Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article
Given two numbers num1 and num2. The task is to write a Python program to find the addition of these two numbers.
Examples:
Input: num1 = 5, num2 = 3 Output: 8 Input: num1 = 13, num2 = 6 Output: 19
Example 1: Simple program to add two numbers
Python3
num1
=
15
num2
=
12
sum
=
num1
+
num2
print
(
"Sum of"
, num1,
"and"
, num2 ,
"is"
,
sum
)
Output:
Sum of 15 and 12 is 27
Example 2: Adding two numbers with user input.
In the below program to add two numbers in Python, the user is first asked to enter two numbers, and the input is scanned using the Python input() function and stored in the variables number1 and number2. Then, the variable’s number1 and number2 are added using the arithmetic operator +, and the result is stored in the variable sum.
Python3
number1
=
input
(
"First number: "
)
number2
=
input
(
"nSecond number: "
)
sum
=
float
(number1)
+
float
(number2)
print
(
"The sum of {0} and {1} is {2}"
.
format
(number1,
number2,
sum
))
Output:
First number: 13.5 Second number: 1.54 The sum of 13.5 and 1.54 is 15.04
Example 3: Python program to add two numbers using lambda
Python3
if
__name__
=
=
"__main__"
:
num1
=
15
num2
=
12
sum_twoNum
=
lambda
num1, num2 : num1
+
num2
print
(
"Sum of {0} and {1} is {2};"
.
format
(num1,
num2, sum_twoNum(num1, num2)))
Output:
Sum of 15 and 12 is 27;
Example 4: Defining add function and returning the result.
Python3
def
add(a,b):
return
a
+
b
num1
=
10
num2
=
5
sum_of_twonumbers
=
add(num1,num2)
print
(
"Sum of {0} and {1} is {2};"
.
format
(num1,
num2, sum_of_twonumbers))
Output
Sum of 10 and 5 is 15;
Example 5: Add two numbers in Python using operator.add() method
Initialize two variables num1, and num2. Find sum using the operator.add() by passing num1, and num2 as arguments and assign to su. Display num1,num2 and su
Python3
num1
=
15
num2
=
12
import
operator
su
=
operator.add(num1,num2)
print
(
"Sum of {0} and {1} is {2}"
.
format
(num1,
num2, su))
Output
Sum of 15 and 12 is 27
Last Updated :
26 Apr, 2023
Like Article
Save Article
Программа на Python для сложения двух чисел. Из этого руководства вы узнаете, как сложить два числа с помощью оператора в Python.
Три способа для сложения двух чисел в программе Python
- Программа Python для сложения двух чисел
- Программа Python для сложения двух чисел с пользовательским вводом
- Программа Python для сложения двух чисел с помощью функций
Способ 1. Простая программа на Python для сложения двух чисел
- Определите две переменные со значением в программе.
- Вычислите сумму двух чисел и сохраните ее в переменной.
- Вывести сумму двух чисел
a = 10
b = 20
sum = a + b
print("sum:", sum)
Выход:
sum: 30
Способ 2: Программа Python для сложения двух чисел с пользовательским вводом
- В программе введите два числа от пользователя.
- Вычислите сумму двух чисел и сохраните ее в переменной.
- Вывести сумму двух чисел
a = int(input("enter first number: "))
b = int(input("enter second number: "))
sum = a + b
print("sum:", sum)
Выход:
enter first number:10
enter second number:20
sum: 30
Способ 3. Программа Python для сложения двух чисел с помощью функций
- Создать функцию, которая используется для вычисления суммы двух чисел и сохранения ее в переменной.
- В программе введите два числа от пользователя.
- Вывести сумму двух чисел
# Program to illustrate
# the use of user-defined functions
def add_numbers(x,y):
sum = x + y
return sum
num1 = 15
num2 = 20
print("The sum is", add_numbers(num1, num2))
Выход:
sum: 35
Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Summing Values the Pythonic Way With sum()
Python’s built-in function sum()
is an efficient and Pythonic way to sum a list of numeric values. Adding several numbers together is a common intermediate step in many computations, so sum()
is a pretty handy tool for a Python programmer.
