Как найти сумму цифр по порядку


Загрузить PDF


Загрузить PDF

Если вы готовитесь к тестированию или просто хотите научиться быстро складывать числа, запомните, как суммировать целые числа от 1 до n. Так как вы собираетесь складывать целые числа, вам не придется беспокоиться о дробях (обыкновенных и десятичных). Просто решите, какой формулой воспользоваться. Затем подставьте данное целое число вместо n и найдите ответ.

  1. Изображение с названием Sum the Integers from 1 to N Step 1

    1

    Определите арифметическую последовательность. Посмотрите на ряд чисел, которые вы хотите сложить. Чтобы воспользоваться формулой для суммирования целых чисел, убедитесь, что ряд чисел действительно является последовательностью, то есть каждое число возрастает на одну и ту же величину.[1]

    • Например, ряд чисел 5, 6, 7, 8, 9 представляет собой последовательность, как и ряд 17, 19, 21, 23, 25.
    • Ряд чисел 5, 6, 9, 11, 14 не является последовательностью, потому что числа возрастают на разные величины.
  2. Изображение с названием Sum the Integers from 1 to N Step 2

    2

  3. Изображение с названием Sum the Integers from 1 to N Step 3

    3

    Найдите количество складываемых целых чисел. Чтобы суммировать целые числа от начального числа до n, необходимо найти общее количество складываемых чисел. Например, если вы хотите сложить целые числа от 1 до 200, общее количество чисел вычисляется так: 200+1 = 201.[2]

    • Например, если нужно найти сумму целых чисел от 1 до 12, количество чисел: 12+1 = 13.
  4. Изображение с названием Sum the Integers from 1 to N Step 4

    4

    Найдите сумму целых чисел между двумя целыми числами, которые в расчете не участвуют. В этом случае вычтите 1 из n.[3]

    • Например, чтобы найти сумму целых чисел между 1 и 100, вычтите 1 из 100 и получите 99.

    Реклама

  1. Изображение с названием Sum the Integers from 1 to N Step 5

    1

  2. Изображение с названием Sum the Integers from 1 to N Step 6

    2

  3. Изображение с названием Sum the Integers from 1 to N Step 7

    3

  4. Изображение с названием Sum the Integers from 1 to N Step 8

    4

    Пользуйтесь представленными формулами, чтобы найти сумму. Когда вы подставили нужно число в формулу, умножьте его на себя, прибавьте 1, 2 или 4 (в зависимости от формулы), а затем разделите результат на 2 или 4. [7]

    • Пример 1: 100*101/2 = 10100/2 = 5050.
    • Пример 2 (с четными числами): 20*22/4 = 440/4 = 110.

    Реклама

Об этой статье

Эту страницу просматривали 191 584 раза.

Была ли эта статья полезной?

Как сложить целые числа от 1 до N?

Целые числа – это числа, не содержащие дробную или десятичную часть. Если в задаче требуется сложить определенное количество целых чисел от 1 до заданного значения N, то их не нужно складывать вручную. Вместо этого воспользуйтесь формулой (N(N+1))/2, где N – наибольшее число ряда.

Окончательный ответ есть сумма всех целых чисел от 1 до данного N.

Пример:

(100(100+1))/2 = 100(101)/2 = (10100)/2 = 5050

Сумма всех целых чисел от 1 до 100 равна 5050.

автор вопроса выбрал этот ответ лучшим

В Рокот­ов
[278K]

2 месяца назад 

Этот вопрос один из самых популярных в школьном образовании, даже несмотря на то, что сейчас на любое действие имеется онлайн калькулятор или иной электронный ресурс с подстановкой данных. Однако, более пригодится все-таки иметь представление о счете в диапазоне самому. Самая удобная формула нахождения суммы последовательного ряда в диапазоне от 1 до какого-то еще числа, назовем его N, такая: S =(n+1)*n/2; где N – наибольшее число ряда. Математику на пальцах не объяснишь, нужны примеры. Возьмем скажем последовательный ряд от единицы до пятнадцати., где нужно найти сумму диапазона от 1 до 15: (1+15)*15/2=120. Теперь стало более понятно. Удачи в будущих свершениях!

