Как найти сумму арифметической прогрессии онлайн

Онлайн калькулятор. Сумма арифметической прогрессии

Используя этот онлайн калькулятор для вычисления суммы арифметической прогрессии, вы сможете очень просто и быстро найти значение суммы арифметической прогрессии зная значения двух членов арифметической прогрессии, или значения одного члена прогрессии и шага прогрессии или значения первого и последнего члена арифметической прогрессии.

Воспользовавшись онлайн калькулятором для вычисления суммы арифметической прогрессии, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный материал.

Найти сумму арифметической прогрессии

значение первого и последнего членов арифметической прогрессии (a1, an)

значение первого члена арифметической прогрессии и шаг прогрессии (a1, d)

значение одного из членов арифметической прогрессии и шаг прогрессии (ai, d)

значения двух членов арифметической прогрессии (ai, aj)

Введите данные:

Найти значение суммы первых n членов арифметической прогрессии

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Когда речь идет о таком параметре, как сумма арифметической прогрессии, подразумевается всегда сумма первых членов арифметической прогрессии или сумма членов прогрессии с k по n, то есть количество членов, которые берутся для суммы, строго ограничено в заданных условием пределах. В противном случае задание не будет иметь решения, так как вся числовая последовательность именно арифметической прогрессии начинается с конкретного числа – первого члена a1, и продолжается бесконечно.

Бытует мнение, что формула суммы арифметической прогрессии была открыта еще Гауссом, как быстрый и точный способ расчета суммы чисел в определенной последовательности. Он заметил, что такая прогрессия является симметричной, то есть сумма симметрично расположенных с начала и конца членов прогрессии является постоянной для данного ряда.

a1+an=a2+a(n-1)=a3+a(n-2)=⋯

Соответственно, он нашел данную сумму и умножил ее на половину от общего количества чисел в последовательности, участвующих в расчете суммы. Таким образом, была выведена формула суммы арифметической прогрессии

Пример. Предположим, задано условие: “Найдите сумму первых десяти (10) членов арифметической прогрессии”. Для этого понадобится следующие данные: разность прогрессии и первый ее член. Если в задаче дан какой-либо n член арифметической прогрессии вместо первого, тогда сначала нужно воспользоваться разделом, где представлена формула нахождения первого члена прогрессии, и найти его. Затем исходные данные вбиваются в калькулятор и он производит расчеты, складывая первый и десятый члены, и умножая полученную сумму на половину от общего количества складываемых членов – на 5. Аналогично происходит, если нужно найти сумму первых шести членов или любого другого количества.

В случае, когда необходимо найти сумму членов арифметической прогрессии, начинающихся не с первого, а с пятого члена, к примеру, тогда среднее арифметическое остается тем же, а общее количество членов берется как увеличенная на единицу разность между порядковыми номерами взятых членов.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Смотрите также


Калькулятор онлайн.
Сумма арифметической прогрессии.
Дано: a1, d, n
Найти: Sn

Эта математическая программа находит (S_n) – сумму n первых членов арифметической прогрессии, исходя из заданных пользователем чисел
( a_1, d ) и ( n ).
Числа ( a_1 ) и ( d ) можно задать не только целые, но и дробные. Причём, дробное число можно ввести в виде десятичной
дроби ( ( 2,5 ) ) и в виде обыкновенной дроби ( ( -5frac{2}{7} ) ).

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа ( a_1 ) и ( d ) можно задать не только целые, но и дробные.
Число ( n ) может быть только целым положительным.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод:
Результат: ( -frac{2}{3} )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод:
Результат: ( -1frac{2}{3} )

Введите числа a1, d, n

Наши игры, головоломки, эмуляторы:

Немного теории.

Числовая последовательность

В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например,
дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных
номеров в специальных картотеках.

В сберегательном банке по номеру лицевого счёта вкладчика можно легко найти этот счёт и посмотреть, какой вклад на нём лежит.
Пусть на счёте № 1 лежит вклад а1 рублей, на счёте № 2 лежит вклад а2 рублей и т. д. Получается числовая последовательность
a1, a2, a3, …, aN
где N — число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число an.

В математике также изучаются бесконечные числовые последовательности:
a1, a2, a3, …, an, … .

Число a1 называют первым членом последовательности, число a2вторым членом последовательности,
число a3третьим членом последовательности и т. д.
Число an называют n-м (энным) членом последовательности, а натуральное число n — его номером.

