Как найти сумму геометрической прогрессии с дробями

Определение геометрической прогрессии:

Рассмотрим последовательность, членами которой являются степени числа 2 с натуральными показателями:

Геометрическая прогрессия

Каждый член этой последовательности, начиная со второго, получается умножением предыдущего члена на 2. Эта последовательность является примером геометрической прогрессии.

Определение:

Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

Иначе говоря, последовательность Геометрическая прогрессия — геометрическая прогрессия, если для любого натурального п выполняются условия

Геометрическая прогрессия

где q — некоторое число. Обозначим, например, через Геометрическая прогрессияпоследовательность натуральных степеней числа 2. В этом случае для любого натурального п верно равенствоГеометрическая прогрессия здесь q = 2.

Из определения геометрической прогрессии следует, что отношение любого ее члена, начиная со второго, к предыдущему члену равно q, т. е. при любом натуральном n верно равенство

Геометрическая прогрессия


Число q называют знаменателем геометрической прогрессии.

Очевидно, что знаменатель геометрической прогрессии отличен от нуля.

Чтобы задать геометрическую прогрессию, достаточно указать ее первый член и знаменатель.

Приведем примеры.

Если Геометрическая прогрессиято получим геометрическую прогрессию

Геометрическая прогрессия

Условиями Геометрическая прогрессиязадается геометрическая прогрессия

Геометрическая прогрессия

Если Геометрическая прогрессия то имеем прогрессию

Геометрическая прогрессия

Если Геометрическая прогрессия то получим геометрическую прогрессию

Геометрическая прогрессия

Зная первый член и знаменатель геометрической прогрессии, можно найти последовательно второй, третий и вообще любой ее член:

Геометрическая прогрессия

Точно так же находим, что Геометрическая прогрессия Вообще, чтобы найти Геометрическая прогрессия мы должны Геометрическая прогрессия

Геометрическая прогрессия

Мы получили формулу n-го члена геометрической прогрессии.

Приведем примеры решения задач с использованием этой формулы.

Пример:

В геометрической прогрессии Геометрическая прогрессияГеометрическая прогрессияНайдем b7.

По формуле n-го члена геометрической прогрессии

Геометрическая прогрессия

Пример:

Найдем восьмой член геометрической прогрессииГеометрическая прогрессия

Геометрическая прогрессия

Зная первый и третий члены геометрической прогрессии, можно найти ее знаменатель. Так как Геометрическая прогрессия

Геометрическая прогрессия

Решив уравнение

Геометрическая прогрессия

найдем, что

Геометрическая прогрессия

Таким образом, существуют две прогрессии, удовлетворяющие условию задачи.

Если

Геометрическая прогрессия

Если

Геометрическая прогрессия

Задача имеет два решения:

Геометрическая прогрессия

Пример:

После каждого движения поршня разрежающего насоса из сосуда удаляется 20% находящегося в нем воздуха. Определим давление воздуха внутри сосуда, после шести движений поршня, если первоначально давление было 760 мм рт. ст.

Так как после каждого движения поршня из сосуда удаляется 20% имевшегося воздуха, то остается 80% воздуха. Чтобы узнать давление воздуха в сосуде после очередного движения поршня, нужно давление после предыдущего движения поршня умножить на 0,8.

Мы имеем геометрическую прогрессию, первый член которой равен 760, а знаменатель равен 0,8. Число, выражающее давление воздуха в сосуде (в мм рт. ст.) после шести движений поршня, является седьмым членом этой прогрессии. Оно равно

Геометрическая прогрессия

Произведя вычисления, получим:

Геометрическая прогрессия

Формула суммы n первых членов геометрической прогрессии

Древняя индийская легенда рассказывает, что изобретатель шахмат попросил в награду за свое изобретение столько пшеничных зерен, сколько их получится, если на первую клетку шахматной доски положить одно зерно, на вторую — в 2 раза больше, т. е. 2 зерна, на третью — еще в 2 раза больше, т. е. 4 зерна, и т. д. до 64-й клетки. Сколько зерен должен был получить изобретатель шахмат?

