых ста её членов.
Прогрессия нам задана в виде последовательности. Можно, конечно, уловить закономерность, продлить эту последовательность, выписать первые сто её членов, сложить их да посчитать, но… как-то тупо и долго получается, не находите? Но мы же с вами народ учёный. Формулу суммы знаем.) Вот и запустим её в дело.
Сразу пишем формулу суммы:
А теперь смотрим на формулу и соображаем, какие элементы формулы нам даны, а чего не хватает.
Первый член a1 известен? Да! Это 24. А последний член an? Пока нет… Но… зато нам известен его номер n! Это 100 (n = 100). В задании прямым текстом сказано: найти сумму первых ста членов. Стало быть, последним членом прогрессии будет сотый член a100. И как его отыскать? Считать и выписывать сто членов? Зачем!?) Ведь мы же не слепые, глазками последовательность видим, а смысл арифметической прогрессии – понимаем.
Стало быть, можем посчитать разность прогрессии и затем найти интересующий нас сотый член по формуле n-го члена:
an = a1 + (n-1)·d
Вот и трудимся. Для разности d берём любой член последовательности (кроме первого) и отнимаем предыдущий.
ЕЩЁ РАЗ ВНИМАНИЕ!!! Не просто считаем разницу между большим и меньшим соседними членами (типа 23,2-22,4), а именно от выбранного члена (23,2) отнимаем предыдущий (24)!
Почему ругаюсь? Потому что это весьма и весьма распространённые грабли, на которые наступает значительная часть учеников, теряя драгоценные баллы на контрольных и экзаменах и получая заслуженные минусы. Особенно часто этот косяк встречается в убывающих прогрессиях и в прогрессиях с отрицательными членами.
Вот и считаем правильно. Например, так:
d = 23,2 — 24 = -0,8
Вот так. Разность — отрицательна. Прогрессия — убывает. Как и в задании.)
Считаем сотый член по формуле n-го члена:
a100 = a1 + (-0,8)·(100-1) = 24-0,8·99 = -55,2
Есть. Мы выяснили все интересующие нас параметры в формуле суммы. Осталось подставить их да посчитать:
Ответ: -1560
Кстати сказать, если подставить в формулу суммы вместо an его выражение через формулу n-го члена, то получим:
Или, если привести подобные в числителе:
Эта формула — тоже формула суммы n первых членов арифметической прогрессии. Только записанная в другом виде — через первый член и разность прогрессии. В некоторых задачках эта модифицированная формула здорово выручает, да.) Имеет смысл запомнить. Или, в случае чего, уметь вывести, как здесь. Ведь формулу n-го члена в любом случае надо помнить.)
Следующая задачка. На основе реального варианта ОГЭ:
2. Арифметическая прогрессия задана условием: an = -3 + 5n. Найдите сумму первых двадцати её членов.
Хорошая задачка. Лёгкая.) Настолько лёгкая, что народ тут же косячит… НЕ НАДО писать сразу, что первый член — минус три! Это фатальное заблуждение, да… Ибо прогрессия нам задана видоизменённой формулой n-го члена. Как работать с такой формулой, подробно рассказано по ссылке. Кто не в курсе — кликаем и читаем.) Кто в курсе, делаем всё как положено. А именно — подставляем в формулу вместо n единичку и считаем:
a1 = -3+5·1 = 2
Вот так вот. Первый член — двойка, а не минус три…
Что там нам ещё нужно для суммы? Последний член и номер последнего члена? Пожалуйста! Нас спрашивают про сумму двадцати первых членов. Стало быть, в качестве последнего члена у нас будет выступать a20, а номером n последнего члена будет, знамо дело, двадцатка.
Вот и считаем a20 подставляя n = 20 в формулу n-го члена:
a20 = -3+5·20 = 97
А теперь уже считаем нужную нам сумму:
Ответ: 990
А теперь задачка более творческая. 🙂
3. Найти сумму всех натуральных двузначных чисел, кратных четырём.
Во! Ни первого члена нет, ни последнего, ни номера n, ни прогрессии вообще… Что делать?!
Что-что… Головой думать, да.) И вытаскивать из условия задачи все элементы формулы суммы арифметической прогрессии. Ибо здесь, как раз, тот самый случай, когда ключевые параметры прогрессии в условии ловко зашифрованы.
