Калькулятор суммы членов арифметической прогрессии поможет найти сумму членов по двум формулам. Первая формула применяется если вам известны первый член прогрессии, n-й член и количество суммируемых элементов. Вторая формула используется если вы знаете первый член, разность и количество элементов для суммирования.
Формулы суммы членов арифметической прогрессии
Чтобы найти сумму первых членов арифметической прогрессии, можно воспользоваться одной из нижеприведенных формул:
1) {S_n=dfrac {a_1+a_n}{2} cdot n},
2) {S_n=dfrac {2a_1+d(n-1)}{2} cdot n}
a1 – первый член прогрессии,
an – член прогрессии под номером n,
d – разность прогрессии (разница между членами прогрессии),
n – номер члена
Примеры нахождения суммы арифметической прогрессии
Задача 1
Дана арифметическая прогрессия: -4; -2; 0… Найдите сумму первых десяти ее членов.
Решение
Первый член прогрессии a1 = -4.
Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 – a1 = -2 – (-4) = 2.
Количество суммируемых членов равно 10, т. е. n = 10. Подставим значения во вторую формулу и получим результат:
S_n=dfrac {2a_1+d(n-1)}{2} cdot n = dfrac {2 cdot -4+2(10-1)}{2} cdot 10 = dfrac {-8+18}{2} cdot 10 = 50
Ответ: 50
Используем калькулятор для проверки.
Задача 2
Найдите сумму первых 10 членов арифметической прогрессии -23; -20;…
Решение
Первый член прогрессии a1 = -23.
Найдем шаг прогрессии: d = a2 – a1 = -20 – (-23) = 3.
Найдем десятый член прогрессии по формуле: a_n=a_1+(n-1)cdot d = -23 + (10-1) cdot 3 = -23 + 27 = 4
Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 – a1 = -2 – (-4) = 2.
Подставим значения в первую формулу и получим результат:
S_n=dfrac {a_1+a_n}{2} cdot n = dfrac {-23+4}{2} cdot 10 = dfrac {-19}{2} cdot 10 = -9.5 cdot 10 = -95
Ответ: -95
Проверим ответ на калькуляторе .
На этой странице вы узнаете
- Как правильно расставить шары для бильярда в начале игры?
- Как Карл Гаусс удивил своего учителя по математике?
Считаем ли мы овец перед сном, добавляем по монетке в копилку или достаем сухарик из упаковки — каждый раз мы интуитивно применяем законы математики, которые рассмотрим в этой статье.
Понятие арифметической прогрессии
Арифметическая прогрессия является видом «Числовых последовательностей».
У арифметической прогрессии есть особенность: каждый следующий член отличается от предыдущего на одно и то же число. В последовательности 1, 2, 3, 4 и так далее — члены отличаются друг от друга на единицу.
Арифметическая прогрессия — последовательность чисел, в которой каждый член, начиная со второго, равен сумме предыдущего члена и разности прогрессии.
Разность прогрессии — то число, на которое отличаются члены прогрессии друг от друга. Разность прогрессии обозначается буквой d.
Арифметическую прогрессию можно задать формулой.
an+1 = an + d
Например, если мы хотим найти третий член арифметической прогрессии, то нужно воспользоваться формулой: a3 = a2 + d
Однако бывает, что известны только первый член прогрессии и ее разность. Как быть в этом случае?
Разберемся на примере. Допустим, мы читаем книгу. Количество прочитанных страниц может быть задано с помощью арифметической прогрессии, в которой разность прогрессии и первый ее член равны 1.
Мы прочитали 10 страниц. Десятая страница будет десятым членом прогрессии. Это 1 + 1 + 1 + 1 +1 + 1 + 1 + 1 + 1 + 1 страниц, если считать их по отдельности.
Выделим первую страницу отдельно: 1 + (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) = 1 + 9 = 1 + 1 * 9
Теперь заменим десятый член прогрессии, первый член прогрессии и ее разность на буквенные обозначения: a10 = a1 + 9 * d.
Заметим, что множитель перед d на один меньше, чем порядковый номер искомого члена прогрессии. Тогда получаем: a10 = a1 + (10 — 1) * d
Мы можем вывести формулу для n-го члена прогрессии. А выглядит она так.
an = a1 + d(n — 1)
Вспомним расстановку шаров в бильярде. Они ставятся в пять рядов, причем в первом ряду один шар, а в пятом — пять.