Число зерен, о которых идет речь, является суммой шестидесяти четырех членов геометрической прогрессии, первый член которой равен 1, а знаменатель равен 2. Обозначим эту сумму через S:

Геометрическая прогрессия

Умножим обе части записанного равенства на знаменатель прогрессии, получим:

Геометрическая прогрессия

Вычтем почленно из второго равенства первое и проведем упрощения:

Геометрическая прогрессия

Можно подсчитать, что масса такого числа пшеничных зерен больше триллиона тонн. Это заведомо превосходит количество пшеницы, собранной человечеством до настоящего времени.

Выведем теперь формулу суммы n первых членов произвольной геометрической прогрессии. Воспользуемся тем же приемом, с помощью которого была вычислена сумма S.

Пусть дана геометрическая прогрессия Геометрическая прогрессияОбозначим сумму n первых ее членов через Геометрическая прогрессия:

Геометрическая прогрессия

Умножим обе части этого равенства на q:

Геометрическая прогрессия

Учитывая, что

Геометрическая прогрессия

получим:

Геометрическая прогрессия

Вычтем почленно из равенства (2) равенство (1) и приведем подобные члены:

Геометрическая прогрессия

Отсюда следует, что при Геометрическая прогрессия

Геометрическая прогрессия

Мы получили формулу суммы n первых членов геометрической прогрессии, в которой Геометрическая прогрессия. Если q = 1, то все члены прогрессии равны первому члену и Геометрическая прогрессия

При решении многих задач удобно пользоваться формулой суммы п первых членов геометрической прогрессии, записанной в другом виде. Подставим в формулу (I) вместо Геометрическая прогрессия выражение Геометрическая прогрессия Получим:

Геометрическая прогрессия

Пример:

Найдем сумму первых десяти членов геометрической прогрессии Геометрическая прогрессия в которой Геометрическая прогрессия

Так как известны первый член и знаменатель прогрессии, то удобно воспользоваться формулой (II). Получим:

Геометрическая прогрессия

Пример:

Найдем сумму Геометрическая прогрессия слагаемые которой являются последовательными членами геометрической прогрессии

Геометрическая прогрессия

Первый член прогрессии равен 1, а знаменатель равен х. Так как Геометрическая прогрессия является членом этой прогрессии с номером n, то задача состоит в нахождении суммы п первых ее членов. Воспользуемся формулой (I):

Геометрическая прогрессия

Таким образом, если Геометрическая прогрессия то

Геометрическая прогрессия

Умножив левую и правую части последнего равенства на х — 1, получим тождество

Геометрическая прогрессия

В частности, при n = 2 и n = 3 приходим к известным формулам

Геометрическая прогрессия

Пример:

Найдем сумму шести первых членов геометрической прогрессии Геометрическая прогрессия если известно, что Геометрическая прогрессия

Зная Геометрическая прогрессияможно найти знаменатель прогрессии q. Так как Геометрическая прогрессия

Геометрическая прогрессия

Значит,

Геометрическая прогрессия

Таким образом, существуют две прогрессии, удовлетворяющие условию задачи.

Геометрическая прогрессия

Сумма бесконечной геометрической прогрессии при |q|< 1

Пусть длина отрезка АВ равна 2 ед. (рис. 50). Отметим точку В1 — середину отрезка А В, затем точку В2 — середину правой его половины, затем точку В3 — середину получившегося справа отрезка и т. д. Длины отрезков Геометрическая прогрессияи т. д. образуют бесконечную геометрическую прогрессию, знаменатель которой равен Геометрическая прогрессия

Геометрическая прогрессия

Геометрическая прогрессия

Найдем сумму n первых членов этой прогрессии:

Геометрическая прогрессия

При увеличении числа слагаемых n значение дроби Геометрическая прогрессия приближается к нулю. Действительно,

Геометрическая прогрессия

Поэтому при неограниченном увеличении n разность Геометрическая прогрессиястановится сколь угодно близкой к числу 2 или, как говорят, стремится к числу 2.

Таким образом, сумма n первых членов геометрической прогрессии Геометрическая прогрессия при неограниченном увеличении n стремится к числу 2. Число 2 называют суммой бесконечной геометрической прогрессии Геометрическая прогрессия и пишут:

Геометрическая прогрессия

Это равенство легко истолковать геометрически: сумма длин отрезков Геометрическая прогрессия равна длине отрезка АВ.

