Как найти сумму арифметической прогрессии примеры

Арифметическая прогрессия

  1. Понятие арифметической прогрессии
  2. Формула n-го члена арифметической прогрессии
  3. Свойства арифметической прогрессии
  4. Сумма первых n членов арифметической прогрессии
  5. Примеры

п.1. Понятие арифметической прогрессии

Арифметической прогрессией называют числовую последовательность, каждый член которой an, начиная со второго, равен сумме предыдущего члена an-1 и некоторого постоянного числа d: $$ mathrm{ a_n=a_{n-1}+d, ninmathbb{N}, nleq 2 } $$ Число d называют разностью арифметической прогрессии.

Например:
1. Последовательность 2, 5, 8, 11, 14, … является арифметической прогрессией с разностью d = 3.

2. Последовательность 12, 9, 6, 3, 0, –3, –6, … является арифметической прогрессией с разностью d = –3.

п.2. Формула n-го члена арифметической прогрессии

По определению арифметической прогрессии мы получаем рекуррентную формулу для n-го члена: an = an-1 + d. Из неё можно вывести аналитическую формулу:

a2 = a1 + d, $qquad$ a3 = a2 + d = (a1 + d) + d = a1 + 2d
a4 = a3 + d = (a1 + 2d) + d = a1 + 3d,…

Получаем:

an = a1 + (n – 1)d

Например:
Найдём a7, если известно, что a1 = 5, d = 3.
По формуле n-го члена получаем: a7 = a1 + 6d = 5 + 6 · 3 = 23

п.3. Свойства арифметической прогрессии

Свойство 1. Линейность

Арифметическая прогрессия является линейной функцией f(n) = kn + b:

an = dn + (a1 – d)

с угловым коэффициентом k = d и свободным членом b = a1 – d.

Свойство 1

Свойство 1

При d > 0 прогрессия линейно возрастает

При d < 0 прогрессия линейно убывает

Следствие: любую арифметическую прогрессию можно задать формулой: $$ mathrm{ a_n=dn+b, ninmathbb{N}, binmathbb{R}, dinmathbb{R}} $$ где d, b – некоторые числа.

Свойство 2. Признак арифметической прогрессии

Для того чтобы числовая последовательность была арифметической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним арифметическим предыдущего и последующего членов: $$ mathrm{ left{a_nright} – text{арифметическая прогрессия} Leftrightarrow a_n=frac{a_{n-1}+a_{n+1}}{2}, ninmathbb{N}, n geq 2 } $$ Следствие: каждый член прогрессии является средним арифметическим двух равноудалённых от него членов: $$ mathrm{ a_n=frac{a_{n-k}+a_{n+k}}{2}, ninmathbb{N}, ninmathbb{N}, n geq k+1 } $$

Например:
Найдём a9, если известно, что a7 = 10, a11 = 15
По следствию из признака арифметической прогрессии: (mathrm{a_9=frac{a_7+a_{11}}{2}=frac{10+15}{2}=12,5})

Свойство 3. Равенство сумм индексов

Если {an} – арифметическая прогрессия, то из равенства сумм индексов следует равенство сумм членов: $$ mathrm{ m+k=p+q Rightarrow a_m+a_k=a_p+a_q } $$ Следствие: сумма членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ a_1 + a_n=a_2+a_{n-1}=a_3+a_{n-2}=… } $$

Например:
Найдём a6, если известно, что a2 = 5, a4 = 10, a8 = 20
По равенству сумм индексов a2 + a8 = a4 + a6
Откуда a6 = a2 + a8 – a4 = 5 + 20 – 10 = 15

п.4. Сумма первых n членов арифметической прогрессии

Сумма первых n членов арифметической прогрессии равна произведению среднего арифметического её крайних членов и количества членов: $$mathrm{ S_n=frac{a_1+a_n}{2}n} $$

Если учесть, что an = a1 + d(n – 1), получаем ещё одну формулу для суммы: $$mathrm{ S_n=frac{2a_1+d(n-1)}{2}n} $$

Например:
Найдём сумму первых 100 натуральных чисел: 1 + 2 +…+ 100
В этом случае a1 = 1, a100 = 100, n = 100
(mathrm{ S_{100}=frac{1+100}{2}cdot 100=5050})