Например, в последовательности квадратов натуральных чисел 1, 4, 9, 16, 25, …, n2, (n + 1)2, …
а1 = 1 – первый член последовательности; аn = n2 является n-м членом последовательности;
an+1= (n + 1)2 является (n + 1)-м (эн плюс первым) членом последовательности.
Часто последовательность можно задать формулой её n-го члена.
Например, формулой ( a_n=frac{1}{n}, ; n in mathbb{N} ) задана последовательность
( 1, ; frac{1}{2} , ; frac{1}{3} , ; frac{1}{4} , dots,frac{1}{n} , dots )

Арифметическая прогрессия

Продолжительность года приблизительно равна 365 суткам. Более точное значение равно ( 365frac{1}{4} ) суток, поэтому каждые
четыре года накапливается погрешность, равная одним суткам.

Для учёта этой погрешности к каждому четвёртому году добавляются сутки, и удлинённый год называют високосным.

Например, в третьем тысячелетии високосными годами являются годы 2004, 2008, 2012, 2016, … .

В этой последовательности каждый её член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом 4.
Такие последовательности называют арифметическими прогрессиями.

Определение.
Числовая последовательность a1, a2, a3, …, an, … называется арифметической
прогрессией
, если для всех натуральных n выполняется равенство
( a_{n+1} = a_n+d, )
где d — некоторое число.

Из этой формулы следует, что an+1 – an = d. Число d называют разностью арифметической прогрессии.

По определению арифметической прогрессии имеем:
( a_{n+1}=a_n+d, quad a_{n-1}=a_n-d, )
откуда
( a_n= frac{a_{n-1} +a_{n+1}}{2} ), где ( n>1 )

Таким образом, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов.
Этим объясняется название «арифметическая» прогрессия.

Отметим, что если a1 и d заданы, то остальные члены арифметической прогрессии можно вычислить по рекуррентной
формуле an+1 = an + d. Таким способом нетрудно вычислить несколько первых членов прогрессии, однако, например,
для a100 уже потребуется много вычислений. Обычно для этого используется формула n-го члена. По определению арифметической
прогрессии
( a_2=a_1+d, )
( a_3=a_2+d=a_1+2d, )
( a_4=a_3+d=a_1+3d )
и т.д.
Вообще,
( a_n=a_1+(n-1)d, )
так как n-й член арифметической прогрессии получается из первого члена прибавлением (n-1) раз числа d.
Эту формулу называют формулой n-го члена арифметической прогрессии.

Сумма n первых членов арифметической прогрессии

Найдём сумму всех натуральных чисел от 1 до 100.
Запишем эту сумму двумя способами:
S = 1 + 2 + 3 + … + 99 + 100,
S = 100 + 99 + 98 + … + 2 + 1.
Сложим почленно эти равенства:
2S = 101 + 101 + 101 + … + 101 + 101.
В этой сумме 100 слагаемых
Следовательно, 2S = 101 * 100, откуда S = 101 * 50 = 5050.

Рассмотрим теперь произвольную арифметическую прогрессию
a1, a2, a3, …, an, …
Пусть Sn — сумма n первых членов этой прогрессии:
Sn = a1, a2, a3, …, an
Тогда сумма n первых членов арифметической прогрессии равна
$$ S_n = n cdot frac{a_1+a_n}{2} $$

Так как ( a_n=a_1+(n-1)d ), то заменив в этой формуле an получим еще одну формулу для нахождения суммы n первых
членов арифметической прогрессии
:
$$ S_n = n cdot frac{2a_1+(n-1)d}{2} $$

Арифметической прогрессией называется такая последовательность чисел, в которой разность между последующим и предыдущим членами остается неизменной. Эта неизменная разность называется разностью прогрессии.
Любой член арифметической прогрессии можно вычислить по формуле
a_n=a_1+d(n-1)

Сумма первых n членов арифметической прогрессии выражается формулой
S_n=frac{(a_1+a_n)n}{2}

Калькулятор n-го члена и суммы n членов:

PLANETCALC, Арифметическая прогрессия

Арифметическая прогрессия

Первый член прогрессии а1

Показать все члены прогрессии

Точность вычисления

Знаков после запятой: 2

Сумма арифметической прогрессии Sn

Представим, что подряд выписаны все четные натуральные числа: 2, 4, 6, 8, 10, 12, 14, 18, 18, 20, 22… Это — последовательность четных натуральных чисел. Число 2 — ее первый член, 4 — второй, 6 — третий, 20 — десятый и т. д.

Приведем еще несколько примеров числовых прогрессий:

  • 1, 2, 3, 4, 5… — последовательность натуральных чисел,   
  • 1, 3, 5, 7, 9… — последовательность нечетных натуральных чисел,
  • 1, 1/2, 1/3, 1/4, 1/5… – последовательность чисел, обратных к натуральным.