As an additional and interesting use case, you can concatenate lists and tuples using sum()
, which can be convenient when you need to flatten a list of lists.
In this tutorial, you’ll learn how to:
- Sum numeric values by hand using general techniques and tools
- Use Python’s
sum()
to add several numeric values efficiently - Concatenate lists and tuples with
sum()
- Use
sum()
to approach common summation problems - Use appropriate values for the arguments in
sum()
- Decide between
sum()
and alternative tools to sum and concatenate objects
This knowledge will help you efficiently approach and solve summation problems in your code using either sum()
or other alternative and specialized tools.
Understanding the Summation Problem
Summing numeric values together is a fairly common problem in programming. For example, say you have a list of numbers [1, 2, 3, 4, 5] and want to add them together to compute their total sum. With standard arithmetic, you’ll do something like this:
1 + 2 + 3 + 4 + 5 = 15
As far as math goes, this expression is pretty straightforward. It walks you through a short series of additions until you find the sum of all the numbers.
It’s possible to do this particular calculation by hand, but imagine some other situations where it might not be so possible. If you have a particularly long list of numbers, adding by hand can be inefficient and error-prone. What happens if you don’t even know how many items are in the list? Finally, imagine a scenario where the number of items you need to add changes dynamically or unpredictably.
In situations like these, whether you have a long or short list of numbers, Python can be quite useful to solve summation problems.
If you want to sum the numbers by creating your own solution from scratch, then you can try using a for
loop:
>>>
>>> numbers = [1, 2, 3, 4, 5]
>>> total = 0
>>> for number in numbers:
... total += number
...
>>> total
15
Here, you first create total
and initialize it to 0
. This variable works as an accumulator in which you store intermediate results until you get the final one. The loop iterates through numbers
and updates total
by accumulating each successive value using an augmented assignment.
You can also wrap the for
loop in a function. This way, you can reuse the code for different lists:
>>>
>>> def sum_numbers(numbers):
... total = 0
... for number in numbers:
... total += number
... return total
...
>>> sum_numbers([1, 2, 3, 4, 5])
15
>>> sum_numbers([])
0
In sum_numbers()
, you take an iterable—specifically, a list of numeric values—as an argument and return the total sum of the values in the input list. If the input list is empty, then the function returns 0
. The for
loop is the same one that you saw before.
You can also use recursion instead of iteration. Recursion is a functional programming technique where a function is called within its own definition. In other words, a recursive function calls itself in a loop:
>>>
>>> def sum_numbers(numbers):
... if len(numbers) == 0:
... return 0
... return numbers[0] + sum_numbers(numbers[1:])
...
>>> sum_numbers([1, 2, 3, 4, 5])
15
When you define a recursive function, you take the risk of running into an infinite loop. To prevent this, you need to define both a base case that stops the recursion and a recursive case to call the function and start the implicit loop.
In the above example, the base case implies that the sum of a zero-length list is 0
. The recursive case implies that the total sum is the first value, numbers[0]
, plus the sum of the rest of the values, numbers[1:]
. Because the recursive case uses a shorter sequence on each iteration, you expect to run into the base case when numbers
is a zero-length list. As a final result, you get the sum of all the items in your input list, numbers
.
Another option to sum a list of numbers in Python is to use reduce()
from functools
. To get the sum of a list of numbers, you can pass either operator.add
or an appropriate lambda
function as the first argument to reduce()
:
>>>
>>> from functools import reduce
>>> from operator import add
>>> reduce(add, [1, 2, 3, 4, 5])
15
>>> reduce(add, [])
Traceback (most recent call last):
...
TypeError: reduce() of empty sequence with no initial value
>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15
You can call reduce()
with a reduction, or folding, function
along with an iterable
as arguments. Then reduce()
uses the input function to process iterable
and returns a single cumulative value.
In the first example, the reduction function is add()
, which takes two numbers and adds them together. The final result is the sum of the numbers in the input iterable
. As a drawback, reduce()
raises a TypeError
when you call it with an empty iterable
.
In the second example, the reduction function is a lambda
function that returns the addition of two numbers.