п.5. Примеры

Пример 1. Найдите первый член и разность арифметической прогрессии, если:
а) a7 = 10, a15 = 42
Найдем разность данных членов: a15 – a7 = (a1 + 14d) – (a1 + 6d) = 8d
Получаем разность прогрессии: 42 – 10 = 8d ⇒ d = 32 : 8 = 4
7-й член: a7 = a1 + 6d = a1 + 6 · 4 = 10 ⇒ a1 = 10 – 24 = –14
Ответ: a1 = –14, d = 4

б) a10 = 95, S10 = 500
Сумма прогрессии: (mathrm{S_{10}=frac{a_1+a_{10}}{2}cdot 10Rightarrow 500=(a_1+95)cdot 5Rightarrow a_1+95=100Rightarrow a_1=5})
10-й член: (mathrm{a_{10}=a_1+9dRightarrow95=5+9dRightarrow 9d=90Rightarrow d=10})
Ответ: a1 = 5, d = 10

Пример 2. Найдите сумму первых 100 нечётных натуральных чисел.
Чему равно последнее слагаемое этой суммы?
Ищем сумму (mathrm{underbrace{1+3+5+…}_{100 text{слагаемых}}})
По условию a1 = 1, d = 2, n = 100. Получаем:
(mathrm{S_{100}=frac{2a_1+d(n-1)}{2}n=frac{2cdot 1+2cdot 99}{2}cdot 100=10000})
Формула n-го члена данной прогрессии: (mathrm{a_n=a_1+d(n-1)=dn+(a_1-d)=2n-1})
100-й член (mathrm{a_{100}=2cdot 100-1=199})
Ответ: S100 = 10000, a100 = 199

Пример 3*. Сколько членов арифметической прогрессии 10, 16, 22, … находится между числами 110 и 345?
По условию a1 = 10, d = 16 – 10 = 6
Формула n-го члена данной прогрессии an = a1 + d(n – 1) = dn + (a1 – d) = 6n + 4
Заданные числа могут быть членами данной прогрессии или находиться по «соседству» с ними. Подставим их в формулу для n-го члена: begin{gather*} mathrm{ 6k+4=110Rightarrow 6k=106Rightarrow k=17frac23Rightarrow 17lt klt 18 }\ mathrm{ 6m+4=345Rightarrow 6m=341Rightarrow m=56frac56Rightarrow 56lt mlt 57 } end{gather*} Ближайший сосед справа к 100 – это a18 = 6 · 18 + 4 = 112, k = 18
Ближайший сосед слева к 345 – это a56 = 6 · 56 + 4 = 340, m = 56
Свойство 1
Количество членов прогрессии в заданном интервале:

n = m – k + 1 = 56 – 18 + 1 = 39

Ответ: 39

Пример 4. Одиннадцатый член арифметической прогрессии равен 7.
Найдите сумму её первых 21 членов.
По свойству суммы индексов: a11 + a11 = a1 + a21
Откуда a1 + a21 = 2a11 = 14
Искомая сумма: (mathrm{S_{21}=frac{a_1+a_{21}}{2}cdot 21=frac{14}{2}cdot 21=147})
Ответ: 147

Пример 5. Величины углов выпуклого пятиугольника образуют арифметическую прогрессию. Найдите третий член этой прогрессии.
Сумма углов выпуклого пятиугольника S5 = 180° · (5 – 2) = 540°
Если углы образуют арифметическую прогрессию, то: $$ mathrm{ S_5=frac{a_1+a_5}{2}cdot 5=540^circRightarrow a_1+a_5=216^circ } $$ По свойству суммы индексов: a3 + a3 = a1 + a5
Откуда: (mathrm{a_3=frac{a_1+a_5}{2}=108^circ})
Ответ: 108°

Пример 6. При каких значениях x числа x2 – 11, 2x2 + 29, x4 – 139 в заданной последовательности являются членами арифметической прогрессии?
Для последовательных членов получаем уравнение:

a2 – a1 = a3 – a2
(2x2 + 29) – (x2 – 11) = (x4 – 139) – (2x2 + 29)
x4 – 3x2 – 208 = 0 ⇒ (x2 + 13)(x2 – 16) = 0 ⇒ x2 = 16 ⇒ x = ±4