-Irink­a-
[281K]

2 месяца назад 

Для того, чтобы облегчить жизнь – сделать расчеты более быстрыми и легкими, необходимо знать и пользоваться формулами.

Для того, чтобы быстро и легко рассчитать сумму чисел, не производить сложение чисел в ручную, стоит воспользоваться формулой.

Данная формула проверена ниже в ответе.

В данной формуле буквой n обозначено максимальное число в данном ряду.

Для того, чтобы понять формулу, можно произвести наглядный рассчет. За n условно возьмём число 6. Теперь подставляем зга, гения в формулу.

S = 6×(6+1)/2 = 42/2 = 21.

Теперь произведём сложение чисел последовательно без использования формулы.

S = 6 + 5 + 4 + 3 + 2 + 1 = 21.

Данные расчёты доказывают, что формула рабочая и ч её помощью произвести расчёт быстрее.

Extri­mal
[148K]

2 месяца назад 

В математике данный вопрос можно встретить довольно часто. Многие считают, что это проще сделать вручную, складывая числа друг с другом по очереди. Однако если речь идет о больших числах, например если N=100, то проще воспользоваться формулой.

Формула следующая Сумма равна (n+1) умножаем на n и делим на 2. Пробуем вычислить сумму, если n равно 100.

101*100/2 получаем 5050.

Корне­тОбол­енски­й
[160K]

2 года назад 

Имеем ряд натуральных чисел. Первое число в ряду – единица, последнее N. Их сумму можно вычислить по формуле

Для примера рассмотри сумму первых 10 натуральных чисел. В формулу вместо N поставим 10. Получим 10*(10+1)/2 = 55.

Проверить несложно, посчитав эту сумму вручную.

Серге­й1111­0
[19.3K]

3 года назад 

На самом деле, можно заметить, что ряд натуральных чисел образует арифметическую прогрессию с шагом 1.

Сумма первых n членов арифметической прогрессии определяется формулой:

S = (a1+an)*n/2;

a1 = 1, а значит S = (n+1)*n/2

Это и есть сумма первых n натуральных чисел. Есть еще много способов ее посчитать, к примеру, написать программу на языке программирования (примерный код прилагаю):

program a;

var

sum, i, n:longint;

begin

sum = 0;

read(n);

for i:=1 to n do begin

sum:=sum+i;

end;

writeln(sum);

end.

Это код на языке программирования “Паскаль”.

Думаю, есть еще много способов посчитать сумму n первых натуральных чисел, но основные я перечислил.

Просв­ет
[4.1K]

7 лет назад 

Целые числа – это все числа, которые не дробные и не имеют десятично части, то есть 1, 2, 3, 10, 14, и так далее. Чтобы узнать их сумму, нужно ввести такой процесс с циклом:

1.. Задается N.

A=0

S=0

2.. От 1 до N делать

A=А+1

S=S+A

В результате вы получите окончательный ответ S – сумма. (Вводить можно в паскале)

MarkT­olkie­n
[85.3K]

6 лет назад 

Задача сложить ряд чисел от единицы до N не так сложна, но она требует слишком много времени. Упростить задачу призвана довольно простая формула: (N * (N + 1)) / 2 .

Проверить формулу можем на простом примере вычисления суммы чисел от 1 до 5.

5 + 4 + 3 + 2 + 1 = 15.

По формуле получаем 5 * (5 + 1) / 2 = 15.

Чосик
[208K]

более года назад 

В данном примере мы обозначаем сумму чисел как S, а N – будет числом, до которого будет идти счет. То есть, N является самым большим числом среди всех. Рассчитываем сумму по формуле:

Проверить правильность решения можно на малом числе. Допустим, N = 7. Можно просчитать сумму от 1 до 7. Выходит S = 1 +2 + 3 + 4 + 5 + 6 + 7 = 28.