Since summations like these are commonplace in programming, coding a new function every time you need to sum some numbers is a lot of repetitive work. Additionally, using reduce()
isn’t the most readable solution available to you.
Python provides a dedicated built-in function to solve this problem. The function is conveniently called sum()
. Since it’s a built-in function, you can use it directly in your code without importing anything.
Getting Started With Python’s sum()
Readability is one of the most important principles behind Python’s philosophy. Visualize what you are asking a loop to do when summing a list of values. You want it to loop over some numbers, accumulate them in an intermediate variable, and return the final sum. However, you can probably imagine a more readable version of summation that doesn’t need a loop. You want Python to take some numbers and sum them together.
Now think about how reduce()
does summation. Using reduce()
is arguably less readable and less straightforward than even the loop-based solution.
This is why Python 2.3 added sum()
as a built-in function to provide a Pythonic solution to the summation problem. Alex Martelli contributed the function, which nowadays is the preferred syntax for summing a list of values:
>>>
>>> sum([1, 2, 3, 4, 5])
15
>>> sum([])
0
Wow! That’s neat, isn’t it? It reads like plain English and clearly communicates the action you’re performing on the input list. Using sum()
is way more readable than a for
loop or a reduce()
call. Unlike reduce()
, sum()
doesn’t raise a TypeError
when you provide an empty iterable. Instead, it understandably returns 0
.
You can call sum()
with the following two arguments:
iterable
is a required argument that can hold any Python iterable. The iterable typically contains numeric values but can also contain lists or tuples.start
is an optional argument that can hold an initial value. This value is then added to the final result. It defaults to0
.
Internally, sum()
adds start
plus the values in iterable
from left to right. The values in the input iterable
are normally numbers, but you can also use lists and tuples. The optional argument start
can accept a number, list, or tuple, depending on what is passed to iterable
. It can’t take a string.
In the following two sections, you’ll learn the basics of using sum()
in your code.
The Required Argument: iterable
Accepting any Python iterable as its first argument makes sum()
generic, reusable, and polymorphic. Because of this feature, you can use sum()
with lists, tuples, sets, range
objects, and dictionaries:
>>>
>>> # Use a list
>>> sum([1, 2, 3, 4, 5])
15
>>> # Use a tuple
>>> sum((1, 2, 3, 4, 5))
15
>>> # Use a set
>>> sum({1, 2, 3, 4, 5})
15
>>> # Use a range
>>> sum(range(1, 6))
15
>>> # Use a dictionary
>>> sum({1: "one", 2: "two", 3: "three"})
6
>>> sum({1: "one", 2: "two", 3: "three"}.keys())
6
In all these examples, sum()
computes the arithmetic sum of all the values in the input iterable regardless of their types. In the two dictionary examples, both calls to sum()
return the sum of the keys of the input dictionary. The first example sums the keys by default and the second example sums the keys because of the .keys()
call on the input dictionary.
If your dictionary stores numbers in its values and you would like to sum these values instead of the keys, then you can do this by using .values()
just like in the .keys()
example.
You can also use sum()
with a list comprehension as an argument. Here’s an example that computes the sum of the squares of a range of values:
>>>
>>> sum([x ** 2 for x in range(1, 6)])
55
Python 2.4 added generator expressions to the language. Again, sum()
works as expected when you use a generator expression as an argument:
>>>
>>> sum(x ** 2 for x in range(1, 6))
55
This example shows one of the most Pythonic techniques to approach the summation problem. It provides an elegant, readable, and efficient solution in a single line of code.
The Optional Argument: start
The second and optional argument, start
, allows you to provide a value to initialize the summation process. This argument is handy when you need to process cumulative values sequentially:
>>>
>>> sum([1, 2, 3, 4, 5], 100) # Positional argument
115
>>> sum([1, 2, 3, 4, 5], start=100) # Keyword argument
115
Here, you provide an initial value of 100
to start
. The net effect is that sum()
adds this value to the cumulative sum of the values in the input iterable. Note that you can provide start
as a positional argument or as a keyword argument. The latter option is way more explicit and readable.