Ответ: x = ±4

Пример 7. Сумма первых трёх членов убывающей арифметической прогрессии равна 9, а сумма их квадратов равна 99. Найдите седьмой член прогрессии.
По условию d < 0 и: $$ left{ begin{array}{ l } mathrm{a_1+a_2+a_3=9} & \ mathrm{a_1^2+a_2^2+a_3^2=99} & end{array}right. $$ Используем свойство прогрессии: (mathrm{a_2=frac{a_1+a_3}{2}}). Получаем из первого уравнения:

3a2 = 9 ⇒ a_2 = 3

Тогда a1 = a2 – d = 3 – d, a3 = a2 + d = 3 + d. Подставляем во второе уравнение:

(3 – d)2 + 32 + (3 + d)2 = 99
9 – 6d + d2 + 9 + 9 + 6d + d2 = 99
2d2 = 72 ⇒ d2 = 36 ⇒ d = ±6

Выбираем отрицательное значение d = –6
1-й член прогрессии: a1 = a2 – d = 3 + 6 = 9
7-й член прогрессии: a7 = a1 + 6d = 9 + 6(–6) = –27
Ответ: x = –27

Здравствуйте, уважаемые читатели. В этой статье рассмотрим решение текстовых задач по сумме арифметической прогрессии, которые входят в 14 задание ОГЭ. Задачи по арифметической прогрессии представлены здесь.

Вспомним формулу суммы арифметической прогрессии:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Приступим к решению задач.

Задача №1

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Ответ 325

Задача №2

Задание №14 ОГЭ. Сумма арифметической прогрессии.

При решении данной задачи, многие не видят в ней задачу на нахождение суммы арифметической прогрессии, при этом вычисляют только сколько метров пролетел камень за пятую секунду, а не за все пять секунд.

Решение

По задаче выпишем известные данные и подставим в формулу суммы арифметической прогрессии:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Нам не известно сколько метров пролетел камень за пятую секунду:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Подставим найденное значение в формулу суммы арифметической прогрессии:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Ответ: 145 метров пролетел камень за первые пять секунд.

Задача №3

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Решение:

Для решения этой задачи, внимательно посмотрим на рисунок и найдем закономерность, сколько раз повторяется каждое звено ломаной.

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Как видим, каждое звено повторяется два раза. Поэтому можно составить выражение:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Аналогично такое выражение можно составить и для ломаной, которая имеет длину 190.

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Вынесем за скобку общий множитель 2, в скобках получается сумма чисел от 1 до 190.

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Воспользуемся формулой суммы арифметической прогрессии:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Ответ 36290

Задача №4

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Решение

Выпишем из задачи известные данные и вычислим, сколько рублей хозяин заплатит рабочим за одиннадцатый метр колодца.

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Воспользуемся формулой арифметической прогрессии:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Найдем сколько всего денег хозяин заплатил рабочим за все одиннадцать метров

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Ответ 117700

Задача №5

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Решение:

Выпишем из задачи известные данные.

a_1+a_n - первый и последний день.
a_1+a_n – первый и последний день.

Подставим данные в формулу суммы арифметической прогрессии:

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Умножим левую и правую сторону уравнения на 2. Найдем n (количество дней, сколько ползла улитка).

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Ответ 12 дней.

Задание №14 ОГЭ. Сумма арифметической прогрессии.

Спасибо, что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог

Арифметическая прогрессия — это числовая последовательность a1, a2, … , an, …, для которой для каждого натурального n выполняется равенство:

an+1 = an + d

где d – это разность арифметической прогрессии.

Пример: последовательность чисел 3, 7, 11, 15, 19, … является арифметической прогрессией с разностью d = 4.

Арифметическая прогрессия бывает трех видов:

  1. Возрастающая — арифметическая прогрессия, у которой разность является положительной

    Пример: последовательность чисел 2, 5, 8, 11, 14, … является возрастающей арифметической прогрессией, так как ее разность d = 3.