Теперь решим по формуле. S = 7 * (7+1)/ 2 = 7*8/2 = 56/2 = 28

владс­андро­вич
[766K]

более года назад 

Если у нас идут натуральные числа вряд. При этом первым числом будет цифра 1, а последним N, то есть неизвестное. Тогда сумма их вычисляется вот такой вот формулой: (N * (N + 1)) / 2 .

К примеру у вас в сумме идут 5  натуральных чисел. В формуле вместо N должна быть цифра 5.  В итоге рассчитываем все так 5*(5+1)/2 =15.

Степа­н БВ
[41.2K]

2 месяца назад 

Сложить целые числа от 1 до N можно по формуле суммы арифметической прогрессии:

S = (N * (N + 1)) / 2

где S – сумма чисел от 1 до N, N – последнее число в ряду.

Например, если нужно сложить числа от 1 до 10, то

S = (10 * (10 + 1)) / 2 = 55

Таким образом, сумма чисел от 1 до 10 равна 55.

Natas­ha145
[17K]

7 лет назад 

Это арифметическая прогрессия. Формула суммы N – первых членов такава:

Знаете ответ?

Всем привет! В предыдущей статье я предложил Вам задачу, которую юный Карл Гаусс решил очень быстро в десятилетнем возрасте. Вот она: найти сумму всех чисел от 1 до 100, не складывая их всех одно за другим по-порядку. Согласитесь, если все числа прибавлять одно к другому, это займёт очень много времени. Да и нет гарантии, что ты где-нибудь не ошибёшься в расчётах, особенно если делаешь это устно. На это и надеялся учитель математики, который дал это задание классу, в котором учился Гаусс. Преподаватель думал, пока его ученики увлечены решением, спокойно заняться своими делами. Но наш юный герой очень быстро нашёл решение для этой задачи. Так как же он это сделал?

Карл обратил внимание, что числа от 1 до 100 можно разбить на пары: 1 и 99, 2 и 98, 3 и 97, и т. д. Последняя пара – это 49 и 51. Таких пар получилось 49. Сумма каждой пары составляет 100. После разбивки на пары осталось два числа: 100 и 50. Теперь легко сосчитать: 49 пар по 100 – это 49х100=4900; плюс ещё 100 – это 5000; плюс 50 – это 5050.

Сумма чисел от 1 до 100?

Вот так, оказывается, всё просто, когда мыслишь нестандартно 🙂 Впоследствии Карл Гаусс стал известным математиком. В числе его великих трудов есть и тема арифметических прогрессий. Он нашёл формулы, по которым можно найти любой член прогрессии, зная его первый член и разность; а также сумму членов этой последовательности.

Про прогрессии я в последствии ещё обязательно Вам расскажу что-нибудь интересное. Это очень занимательная тема!

Спасибо, что прочитали статью! Надеюсь, Вам было интересно.

Буду благодарен за Ваши лайки, комментарии и подписки.

Предыдущая статья

Следующая статья

Калькуляторы

  • Найти сумму натуральных чисел от 1 до n
  • Найти сумму натуральных чисел от M до N
  • Возведение в степень
  • Теореме Пифагора
  • Калькулятор Фибоначчи
  • Найти углы треугольника
  • Найти углы прямоугольного треугольника
  • Углы равнобедренного треугольника
  • Углы ромба
  • Углы параллелограмма
  • Кубический корень
  • Извлечение корня из числа
  • Квадратный корень
  • Факториал числа
  • Радиус круга
  • Радиус цилиндра
  • Радиус шара
  • Радиус вписанной окружности в правильный многоугольник
  • Радиус окружности вписанной в треугольник
  • Радиус окружности описанной вокруг треугольника
  • Радиус вписанной и описанной окружности правильного треугольника
  • Радиус вписанной окружности в прямоугольный треугольник
  • Радиус вписанной и описанной окружности равнобедренного треугольника
  • Теорема косинусов
  • Теорема синусов
  • Найти количество делителей числа
  • Количество сторон многоугольника
  • Число перестановок