If you don’t provide a value to start
, then it defaults to 0
. A default value of 0
ensures the expected behavior of returning the total sum of the input values.
Summing Numeric Values
The primary purpose of sum()
is to provide a Pythonic way to add numeric values together. Up to this point, you’ve seen how to use the function to sum integer numbers. Additionally, you can use sum()
with any other numeric Python types, such as float
, complex
, decimal.Decimal
, and fractions.Fraction
.
Here are a few examples of using sum()
with values of different numeric types:
>>>
>>> from decimal import Decimal
>>> from fractions import Fraction
>>> # Sum floating-point numbers
>>> sum([10.2, 12.5, 11.8])
34.5
>>> sum([10.2, 12.5, 11.8, float("inf")])
inf
>>> sum([10.2, 12.5, 11.8, float("nan")])
nan
>>> # Sum complex numbers
>>> sum([3 + 2j, 5 + 6j])
(8+8j)
>>> # Sum Decimal numbers
>>> sum([Decimal("10.2"), Decimal("12.5"), Decimal("11.8")])
Decimal('34.5')
>>> # Sum Fraction numbers
>>> sum([Fraction(51, 5), Fraction(25, 2), Fraction(59, 5)])
Fraction(69, 2)
Here, you first use sum()
with floating-point numbers. It’s worth noting the function’s behavior when you use the special symbols inf
and nan
in the calls float("inf")
and float("nan")
. The first symbol represents an infinite value, so sum()
returns inf
. The second symbol represents NaN (not a number) values. Since you can’t add numbers with non-numbers, you get nan
as a result.
The other examples sum iterables of complex
, Decimal
, and Fraction
numbers. In all cases, sum()
returns the resulting cumulative sum using the appropriate numeric type.
Concatenating Sequences
Even though sum()
is mostly intended to operate on numeric values, you can also use the function to concatenate sequences such as lists and tuples. To do that, you need to provide an appropriate value to start
:
>>>
>>> num_lists = [[1, 2, 3], [4, 5, 6]]
>>> sum(num_lists, start=[])
[1, 2, 3, 4, 5, 6]
>>> # Equivalent concatenation
>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> num_tuples = ((1, 2, 3), (4, 5, 6))
>>> sum(num_tuples, start=())
(1, 2, 3, 4, 5, 6)
>>> # Equivalent concatenation
>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)
In these examples, you use sum()
to concatenate lists and tuples. This is an interesting feature that you can use to flatten a list of lists or a tuple of tuples. The key requirement for these examples to work is to select an appropriate value for start
. For example, if you want to concatenate lists, then start
needs to hold a list.
In the examples above, sum()
is internally performing a concatenation operation, so it works only with those sequence types that support concatenation, with the exception of strings:
>>>
>>> num_strs = ["123", "456"]
>>> sum(num_strs, "0")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: sum() can't sum strings [use ''.join(seq) instead]
When you try to use sum()
to concatenate strings, you get a TypeError
. As the exception message suggests, you should use str.join()
to concatenate strings in Python. You’ll see examples of using this method later on when you get to the section on Using Alternatives to sum()
.
Practicing With Python’s sum()
So far, you’ve learned the basics of working with sum()
. You’ve learned how to use this function to add numeric values together and also to concatenate sequences such as lists and tuples.
In this section, you’ll look at some more examples of when and how to use sum()
in your code. With these practical examples, you’ll learn that this built-in function is quite handy when you’re performing computations that require finding the sum of a series of numbers as an intermediate step.
You’ll also learn that sum()
can be helpful when you’re working with lists and tuples. A special example you’ll look at is when you need to flatten a list of lists.
Computing Cumulative Sums
The first example you’ll code has to do with how to take advantage of the start
argument for summing cumulative lists of numeric values.