Тогда, чтобы правильно разместить 15 шаров, нужно воспользоваться арифметической прогрессией. В каждом следующем ряду будет на один шар больше, следовательно, во втором ряду имеем 1 + 1 = 2 шара, в третьем ряду 2 + 1 = 3 шара, а в четвертом 3 + 1 = 4.
Расставленные таким образом шары образуют форму треугольника.
Допустим, мы хотим купить джинсы. В магазине представлены три ценовых категорий, которые отличаются друг от друга на одинаковую сумму. Мы знаем, что самые дешевые джинсы стоят 1000 рублей, а самые дорогие 3000 рублей. Как найти, сколько стоят джинсы во второй ценовой категории?
Попробуем найти разность арифметической прогрессии.
Джинсы во второй категории будут стоить 1000 + d, а чтобы найти стоимость третьей категории, нужно прибавить разность прогрессии ко второй категории. Получаем 1000 + d + d = 1000 + 2d.
Мы знаем, что самые дорогие джинсы стоят 3000 рублей. Получаем уравнение 1000 + 2d = 3000, откуда можем выразить разность прогрессии:
(d = frac{3000 — 1000}{2} = 1000)
Тогда джинсы во второй ценовой категории будут стоить 1000 + 1000 = 2000 рублей.
Можно ли как-то найти это значение, не прибегая к таким большим рассуждениям? Для этого достаточно найти среднее арифметическое двух соседних членов.
(a_n = frac{a_{n-1} + a_{n+1}}{2})
Докажем это. Если рассмотреть член аn, то член до него будет равен an — 1 = an — d, а член после него an + 1 = an + d. Тогда их среднее арифметическое равно (frac{a_{n — 1} + a_{n+1}}{2} = frac{a_n — d + a_n + d}{2} = frac{2a_n}{2} = an).
Проверим на нашей задаче.
(a_2 = frac{a_1 + a_3}{2} = frac{1000 + 3000}{2} = frac{4000}{2} = 2000). Все верно.
Чтобы найти разность прогрессии, достаточно вычесть из любого члена прогрессии предыдущий к нему.
d = an+1 — an
Найдем сумму всех членов арифметической прогрессии. Разумеется, их можно сложить: a1 + a2 + a3 + … + an. Но тогда нужно вычислять все члены прогрессии, а их может быть очень много.
В этом случае используется формула суммы арифметической прогрессии. Ее удобство в том, что используются только первый и последний член прогрессии.
(S_n = frac{a_1 + a_n}{2} * n)
Немного преобразуем формулу:
(S_n = frac{a_1 + a_n}{2} * n = frac{a_1 + a_1 + d(n — 1)}{2} * n = frac{2a_1 + d(n — 1)}{2} * n) — это формула суммы членов арифметической прогрессии через первый член и ее разность.
Решим небольшую задачу. Марина решила сделать картину из страз. По схеме у нее есть 15 рядов, в каждом из которых страз на три больше, чем в предыдущем. В первом ряду 6 страз. Сколько всего страз понадобится, чтобы выложить эти ряды?
Воспользуемся формулой арифметической прогрессии. Но прежде найдем, сколько страз в последнем, пятнадцатом ряду:
a15 = 6 + 3 * (15 + 1) = 6 + 3 * 14 = 6 + 42 = 48
Тогда по формуле суммы арифметической прогрессии всего Марине понадобится:
(S_{15} = frac{6 + 48}{2} * 15 = frac{54}{2} * 15 = 27 * 15 = 405) страз.
Карл Гаусс — немецкий математик, живший в 18–19 веках. На одном из уроков математики учитель задал сложить все цифры от 1 до 100.
Карл Гаусс заметил, что суммы чисел с противоположных сторон одинаковые: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 и так далее. Всего таких сумм получилось 50. Следовательно, быстро вычислить сумму этих цифр можно было как произведение 101 * 50.
Такой способ работает для любой арифметической прогрессии.