  2. Убывающая — арифметическая прогрессия, у которой разность является отрицательной

    Пример: последовательность чисел 100, 98, 96, 94, 92, … является убывающей арифметической прогрессией, так как ее разность d = –2.

  3. Стационарная — арифметическая прогрессия, у которой разность равно нулю

    Пример: последовательность чисел 23, 23, 23, 23, 23, … является стационарной арифметической прогрессией, так как ее разность d = 0.

Основные формулы арифметической прогрессии

Члены арифметической прогрессии

Общая формула для вычисления n-ого члена арифметической прогрессии по первому члену и разности:

an = a1 + d(n – 1)

Следующий член арифметической прогрессии можно найти по предыдущему члену и разности:

an+1 = an + d

Предыдущий член арифметической прогрессии можно найти по следующему члену и разности:

an-1 = an – d

Также член арифметической прогрессии можно найти, если известны следующий и предыдущий члены:

an = (an-1 + an+1) / 2, где n > 1

Сумма арифметической прогрессии

Сумма первых n членов арифметической прогрессии равна

Sn = (a1 + an) ⋅ n / 2

Также сумму можно вычислить, используя другую формулу:

Sn = (2a1 + d(n – 1)) ⋅ n / 2

Решение задач на арифметическую прогрессию

Рассмотрим несколько типичных задач, посвященных арифметической прогрессии.

Задача 1:

Доказать, что последовательность, заданная формулой an = 5 + 4n, является арифметической.

Решение:

Чтобы доказать, что последовательность является арифметической, достаточно получить следующий член этой последовательности и найти разность.

an+1 = 5 + 4(n + 1) = 5 + 4n + 4 = 9 + 4n

d = an+1 – an = 9 + 4n – (5 + 4n) = 9 + 4n – 5 – 4n = 4

Поскольку разность является числом, значит она будет одинакова для всех членов данной последовательности. Поэтому последовательность является арифметической прогрессией.

Задача 2:

Найти 20 член арифметической прогрессии и сумму первых десяти, если a1 = -18 и d = 5

Решение:

a20 = a1 + d ⋅ 19 = –18 + 5 ⋅ 19 = 77

S10 = (2 ⋅ (–18) + 5 ⋅ 9) ⋅ 10 / 2 = 45

Ответ: 77 и 45

Задача 3:

Число 85 является членом арифметической прогрессии 8, 15, 22, 29, … . Найти номер этого члена.

Решение:

Пусть n – номер, который нужно найти.

a1 = 8

d = a2 – a1 = 15 – 8 = 7

Применив формулу для вычисления n-ого члена арифметической прогрессии, можно получить n

8 + 7 ⋅ (n – 1) = 85

7 ⋅ n – 7 = 85 – 8

7 ⋅ n = 77 + 7

7 ⋅ n = 84

n = 12

Ответ: 12

Задача 4:

В арифметической прогрессии a8 = 22 и a14 = 34. Найти формулу для n-ого члена.

Решение:

Применив формулу для вычисления n-ого члена арифметической прогрессии по первому члену и разности находим:

a8 = a1 + d ⋅ 7

a14 = a1 + d ⋅ 13

Подставив в эти выражения a8 и a14 получаем систему уравнений:

a1 + 7d = 22

a1 + 13d = 34

Вычитая из первого уравнения второе, можно вычислить d:

Подставляем d в первое уравнение для получения a1:

Таким образом, формула для n-ого члена арифметической прогрессии выглядит так:

an = 8 + 2 ⋅ (n – 1) = 8 + 2n – 2 = 6 + 2n

Ответ: an = 6 + 2n

Задача 5:

Найти количество членов арифметической прогрессии 1, 3, 5, 7, … , если их сумма равна 81.

Решение:

Из заданной арифметической прогрессии получаем a1 и d:

И подставляем известные данные в формулу суммы:

(2 ⋅ 1 + 2 ⋅ (n – 1)) ⋅ n / 2 = 81

(2 + 2n – 2) ⋅ n = 81 ⋅ 2

2n² = 162

n² = 81

n = 9

Ответ: 9

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

Добавить комментарий