Say you’re developing a system to manage the sales of a given product at several different points of sale. Every day, you get a sold units report from each point of sale. You need to systematically compute the cumulative sum to know how many units the whole company sold over the week. To solve this problem, you can use sum()
:
>>>
>>> cumulative_sales = 0
>>> monday = [50, 27, 42]
>>> cumulative_sales = sum(monday, start=cumulative_sales)
>>> cumulative_sales
119
>>> tuesday = [12, 32, 15]
>>> cumulative_sales = sum(tuesday, start=cumulative_sales)
>>> cumulative_sales
178
>>> wednesday = [20, 24, 42]
>>> cumulative_sales = sum(wednesday, start=cumulative_sales)
>>> cumulative_sales
264
...
By using start
, you set an initial value to initialize the sum, which allows you to add successive units to the previously computed subtotal. At the end of the week, you’ll have the company’s total count of sold units.
Calculating the Mean of a Sample
Another practical use case of sum()
is to use it as an intermediate calculation before doing further calculations. For example, say you need to calculate the arithmetic mean of a sample of numeric values. The arithmetic mean, also known as the average, is the total sum of the values divided by the number of values, or data points, in the sample.
If you have the sample [2, 3, 4, 2, 3, 6, 4, 2] and you want to calculate the arithmetic mean by hand, then you can solve this operation:
(2 + 3 + 4 + 2 + 3 + 6 + 4 + 2) / 8 = 3.25
If you want to speed this up by using Python, you can break it up into two parts. The first part of this computation, where you are adding together the numbers, is a task for sum()
. The next part of the operation, where you are dividing by 8, uses the count of numbers in your sample. To calculate your divisor, you can use len()
:
>>>
>>> data_points = [2, 3, 4, 2, 3, 6, 4, 2]
>>> sum(data_points) / len(data_points)
3.25
Here, the call to sum()
computes the total sum of the data points in your sample. Next, you use len()
to get the number of data points. Finally, you perform the required division to calculate the sample’s arithmetic mean.
In practice, you may want to turn this code into a function with some additional features, such as a descriptive name and a check for empty samples:
>>>
>>> # Python >= 3.8
>>> def average(data_points):
... if (num_points := len(data_points)) == 0:
... raise ValueError("average requires at least one data point")
... return sum(data_points) / num_points
...
>>> average([2, 3, 4, 2, 3, 6, 4, 2])
3.25
>>> average([])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in average
ValueError: average requires at least one data point
Inside average()
, you first check if the input sample has any data points. If not, then you raise a ValueError
with a descriptive message. In this example, you use the walrus operator to store the number of data points in the variable num_points
so that you won’t need to call len()
again. The return statement computes the sample’s arithmetic mean and sends it back to the calling code.
Note that when you call average()
with a proper sample, you’ll get the desired mean. If you call average()
with an empty sample, then you get a ValueError
as expected.
Finding the Dot Product of Two Sequences
Another problem you can solve using sum()
is finding the dot product of two equal-length sequences of numeric values. The dot product is the algebraic sum of products of every pair of values in the input sequences. For example, if you have the sequences (1, 2, 3) and (4, 5, 6), then you can calculate their dot product by hand using addition and multiplication:
1 × 4 + 2 × 5 + 3 × 6 = 32
To extract successive pairs of values from the input sequences, you can use zip()
. Then you can use a generator expression to multiply each pair of values. Finally, sum()
can sum the products:
>>>
>>> x_vector = (1, 2, 3)
>>> y_vector = (4, 5, 6)
>>> sum(x * y for x, y in zip(x_vector, y_vector))
32
With zip()
, you generate a list of tuples with the values from each of the input sequences. The generator expression loops over each tuple while multiplying the successive pairs of values previously arranged by zip()
. The final step is to add the products together using sum()
.
The code in the above example works. However, the dot product is defined for sequences of equal length, so what happens if you provide sequences with different lengths? In that case, zip()
ignores the extra values from the longest sequence, which leads to an incorrect result.
To deal with this possibility, you can wrap the call to sum()
in a custom function and provide a proper check for the length of the input sequences:
>>>
>>> def dot_product(x_vector, y_vector):
... if len(x_vector) != len(y_vector):
... raise ValueError("Vectors must have equal sizes")
... return sum(x * y for x, y in zip(x_vector, y_vector))
...