Главная страница / Математические калькуляторы / Найти сумму натуральных чисел от M до N

Добавить в закладки

Введите число M

Введите число N

Знаков после запятой

Результат

Оставить комментарий (0)

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезды (5 Оценок, Среднее: 4,40 из 5)

Loading…

Поделиться в социальных сетях:

или https://correctcalc.ru/matematicheskie-kalkulyatory/summa-chisel-ot-m-do-n/ скопировать ссылку на страницу

Онлайн-калькулятор поможет вычислить сумму числа от М до n, определить сумму числа на промежутках от одного числа до другого, вычислить сумму числа рядом натуральных числ в указанных интервалах. Чтобы вычислить сумму от A до B, используем формулу: (а + b) * b — a * 1 / 2 * a – наименьший ряд; b – наибольший ряд. Найти натуральную сумму от М до n. Введите количество М.

Комментарии 0 Комментариев |

; ; ; ; ;

Войти yandex google vk facebook

Наш сайт использует файлы cookie, чтобы улучшить работу сайта, повысить его эффективность и удобство. Продолжая использовать сайт correctcalc.ru, вы соглашаетесь на использование файлов cookie.

Проценты

Процент от числа Процент одного числа от другого Прибавить процент к числу Вычесть процент из числа На сколько процентов одно число меньше другого На сколько процентов одно число больше другого Найти 100 процентов Процентное изменение Процентное соотношение Умножение на процент Деление на процент Разница в процентах Исходное значение Обратный прцент Число по проценту Снижение процентов

Математические

Сумма чисел от 1 до N Сумма чисел от M до N Возведение в степень Найти количество делителей числа Теорема Пифагора Фибоначи Найти углы треугольника Найти углы прямоугольного треугольника Углы равнобедренного треугольника Углы ромба Углы параллелограмма Кубический корень Извлечение корня из числа Квадратный корень Факториал числа Радиус круга Радиус цилиндра Радиус шара Радиус вписанной окружности в правильный многоугольник Радиус окружности вписанной в треугольник Радиус окружности описанной вокруг треугольника Радиус вписанной и описанной окружности правильного треугольника Радиус вписанной окружности в прямоугольный треугольник Радиус вписанной и описанной окружности равнобедренного треугольника Теорема косинусов Теорема синусов Количество сторон многоугольника Число перестановок

Дроби

Сложение дробей Вычитание дробей Деление дробей Умножение дробей Калькулятор сокращения дробей Возведения дробей в степень Перевод дроби в десятичную дробь Десятичная дробь в обыкновенную Смешанная дробь в обыкновенную Обыкновенная дробь в смешанную Обыкновенные дроби в проценты Калькулятор для сравнения дробей

Формула площади

Площадь прямоугольника Площадь треугольника Площадь кольца через радиусы Площадь круга Площадь квадрата Площадь квадрата по диагонали Площадь трапеции Площадь прямоугольного треугольника Площадь равнобедренного треугольника Площадь равностороннего треугольника Площадь параллелограмма Площадь эллипса Площадь четырехугольника Площадь сектора круга Площадь сегмента круга Площадь шара Площадь куба Площадь цилиндра Площадь пирамиды Площадь параллелепипеда Площадь конуса Площадь усеченного конуса Площадь тетраэдра Площадь призмы Площадь правильного многоугольника Площадь сектора кольца

Формула объема

Oбъема куба Oбъема параллелепипеда Объем конуса Объем призмы Объем цилиндра Объем шара Объем пирамиды Объем октаэдра Объем тетраэдра Объем усеченной пирамиды Объем усеченного конуса Объем шарового слоя Объем шарового сектора Объем шарового сегмента

Формула диагонали

Диагональ прямоугольника Диагональ квадрата Диагональ куба Диагональ прямоугольного параллелепипеда Диагонали ромба Диагонали параллелограмма Диагонали трапеции