Вот и начинаем расшифровку. Что такое натуральные числа — знаем. То есть, целые положительные. Что такое двузначные числа — тоже знаем. Ну, те, что из двух циферок состоят.) Какое же двузначное число будет первым? 10, ясное дело.) А последнее двузначное число? Очевидно, 99. За ним уже трёхзначные числа пойдут…
Идём дальше. Кратные четырём… Это что значит? Это значит, делящиеся на четыре нацело! Десятка делится на четыре? Не делится! 11 — тоже не делится. 12… делится! Если ещё немного подумать, то можно сообразить, что последнее такое число будет 96. Отлично! Очень многое проясняется! Теперь уже можно записать последовательность по условию задачки:
12, 16, 20, …, 92, 96.
Будет эта последовательность арифметической прогрессией? А как же! Каждый член отличается от предыдущего строго на четвёрку. Если к члену прибавить, скажем, 3 или 5, то новое число уже не поделится нацело на 4.
Сразу же можем и разность прогрессии посчитать:
d = 4
Пригодится.)
Ну вот. Теперь мы уже с вами знаем кое-какие параметры прогрессии:
a1 = 12
d = 4
an = 96
А каков будет номер n последнего члена 96? А вот тут два пути решения. Первый путь — для сверхтрудолюбивых, но некультурных. Можно расписать всю прогрессию да посчитать пальчиком количество членов. А второй путь — для ленивых, зато культурных.) Я отношусь к ленивым, поэтому выберу второе. А именно — распишу последний член прогрессии (т.е. 96) по формуле n-го члена, подставляя уже известные нам данные:
96 = a1 + d(n-1)
96 = 12 + 4(n-1)
4(n-1) = 84
n-1 = 21
n = 22
Вот так. Значит, число 96 — это двадцать второй член нашей прогрессии.
А теперь смотрим на формулу суммы:
Смотрим и… прыгаем от радости!) Ибо мы вытащили из условия задачи все необходимые данные для подсчёта требуемой суммы. Незаметно для себя. Вот они:
a1 = 12
a22 = 96
n = 22
Sn = S22
Осталось лишь подставить да посчитать:
Ответ: 1188
Рассмотрим теперь ещё один тип популярных задачек. На первый взгляд, всё очень похоже, да не совсем…)
4. Дана арифметическая прогрессия:
-30; -29,3; -28,6; …
Найдите сумму членов с 42-го по 101-й.
И как вам? Прямое применение формулы суммы разочарует. Напоминаю, что формула считает сумму только с первого члена. А в нашей задаче надо считать сумму с сорок второго… Тупик? Ну да, щас!)
Можно, конечно, расписать всю прогрессию до 101-го члена и посчитать столбиком на бумажке все члены с 42-го по 101-й. Но возьмутся за это увлекательное занятие только откровенные мазохисты, да…)
Мы же поступим просто и элегантно.) А именно – разобьём нашу прогрессию на две части. Первая часть будет с первого члена по 41-й. А вторая часть — с 42-го члена по 101-й. Ясно, что если мы посчитаем сумму членов первой части S1-41 и сложим её с суммой членов второй части S42-101, то получим сумму членов прогрессии с первого по сто первый S1-101.
В математической записи:
S1-41 + S42-101 = S1-101
Из этого равенства видно, что найти нужную нам сумму S42-101 можно простым вычитанием:
S42-101 = S1-101 – S1-41
Вот теперь всё встало на свои места! Обе суммы справа считаются с первого члена. Стало быть, к ним уже применима наша стандартная формула суммы. Ну что, начнём?
Первым делом вытаскиваем из условия задачи ключевые параметры прогрессии:
a1 = -30
d = 0,7
Кроме того, для расчёта сумм S1-41 и S1-101 нам понадобятся 41-й и 101-й члены. Считаем их по формуле n-го члена:
a41 = a1+40d = -30+40·0,7 = -30+28 = -2
a101 = a1+100d = -30+100·0,7 = -30+70 = 40
Теперь считаем суммы S1-41 и S1-101 по формуле:
Остались сущие пустяки. От суммы 101 члена отнять сумму 41 члена:
S42-101 = S1-101 – S1-41 = 505 — (-656) = 1161
Ответ: 1161
Вот и всё.) Обратите внимание на одну очень полезную фишку. Вместо прямого расчёта того что нам нужно (S42-101), мы вычислили то, что, казалось бы, совершенно не нужно (S1-41). А уже потом посчитали и S42-101, отбросив от полного результата ненужное. В злых задачках такой искусный манёвр очень часто спасает.)