>>> dot_product((1, 2, 3), (4, 5, 6))
32
>>> dot_product((1, 2, 3, 4), (5, 6, 3))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in dot_product
ValueError: Vectors must have equal sizes
Here, dot_product()
takes two sequences as arguments and returns their corresponding dot product. If the input sequences have different lengths, then the function raises a ValueError
.
Embedding the functionality in a custom function allows you to reuse the code. It also gives you the opportunity to name the function descriptively so that the user knows what the function does just by reading its name.
Flattening a List of Lists
Flattening a list of lists is a common task in Python. Say you have a list of lists and need to flatten it into a single list containing all the items from the original nested lists. You can use any of several approaches to flattening lists in Python. For example, you can use a for
loop, as in the following code:
>>>
>>> def flatten_list(a_list):
... flat = []
... for sublist in a_list:
... flat += sublist
... return flat
...
>>> matrix = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... ]
>>> flatten_list(matrix)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Inside flatten_list()
, the loop iterates over all the nested lists contained in a_list
. Then it concatenates them in flat
using an augmented assignment operation (+=
). As the result, you get a flat list with all the items from the original nested lists.
But hold on! You’ve already learned how to use sum()
to concatenate sequences in this tutorial. Can you use that feature to flatten a list of lists like you did in the example above? Yes! Here’s how:
>>>
>>> matrix = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... ]
>>> sum(matrix, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
That was quick! A single line of code and matrix
is now a flat list. However, using sum()
doesn’t seem to be the fastest solution.
An important drawback of any solution that implies concatenation is that behind the scenes, every intermediate step creates a new list. This can be pretty wasteful in terms of memory usage. The list that is eventually returned is just the most recently created list out of all the lists that were created at each round of concatenation. Using a list comprehension instead ensures that you create and return only one list:
>>>
>>> def flatten_list(a_list):
... return [item for sublist in a_list for item in sublist]
...
>>> matrix = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... ]
>>> flatten_list(matrix)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
This new version of flatten_list()
is more efficient and less wasteful in terms of memory usage. However, the nested comprehensions can be challenging to read and understand.
Using .append()
is probably the most readable and Pythonic way to flatten a list of lists:
>>>
>>> def flatten_list(a_list):
... flat = []
... for sublist in a_list:
... for item in sublist:
... flat.append(item)
... return flat
...
>>> matrix = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... ]
>>> flatten_list(matrix)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
In this version of flatten_list()
, someone reading your code can see that the function iterates over every sublist
in a_list
. Inside this first for
loop, it iterates over each item
in sublist
to finally populate the new flat
list with .append()
. Just like the comprehension from earlier, this solution creates only one list in the process. An advantage of this solution is that it is very readable.
Using Alternatives to sum()
As you’ve already learned, sum()
is helpful for working with numeric values in general. However, when it comes to working with floating-point numbers, Python provides an alternative tool. In math
, you’ll find a function called fsum()
that can help you improve the general precision of your floating-point computations.
You might have a task where you want to concatenate or chain several iterables so that you can work with them as one. For this scenario, you can look to the itertools
module’s function chain()
.
You might also have a task where you want to concatenate a list of strings. You’ve learned in this tutorial that there’s no way to use sum()
for concatenating strings. This function just wasn’t built for string concatenation. The most Pythonic alternative is to use str.join()
.
Summing Floating-Point Numbers: math.fsum()
If your code is constantly summing floating-point numbers with sum()
, then you should consider using math.fsum()
instead. This function performs floating-point computations more carefully than sum()
, which improves the precision of your computation.