Рассмотрим теперь произвольную геометрическую прогрессию

Геометрическая прогрессия

у которой |q|< 1

Запишем формулу суммы п первых членов прогрессии:

Геометрическая прогрессия

Преобразуем выражение в правой части равенства:

Геометрическая прогрессия

Значит,

Геометрическая прогрессия

Можно доказать, что если Геометрическая прогрессия то при неограниченном увеличении n множитель Геометрическая прогрессия стремится к нулю, а значит, стремится к нулю и произведение Геометрическая прогрессия Поэтому при неограниченном увеличении n сумма Sn стремится к числу Геометрическая прогрессия

Число Геометрическая прогрессия называют суммой бесконечной геометрической прогрессии Геометрическая прогрессия у которой Геометрическая прогрессия

Это записывают так:

Геометрическая прогрессия

Обозначив сумму прогрессии Геометрическая прогрессиябуквой S, получим формулу

Геометрическая прогрессия

Заметим, что если Геометрическая прогрессия то сумма n первых членов геометрической прогрессии при неограниченном увеличении n не стремится ни к какому числу. Бесконечная геометрическая прогрессия имеет сумму только при Геометрическая прогрессия

Пример:

Найдем сумму бесконечной геометрической прогрессии Геометрическая прогрессия

У этой прогрессии Геометрическая прогрессия значит, условие |q| < 1 выполнено. По формуле Геометрическая прогрессия получим:

Геометрическая прогрессия

Пример:

Дан квадрат, сторона которого равна 4 см. Середины его сторон являются вершинами второго квадрата, середины сторон второго квадрата являются вершинами третьего квадрата и т. д. (рис. 51). Найдем сумму площадей всех квадратов.

Из геометрических соображений ясно, что площадь каждого следующего квадрата равна половине площади предыдущего. Таким образом, последовательность площадей квадратов является геометрической прогрессией, первый член которой равен 16, а знаменатель равен Геометрическая прогрессия Найдем сумму этой геометрической прогрессии:

Геометрическая прогрессия

Геометрическая прогрессия

Значит, сумма площадей всех квадратов равна 32 см2.

Из курса VIII класса нам известно, что каждое рациональное число может быть представлено в виде бесконечной десятичной периодической дроби. Чтобы выразить рациональное число Геометрическая прогрессия — целое число, а n — натуральное, в виде бесконечной десятичной дроби, достаточно разделить числитель на знаменатель. Наоборот, каждая бесконечная десятичная периодическая дробь представляет некоторое рациональное число. Покажем на примере, как с помощью формулы суммы бесконечной геометрической прогрессии можно представить бесконечную десятичную периодическую дробь в виде отношения Геометрическая прогрессия

Пример:

Представим бесконечную десятичную периодическую дробь 0,(18) в виде обыкновенной дроби.

По аналогии с конечными десятичными дробями представим бесконечную десятичную дробь 0,(18) в виде суммы:

Геометрическая прогрессия

Слагаемые в правой части равенства — члены геометрической прогрессии, у которой первый член равен 0,18, а знаменатель равен 0,01, т. е. условие Геометрическая прогрессия выполнено. Найдем сумму этой прогрессии:

Геометрическая прогрессия

Значит,

Геометрическая прогрессия

Таким же способом можно представить в виде обыкновенной дроби любую бесконечную десятичную периодическую дробь.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Показатели в математике
  11. Логарифмы в математике
  12. Исследование уравнений
  13. Уравнения высших степеней
  14. Уравнения высших степеней с одним неизвестным
  15. Комплексные числа
  16. Непрерывная дробь (цепная дробь)
  17. Алгебраические уравнения
  18. Неопределенные уравнения
  19. Соединения
  20. Бином Ньютона
  21. Число е
  22. Непрерывные дроби
  23. Функция
  24. Исследование функций
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат


Калькулятор онлайн.
Сумма геометрической прогрессии.
Дано: b1, q, n
Найти: Sn

Эта математическая программа находит (S_n) – сумму n первых членов геометрической прогрессии, исходя из заданных пользователем чисел
( b_1, q ) и ( n ).
Числа ( b_1 ) и ( q ) можно задать не только целые, но и дробные. Причём, дробное число можно ввести в виде десятичной
дроби ( ( 2,5 ) ) и в виде обыкновенной дроби ( ( -5frac{2}{7} ) ).