В этом небольшом уроке мы рассмотрели задачки, для успешного решения которых достаточно понимать смысл суммы n первых членов арифметической. Ну и парочку формул знать надо, да.)
Подытожим наш урок практическим советом:
При решении любой задачи на сумму членов арифметической прогрессии настоятельно рекомендую выписать две ключевые формулы.
Формулу n-го члена:
an = a1 + (n-1)·d
Формулу суммы n первых членов арифметической прогрессии:
Эти две формулы обязательно подскажут, что именно надо делать, в каком направлении двигаться, чтобы справиться с задачей. Проверено! Помогает.
А теперь решаем самостоятельно.
1. Найти сумму всех натуральных двузначных чисел, которые не делятся нацело на четыре.
Что, круто, да?) Подсказка спрятана в комментарии к последней разобранной задаче №4. Ну и результат предпоследней задачки №3 поможет.)
2. Арифметическая прогрессия задана условиями:
a1 = -3,1
an+1 = an+0,9
Найдите сумму первых 19 её членов.
Да-да, это рекуррентная формула, которую многие так не любят. Задачки с такой формулой мы в этом уроке не рассматривали. А чего их рассматривать? Их решать надо.) Материала этого урока вполне достаточно, чтобы справиться с заданием. Про рекуррентную формулу и как именно с ней работать можно прочитать в предыдущем уроке. Не пренебрегайте этой задачкой, такие частенько встречаются в ОГЭ!
3. Марфуша была сладкоежкой и очень любила пирожные с кремом и шоколадной глазурью. Каждое пирожное стоит 60 рублей. Накопив 2700 рублей, Марфуша решила устроить себе сладкую жизнь: в первый день купить и съесть всего одно пирожное, а в каждый последующий день покупать и съедать на одно пирожное больше. Пока не истратит всю накопленную заначку.
а) сколько пирожных в итоге купила и съела Марфуша?
б) сколько дней сладкой жизни получилось у Марфуши?
Сложно? Поможет дополнительная формула суммы из разобранной задачи №1. Ну и решение квадратных уравнений тоже надо вспомнить, да.)
Ответы (в беспорядке): 9; 95; 45; 3717.
Сумма членов арифметической прогрессии
Сумма всех членов арифметической прогрессии равна половине произведения суммы её крайних членов на количество всех её членов.
где S — это сумма всех членов, a1 — первый член прогрессии, an — последний член, а n — количество членов в данной прогрессии.
Рассмотрим, почему именно с помощью данной формулы можно найти сумму всех членов арифметической прогрессии:
Если взять любую конечную арифметическую прогрессию, например:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30;
то не трудно будет посчитать (складывая числа друг за другом), что сумма всех её членов равна 165. В то же время, если сгруппировать попарно все члены, равноудалённые от концов:
(3 + 30), (6 + 27), (9 + 24), (12 + 21) и (15 + 18);
то можно увидеть, что суммы таких групп равны (в данном случае сумма чисел каждой группы равна 33). Значит, вместо того, чтобы последовательно складывать все члены прогрессии, достаточно узнать сумму двух её членов — первого и последнего. Так как таких сумм получится ровно в 2 раза меньше, чем всех членов в прогрессии, то для вычисления суммы всех членов, надо умножить сумму первого и последнего члена на общее количество членов прогрессии, разделённое на два:
(3 + 30) · | 10 | = | (3 + 30) · 10 | = 165. |
2 | 2 |
Исходя из данного примера, можно вывести общую формулу нахождения суммы всех членов прогрессии, если известен первый и последний её члены, а также количество членов:
S = | (a1 + an) · | n | = | (a1 + an)n | . |
2 | 2 |
Если в формулу для суммы вместо an вставить равное ему выражение: a1 + (n – 1)d, то получится:
S = | (2a1 + d(n – 1))n | . |
2 |
По этой формуле можно определить сумму в зависимости от первого члена, разности и количества членов данной прогрессии.
Пример. Найти сумму первых 10 членов арифметической прогрессии:
1, 3, 5, 7, … .
Решение: В данной прогрессии первый член равен 1, а разность — 2, значит, сумма первых 10 членов равна:
(2 · 1 + 2(10 – 1)) · 10 | = 100. |
2 |