According to its documentation, fsum()
“avoids loss of precision by tracking multiple intermediate partial sums.” The documentation provides the following example:
>>>
>>> from math import fsum
>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0
With fsum()
, you get a more precise result. However, you should note that fsum()
doesn’t solve the representation error in floating-point arithmetic. The following example uncovers this limitation:
>>>
>>> from math import fsum
>>> sum([0.1, 0.2])
0.30000000000000004
>>> fsum([0.1, 0.2])
0.30000000000000004
In these examples, both functions return the same result. This is due to the impossibility of accurately representing both values 0.1
and 0.2
in binary floating-point:
>>>
>>> f"{0.1:.28f}"
'0.1000000000000000055511151231'
>>> f"{0.2:.28f}"
'0.2000000000000000111022302463'
Unlike sum()
, however, fsum()
can help you reduce floating-point error propagation when you add very large and very small numbers together:
>>>
>>> from math import fsum
>>> sum([1e-16, 1, 1e16])
1e+16
>>> fsum([1e-16, 1, 1e16])
1.0000000000000002e+16
>>> sum([1, 1, 1e100, -1e100] * 10_000)
0.0
>>> fsum([1, 1, 1e100, -1e100] * 10_000)
20000.0
Wow! The second example is pretty surprising and totally defeats sum()
. With sum()
, you get 0.0
as a result. This is quite far away from the correct result of 20000.0
, as you get with fsum()
.
Concatenating Iterables With itertools.chain()
If you’re looking for a handy tool for concatenating or chaining a series of iterables, then consider using chain()
from itertools
. This function can take multiple iterables and build an iterator that yields items from the first one, from the second one, and so on until it exhausts all the input iterables:
>>>
>>> from itertools import chain
>>> numbers = chain([1, 2, 3], [4, 5, 6], [7, 8, 9])
>>> numbers
<itertools.chain object at 0x7f0d0f160a30>
>>> next(numbers)
1
>>> next(numbers)
2
>>> list(chain([1, 2, 3], [4, 5, 6], [7, 8, 9]))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
When you call chain()
, you get an iterator of the items from the input iterables. In this example, you access successive items from numbers
using next()
. If you want to work with a list instead, then you can use list()
to consume the iterator and return a regular Python list.
chain()
is also a good option for flattening a list of lists in Python:
>>>
>>> from itertools import chain
>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> list(chain(*matrix))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
To flatten a list of lists with chain()
, you need to use the iterable unpacking operator (*
). This operator unpacks all the input iterables so that chain()
can work with them and generate the corresponding iterator. The final step is to call list()
to build the desired flat list.
Concatenating Strings With str.join()
As you’ve already seen, sum()
doesn’t concatenate or join strings. If you need to do so, then the preferred and fastest tool available in Python is str.join()
. This method takes a sequence of strings as an argument and returns a new, concatenated string:
>>>
>>> greeting = ["Hello,", "welcome to", "Real Python!"]
>>> " ".join(greeting)
'Hello, welcome to Real Python!'
Using .join()
is the most efficient and Pythonic way to concatenate strings. Here, you use a list of strings as an argument and build a single string from the input. Note that .join()
uses the string on which you call the method as a separator during the concatenation. In this example, you call .join()
on a string that consists of a single space character (" "
), so the original strings from greeting
are separated by spaces in your final string.
Conclusion
You can now use Python’s built-in function sum()
to add multiple numeric values together. This function provides an efficient, readable, and Pythonic way to solve summation problems in your code. If you’re dealing with math computations that require summing numeric values, then sum()
can be your lifesaver.
In this tutorial, you learned how to:
- Sum numeric values using general techniques and tools
- Add several numeric values efficiently using Python’s
sum()
- Concatenate sequences using
sum()
- Use
sum()
to approach common summation problems - Use appropriate values for the
iterable
andstart
arguments insum()
- Decide between
sum()
and alternative tools to sum and concatenate objects
With this knowledge, you’re now able to add multiple numeric values together in a Pythonic, readable, and efficient way.
Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Summing Values the Pythonic Way With sum()
Python 3 — это современный язык, на котором просто и приятно писать программы.
Для печати значений в Питоне есть функция print(). Внутри круглых скобок через запятую мы пишем то, что хотим вывести. Вот программа, которая делает несколько вычислений:
print(5 + 10) print(3 * 7, (17 - 2) * 8) print(2 ** 16) # две звёздочки означают возведение в степень print(37 / 3) # один слэш — это деление с ответом-дробью print(37 // 3) # два слэша считают частное от деления нацело # это как операция div в других языках print(37 % 3) # процент считает остаток от деления нацело # это как операция mod в других языках
Для ввода данных в программу мы используем функцию input()
. Она считывает одну строку.