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа ( b_1 ) и ( q ) можно задать не только целые, но и дробные.
Число ( n ) может быть только целым положительным.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод:
Результат: ( -frac{2}{3} )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод:
Результат: ( -1frac{2}{3} )

Введите числа b1, q, n

Наши игры, головоломки, эмуляторы:

Немного теории.

Числовая последовательность

В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например,
дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных
номеров в специальных картотеках.

В сберегательном банке по номеру лицевого счёта вкладчика можно легко найти этот счёт и посмотреть, какой вклад на нём лежит.
Пусть на счёте № 1 лежит вклад а1 рублей, на счёте № 2 лежит вклад а2 рублей и т. д. Получается числовая последовательность
a1, a2, a3, …, aN
где N — число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число an.

В математике также изучаются бесконечные числовые последовательности:
a1, a2, a3, …, an, … .

Число a1 называют первым членом последовательности, число a2вторым членом последовательности,
число a3третьим членом последовательности и т. д.
Число an называют n-м (энным) членом последовательности, а натуральное число n — его номером.

Например, в последовательности квадратов натуральных чисел 1, 4, 9, 16, 25, …, n2, (n + 1)2, …
а1 = 1 – первый член последовательности; аn = n2 является n-м членом последовательности;
an+1= (n + 1)2 является (n + 1)-м (эн плюс первым) членом последовательности.
Часто последовательность можно задать формулой её n-го члена.
Например, формулой ( a_n=frac{1}{n}, ; n in mathbb{N} ) задана последовательность
( 1, ; frac{1}{2} , ; frac{1}{3} , ; frac{1}{4} , dots,frac{1}{n} , dots )

Геометрическая прогрессия

Рассмотрим равносторонний треугольник со стороной 4 см. Построим треугольник, вершинами которого являются середины сторон данного
треугольника. По свойству средней линии треугольника сторона второго треугольника равна 2 см. Продолжая аналогичные построения,
получим треугольники со сторонами ( 1, ; frac{1}{2}, ; frac{1}{4} ) см и т.д. Запишем последовательность длин сторон этих
треугольников: ( 4, ; 2, ; 1, ; frac{1}{2}, ; frac{1}{4}, ; frac{1}{8}, dots )

В этой последовательности каждый её член, начиная со второго, равен предыдущему, умноженному на одно и то же число ( frac{1}{2} )

Определение.
Числовая последовательность
b1, b2, b3, …, bn, …
называется геометрической прогрессией если для всех натуральных n выполняется равенство
bn+1 = bnq,
где ( b_n neq 0 ), q — некоторое число, не равное нулю.

Из этой формулы следует, что ( frac{ b_{n+1}}{b_n}=q ). Число q называется знаменателем геометрической прогрессии.

По определению геометрической прогрессии
( b_{n+1} = b_n q, quad b_{n-1}=frac{b_n}{q}, )
откуда
( b_n^2 = b_{n-1}b_{n+1}, quad n>1 )

Если все члены геометрической прогрессии положительны, то ( b_n=sqrt{b_{n-1}b_{n+1}} ), т.е. каждый член прогрессии, начиная
со второго, равен среднему геометрическому двух соседних с ним членов. Этим объясняется название «геометрическая» прогрессия.

Отметим, что если b1 и q заданы, то остальные члены геометрической прогрессии можно вычислить по рекуррентной формуле
bn+1 = bnq. Однако для больших n это трудоёмко. Обычно пользуются формулой n-го члена.

По определению геометрической прогрессии
b2 = b1q,
b3 = b2q = b1q2,
b4 = b3q = b1q3 и т.д.

Вообще,
( b_n = b_1q^{n-1} )
так как n-й член геометрической прогрессии получается из первого члена умножением (n-1) раз на число q.
Эту формулу называют формулой n-го члена геометрической прогрессии.