Последовательности бывают конечные и бесконечные. Конечной, например, есть последовательность однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Последовательность всех натуральных чисел — бесконечная. Записывая бесконечную последовательность, после нескольких ее первых членов ставят многоточие. Первый, второй, третий члены последовательности четных натуральных чисел равны соответственно 2, 4, 6. Пишут: a1 = 2, а2 = 4, а3 = 6

А чему равен ее n-й член An? Поскольку каждый член последовательности парных натуральных чисел вдвое больше от своего порядкового номера, то ее n-й член равен 2n, т. е.

An = 2n.

Это формула n-го члена последовательности парных натуральных чисел.

An = 2n − 1

Формула n-го члена последовательности нечетных натуральных чисел.

Если известна формула n-го члена последовательности, то нетрудно вычислить любой ее член. Напишем несколько первых членов последовательности, n-й член которой:

An = n2 + 2

Предоставляя переменной п значения 1, 2, 3, 4, 5… получим первые члены последовательности: 6, 11, 18, 27, 38, 51… Тысячный член этой последовательности а1000 = 10002 + 2 = 1000002.

Гораздо труднее решать обратную задачу — для данной последовательности найти ее n-й член. Например, формула n-го члена последовательности простых чисел: 2, 3, 5, 7, 11, 13… — неизвестна до сих пор, хотя математики искали ее более 2000 лет.

Несколько первых членов последовательности не задают ее однозначно.

Например, существует множество различных последовательностей, первые члены которых 2, 4, 6, 8. В частности, такие первые члены имеют последовательности, n-е члены которых:

  • An = 2n
  • Cn = 2 n + (n − 1) (n − 2) (n − 3) (n − 4)

Из двух соседних членов a1 и a2 последовательности член a2 называют следующим за а1, а а1 — предыдущим по отношению к а2. Последовательность называют растущей, если каждый ее член, начиная со второго, больше предыдущего. Последовательность называется убывающей, если каждый ее член, начиная со второго, меньше предыдущего.

Замечания

Иногда рассматривают также прогрессивности, членами, которых являются различные выражения, функции, фигуры то ​ что. Можно говорить и о последовательности месяцев в году, дней в неделе, букв в слове, фамилий в списке, вагонов в поезде, станций на железной дороге и т. д. Мы дальше будем говорить только о числовых последовательностях, хотя и зовем их коротко последовательностями.

Понятие арифметической прогрессии

Арифметической прогрессией называется прогрессивность, каждый член которой, начиная со второго, равен предыдущему члену, к которому добавляют одно и то же число. Это постоянное для данной последовательности число d называется разницей арифметической прогрессии.

Первый член и разность арифметической прогрессии могут быть какими угодно числами. Арифметическая прогрессия растущая, если ее разница положительная, или нисходящая, если ее разница отрицательная.

Пример нисходящей арифметической прогрессии: 11, 9, 7, 5, 3, 1, −1, −3…

Чтобы получить любой член арифметической прогрессии, начиная со второго, надо к предыдущему члена добавить разницу d. Поэтому если первый член и разность арифметической прогрессии равны соответственно а и d, то первые члены этой арифметической прогрессии:

a1, a1 + d, a1 + 2d, a1 + 3d, a1 + 4d…

Обратите внимание: коэффициент при d на 1 меньше порядкового номера члена прогрессии. Так же находим а6 = а1 + 5d, а7 = а1 + 6d и вообще:

An = a1 + (n − 1)d

Это формула n-го члена арифметической прогрессии. Сумма членов конечной арифметической прогрессии равна полусумме крайних ее членов, умноженной на число членов.

Sn = [(a1 + an) / 2] × n

Примеры задач

Пример 1

В арифметической прогрессии a1 = 4, d = 3. Найдите a20.

В калькуляторе задаем:

  • Первое число: 3
  • Последнее число: 20
  • Разница (шаг): 3

Получаем:

  • Арифметическая прогрессия: 61
  • Сумма членов прогрессии: 650
  • Последовательность: 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61

Проверяем самостоятельно по формулам с теории:

  • a20 = а1 + 19d = 4 + 19 × 3 = 61

Пример 2

Найдите сумму первых двадцати членов арифметической прогрессии 5, 7, 9…

В калькуляторе задаем:

  • Первое число: 5
  • Последнее число: 20
  • Разница (шаг): 2

Результаты рассчета:

  • Арифметическая прогрессия: 43
  • Сумма членов прогрессии: 480
  • Последовательность: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43

Проверяем:

  • Здесь а1 = 5, d = 2. Поэтому а20 = 5 + 19 × 2 = 43
  • S = [(5 + 43) / 2] × 20 = 480

Онлайн-калькулятор делает вычисления намного проще: он экономит время, избавляя от необходимости делать вычисления вручную по формулам.

Добавить комментарий