Формула периметра

Периметр квадрата Периметр параллелограмма Периметр прямоугольника Периметр ромба Периметр трапеции Периметр треугольника Периметр четырехугольника Длина дуги Длина окружности круга Длина хорды окружности Периметр полукруга через диаметр Периметр полукруга через радиус

Формула высоты

Высота трапеции Высота ромба Высота параллелограмма Высота пирамиды Высота цилиндра Высота равнобедренного треугольника Высота равностороннего треугольникаа Высота треугольника

Формула стороны

Сторона треугольника Стороны прямоугольного треугольника Стороны равнобедренного треугольника Стороны равностороннего треугольника Стороны квадрата Стороны прямоугольника Стороны ромба Стороны параллелограмма Ребро пирамиды Ребро куба Боковое ребро параллелепипеда

Рассчет веса

Калькулятор индекса массы тела (ИМТ) Калькулятор идеального веса Процент жира-сухой мышечной массы Сколько воды нужно выпивать в день? Расчет количества мяса для шашлыка Расчет дней, за которые Вы сможете похудеть

Рассчет размера вещей

Калькулятор размеров обуви Калькулятор размеров мужской одежды Калькулятор размеров женской одежды Калькулятор размеров детской одежды

Животные

Сколько лет кошке по человеческим меркам

IT-специалисту

Перевод между системами счисления

Автомобилистам

Калькулятор расхода топлива

Бизнес калькуляторы

Сумма прописью онлайн Калькулятор НДС онлайн Калькулятор НДФЛ Сложный процент

Калькулятор дат

Количество дней между датами Количество недель между датами Сколько осталось до 23 февраля Сколько осталось до Нового года

Формулы последовательностей:

Формулы последовательностей

где k — порядковый номер;
n — количество членов.

Рассмотрим варианты быстрого нахождения суммы разного количества последовательных чисел.
1 вариант. Для того, чтобы определить сумму 5-ти последовательных чисел, следует умножить на 5 число, находящее посередине:
(х — 2) + (х — 1) + (х) + (х + 1) + (х + 2) = 5х,
в данном выражении х — число, находящееся посередине.
Например, сумма 30 + 31 + 32 + 33 + 34 будет равна 32 х 5 = 160

2 вариант. Чтобы найти сумму 5-ти последовательных чисел, нужно:
— умножить на 5 наибольшее число;
— из полученного произведения вычесть 10.

Возьмем, к примеру, те же 5 последовательных цифр 30,31,32,33,34
Дальше: 34 х 5 = 170
170 — 10 = 160

3 вариант. Чтобы найти сумму 5 последовательных чисел, можно:
— умножить на 5 наименьшее число;
— К полученному результату прибавить 10.

Взяв в качестве примера предыдущую последовательность:
30 х 5 = 150
150 + 10 = 160

Чтобы вычислить сумму 4-х последовательных чисел, нужно:
— умножить наибольшее число на 4;
— из полученного произведения вычесть 6.

Чтобы определить сумму 6 последовательных чисел, необходимо:
— умножить на 6 наибольшее число;
— от результата отнять 15.

Чтобы рассчитать сумму 7 последовательных чисел, нужно:
— умножить на 7 наибольшее число;
— вычесть из полученного произведения 21.

Чтобы вычислить сумму 8 последовательных чисел:
— умножим на 8 наибольшее число;
— из произведения вычесть 28.

Чтобы сложить любое количество как четных, так и нечетных последовательных чисел, нужно:
— сложить первое и последнее числа последовательности;
— полученный результат делим на 2;
— затем умножаем на число последовательных чисел, что выразим формулой:

n х (a+b)/2.

Чтобы быстро и правильно рассчитать сумму последовательности, воспользуйтесь онлайн калькулятором. Для этого вам нужно лишь выбрать последовательность и число членов последовательности.

Расчет суммы последовательности из приведенных последовательностей и количества членов

Добавить комментарий