Также не сложно получить формулу для нахождения n-ого члена геометрической прогрессии зная m-ый член.
Запишем формулы n-го члена геометрической прогрессии и m-го члена:
( b_n = b_1q^{n-1} )
$$ b_m = b_1q^{m-1} Rightarrow b_1 = frac{b_m}{q^{m-1}} $$
Подставляя b1 в первое равенство получим:
$$ b_n = frac{b_m}{q^{m-1}} cdot q^{n-1} = b_m cdot q^{n-1-(m-1)} = b_m cdot q^{n-m} $$
Таким образом мы получили формулу для нахождения n-ого члена геометрической прогрессии зная m-ый член:
( b_n = b_m cdot q^{n-m} )

Сумма n первых членов геометрической прогрессии

Найдем сумму
S = 1 + 3 + 32 + 33 + 34 + 35.
Умножим обе части равенства на 3:
3S = 3 + 3 + 32 + 33 + 34 + 35 + 36.
Перепишем эти два равенства так:
S = 1 + (3 + 32 + 33 + 34 + 35),
3S = (3 + 3 + 32 + 33 + 34 + 35) + 36.

Выражения, стоящие в скобках, одинаковы. Поэтому, вычитая из нижнего равенства верхнее, получаем:
3S – S = 36 – 1,    2S = 36 – 1,
$$ S=frac{3^6 – 1}{2} = frac{729 – 1}{2} = 364 $$

Рассмотрим теперь произвольную геометрическую прогрессию ( b_1, ; b_1q, ; dots, ; b_1q^n, ; dots ) знаменатель
которой ( q neq 1 ).
Пусть Sn – сумма n первых членов этой прогрессии:
( S_n = b_1 + b_1q + b_1q^2 + … + b_1q^{n-1} )
Тогда сумма n первых членов геометрической прогрессии со знаменателем ( q neq 1 ) равна
$$ S_n = frac{b_1(q^n-1)}{q-1} $$

Можно получить ещё одну формулу для нахождения суммы n первых членов геометрической прогрессии:
$$ S_n = frac{b_1(q^n-1)}{q-1} = frac{b_1q^n – b_1}{q-1} = frac{b_1q^{n-1} cdot q – b_1}{q-1} $$
Так как ( b_n=b_1q^{n-1} ), то можно подставить ( b_n ) в предыдущее выражение:
$$ S_n = frac{b_n q – b_1}{q-1} $$

Сумма геометрической прогрессии имеет несколько различных представлений, которые зависят от знаменателя прогрессии. Для возрастающей положительной, отрицательной или знакочередующейся прогрессии имеет место исключительно сумма нескольких первых членов геометрической прогрессии, количество которых должно быть ограничено, так как сама последовательность будет бесконечной.

Для прогрессии, знаменатель которой заключен между нулем и единицей, то есть является правильной дробью (0<к<1), сумма всей последовательности будет вполне однозначным конкретным числом, так как весь числовой ряд будет убывающим. Сумма бесконечно убывающей геометрической прогрессии имеет свою отдельную формулу, которую можно найти в соответствующем разделе, вместе с калькулятором.

Чтобы найти сумму первых членов геометрической прогрессии, необходимо знать первый член и знаменатель прогрессии. Если по условиям задачи дан какой-либо другой член прогрессии, кроме первого, тогда нужно будет сначала воспользоваться формулой первого члена геометрической прогрессии, чтобы вычислить его, и подставить полученное значение в онлайн калькулятор суммы.

Формула суммы первых трех, четырех или n членов геометрической прогрессии выводится с использованием среднего геометрического, как основного свойства данной прогрессии. Любое из чисел, стоящих в ряду, будет равно среднему геометрическому его соседей:

Если объединить это свойство с отношением двух последовательных членов прогрессии, которые неизменно равно одному и тому же числу – знаменателю, то путем нехитрых сокращений, сумма первых нескольких членов геометрической прогрессии приводится к такому виду:

В некоторых источниках встречается похожий вариант, но с другими знаками в скобках – по сути окончательного значения это не меняет, и для ручного расчета, когда даны первые несколько членов, уместно использовать более удобную на момент формулу.