Внимательно посмотрим на сумму арифметической прогрессии. Пусть a1 = 1, a100 = 100, n = 100. Тогда получаем:
(S_{100} = frac{1 + 100}{2} * 100 = 101 * 50), то есть Карл Гаусс использовал сумму арифметической прогрессии, сам того не зная.
Виды арифметических прогрессий
Существует всего три вида арифметической прогрессии.
1. Возрастающая арифметическая прогрессия.
Разность прогрессии — положительное число, то есть d > 0, а каждый следующий член прогрессии больше предыдущего.
Прогрессия 2, 4, 6, 8 является возрастающей.
2. Убывающая арифметическая прогрессия.
Разность прогрессии — отрицательное число, то есть d < 0, а каждый следующий член прогрессии меньше предыдущего.
Примером убывающей арифметической прогрессии может служить 100, 95, 90, 85 и так далее.
3. Стационарная арифметическая прогрессия.
В этой арифметической прогрессии разность будет равна 0, то есть d = 0. Следовательно, члены прогрессии не будут отличаться друг от друга.
Например, прогрессия 3, 3, 3, 3, 3 будет являться стационарной.
Фактчек
- Арифметическая прогрессия — последовательность чисел, в которой каждый член, начиная со второго, равен сумме предыдущего члена и разности прогрессии.
- Разность арифметической прогрессии — это число, на которое отличаются члены прогрессии.
- Чтобы найти n-ый член прогрессии, необходимо воспользоваться одной из трех формул: an+1 = an + d, an = a1 + d(n — 1) или (a_n = frac{a_{n-1} + a_{n+1}}{2}).
- Чтобы найти разность прогрессии, достаточно из любого члена прогрессии вычесть предыдущий ему член прогрессии.
- По формуле (S_n = frac{a_1 + a_n}{2} * n) можно найти сумму n членов прогрессии.
- Арифметическая прогрессия может быть убывающей, возрастающей или стационарной.
Проверь себя
Задание 1.
Какая прогрессия является арифметической?
- 3, 7, 11, 15
- 1, 1, 2, 3, 5
- 2, 4, 8, 16
- 1, 4, 16, 25
Задание 2.
Первый член арифметической прогрессии равен 10, а ее разность равна -5. Найдите семнадцатый член арифметической прогрессии.
- Семнадцатого члена такой арифметической прогрессии не существует
- 0
- −70
- −75
Задание 3.
Пятый член арифметической прогрессии равен 16, а седьмой член равен 20. Найдите шестой член арифметической прогрессии.
- 2
- 18
- 17,5
- Невозможно найти шестой член арифметической прогрессии.
Задание 4.
Каждый день Миша катается на велосипеде, причем с каждым разом увеличивает расстояние на 2 км. В первый день он проехал 3 км. Сколько всего км проедет Миша за пять дней?
- 14
- 17
- 11
- 35
Ответы: 1. — 1 2. — 3 3. — 2 4. — 4
15
Июл 2013
Категория: Справочные материалы
Арифметическая прогрессия. Сумма n первых членов арифметической прогрессии
2013-07-15
2021-06-27
Первую часть статьи об арифметической прогрессии смотрим здесь.
Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100.
Юный Гаусс (10 лет) мгновенно получил результат:
А как бы считали вы? + показать
Сумма n первых членов арифметической прогрессии
Сумма первых членов арифметической прогрессии может быть найдена по формулам
,
где — первый член прогрессии, — член с номером , — количество суммируемых членов.
(Вторая формула – результат подстановки формулы в первую формулу)
Пример 1. Арифметическая прогрессия задана формулой
Найдите сумму первых десяти членов прогрессии.
Решение: + показать
Пример 2. Найдите сумму натуральных четных чисел, не превосходящих 40.
Решение: + показать
Пример 3. Сколько последовательных натуральных чисел, начиная с 1, нужно сложить, чтобы их сумма была равна 153?
Решение: + показать
Пример 4. Арифметическая прогрессия задана формулой
Найдите сумму членов данной прогрессии с -го по включительно.
Решение: + показать
Пример 5. Найдите сумму двузначных натуральных чисел, не кратных
Решение: + показать
Вы можете пойти тест по теме «Сумма арифметической прогрессии».
Автор: egeMax |
комментариев 6