Вот программа, которая считывает имя пользователя и приветствует его:
print('Как вас зовут?') name = input() # считываем строку и кладём её в переменную name print('Здравствуйте, ' + name + '!')
Мы будем писать программы, которые считывают данные, перерабатывают их и выводят какой-то результат. При запуске на компьютере такие программы считывают данные, которые пользователь вводит с клавиатуры, а результат выводят на экран.
Попробуем написать программу, которая считывает два числа и выводит их сумму. Для этого считаем два числа и сохраним их в переменные a
и b
, пользуясь оператором присваивания =
. Слева от оператора присваивания в программах на Питоне ставится имя переменной — например, строка из латинских букв. Справа от оператора присваивания ставится любое выражение. Имя станет указывать на результат вычисления выражения. Проиграйте эту программу и посмотрите на результаты её работы:
a = input() b = input() s = a + b print(s)
Мы видим, что программа выводит 57
, хотя в реальной жизни 5 + 7
будет 12
. Это произошло потому, что Питон в третьей строчке «сложил» две строки, а не два числа. В Питоне две строки складываются так: к первой строке приписывается вторая.
Обратите внимание, что в визуализаторе содержимое переменных a
и b
заключено в кавычки. Это означает, что в a
и b
лежат строки, а не числа.
В Питоне все данные называются объектами. Число 2 представляется объектом «число 2», строка 'hello'
– это объект «строка 'hello'
».
Каждый объект относится к какому-то типу. Строки хранятся в объектах типа str
, целые числа хранятся в объектах типа int
, дробные числа (вещественные числа) — в объектах типа float
. Тип объекта определяет, какие действия можно делать с объектами этого типа. Например, если в переменных first
и second
лежат объекты типа int
, то их можно перемножить, а если в них лежат объекты типа str
, то их перемножить нельзя:
first = 5 second = 7 print(first * second) first = '5' second = '7' print(first * second)
Чтобы преобразовать строку из цифр в целое число, воспользуемся функцией int()
. Например, int('23')
вернет число 23
.
Вот пример правильной программы, которая считывает два числа и выводит их сумму:
a = int(input()) b = int(input()) s = a + b print(s)
Ссылки на задачи доступны в меню слева. Эталонные решения теперь доступны на странице самой задачи.
Автор оригинала: Python Examples.
Python Program, чтобы найти сумму двух чисел
Чтобы найти сумму двух чисел в Python, вы можете использовать оператор Arithmetic Approw +
Отказ
+
Оператор принимает два операнда и возвращает сумму двух чисел.
Пример 1: сумма двух целых чисел
В этом примере мы возьмем два целых числа и нахожу их сумму. Ниже приведены шаги, которые мы реализуем.
- Начинать.
- Прочитайте первый номер.
- Прочитайте второе число.
- Вычислить номер + второй номер.
- Стоп.
Python Program
n1 = int(input('Enter first number : ')) n2 = int(input('Enter second number : ')) sum = n1 + n2 print('Sum =', sum)
Функция ввода () считывает строку из стандартного ввода. int () анализирует строку в целое число.
Выход
Пример 2: сумма двух чисел плавающих точек
Вы можете использовать те же шаги, чтобы найти сумму двух номеров плавающих точек. В этом примере мы будем читать две числа плавающих точек и найдите их сумму.
Python Program
n1 = float(input('Enter first number : ')) n2 = float(input('Enter second number : ')) sum = n1 + n2 print('Sum =', sum)
Выход
Резюме
В этом руководстве примеров Python мы узнали, как найти сумму двух чисел в Python с помощью оператора добавления Python с помощью примерных программ.
Похожие учебники
- Как поменять два номера в Python?
- Номер комплекса Python – инициализация, доступ
- Обратный номер в Python
- Python String – Найти количество перекрывающихся вхождений подстроки
- Python – Проверьте, если номер Armstrong
- Python Program для добавления двух чисел
- Как получить количество осей в PandaS DataFrame?
- Python – крупнейший из трех чисел
- Python – сумма первых н натуральных чисел
- Python – самый маленький из трех чисел
-
Метки
python, sum