Геометрическая прогрессия

  1. Понятие геометрической прогрессии
  2. Формула n-го члена геометрической прогрессии
  3. Свойства геометрической прогрессии
  4. Сумма первых n членов геометрической прогрессии
  5. Примеры

п.1. Понятие геометрической прогрессии

Геометрической прогрессией называют числовую последовательность, каждый член которой bn, начиная со второго, равен произведению предыдущего члена bn-1 и некоторого постоянного числа q: $$ mathrm{ b_n=b_{n-1}q, ninmathbb{N}, n ge 2, qne 0, qne 1, b_1ne 0 } $$ Число q называют знаменателем геометрической прогрессии.

Например:
1. Последовательность 1, 3, 9, 27, … является геометрической прогрессией с b1 = 1, q = 3.

2. Последовательность (mathrm{9, -3, 1, -frac13, frac19,…}) является геометрической прогрессией с b1 = 9, (mathrm{q=-frac13}).

п.2. Формула n-го члена геометрической прогрессии

По определению геометрической прогрессии мы получаем рекуррентную формулу для n-го члена: bn = bn-1q. Из неё можно вывести аналитическую формулу:

b2 = b1q,   b3 = b2q = (b1q)q = b1q2,   b4 = b3q = (b1q2)q = b1q3,…

Получаем:

bn = b1qn-1

Например:
Найдём b5, если известно, что (mathrm{b_1=frac12, q=2}).
По формуле n-го члена получаем: (mathrm{b_5=b_1q^4=frac12cdot 2^4=2^3=8})

п.3. Свойства геометрической прогрессии

Свойство 1. Экспоненциальный рост/падение

Геометрическая прогрессия с положительными первым членом и знаменателем b1 > 0, q > 0 является показательной функцией вида f(n) = kqn: $$ mathrm{ b_n=frac{b_1}{q}q^n } $$

Свойство 1

Свойство 1

При b1 > 0, q > 1 прогрессия экпоненциально растёт

При b1 > 0, 0 < q < 1 прогрессия экпоненциально падает

Свойство 2. Признак геометрической прогрессии

Для того чтобы числовая последовательность была геометрической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним геометрическим предыдущего и последующего членов: $$ mathrm{ left{b_nright} – text{геометрическая прогрессия} Leftrightarrow b_n=sqrt{b_{n-1}b_{n+1}}, ninmathbb{N}, n geq 2 } $$ Следствие: аждый член прогрессии является средним геометрическим двух равноудалённых от него членов: $$ mathrm{ b_n=sqrt{b_{n-k}b_{n+k}}, ninmathbb{N}, kinmathbb{N}, n geq k+1 } $$

Например:
Найдём b9, если известно, что (mathrm{b_7=frac{1}{16}, b_{11}=4})
По следствию из признака геометрической прогрессии: (mathrm{b_9=sqrt{b_7b_{11}}=sqrt{frac{1}{16}cdot 4}=frac12})

Свойство 3. Равенство сумм индексов

Если {bn} – геометрическая прогрессия, то из равенства сумм индексов следует равенство произведений членов: $$ mathrm{ m+k=p+q Rightarrow b_mb_k=b_pb_q } $$ Следствие: произведение членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ b_1b_n = b_2b_{n-1}=b_3b_{n-2}=… } $$

Например:
Найдём b6, если известно, что b2 = 5, b4 = 10, b8 = 40
По равенству сумм индексов b2b8 = b4b6
Откуда (mathrm{b_6=frac{b_2b_8}{b_4}=frac{5cdot 40}{10}=20})

п.4. Сумма первых n членов геометрической прогрессии

Сумма первых n членов геометрической прогрессии равна $$mathrm{ S_n=frac{b_nq-b_1}{q-1}, qne 1} $$

Если учесть, что bn = b1qn-1, получаем ещё одну формулу для суммы: $$mathrm{ S_n=b_1frac{q^n-1}{q-1}, qne 1} $$

Например:
Найдём сумму первых 10 степеней двойки: 2 + 22 + 23 + … + 210
В этом случае b1 = 2, q = 2, n = 10
Получаем: (mathrm{ S_{10}=2cdot frac{2^{10}-1}{2-1}=2cdot (1024-1)=2046})

п.5. Примеры

Пример 1. Найдите знаменатель геометрической прогрессии и сумму первых 10 членов, если:
а) b5 = 9, b8 = 243
Найдём отношение $$ mathrm{ frac{b_8}{b_5}=frac{b_1cdot q^7}{b_1cdot q^4}=q^3, frac{b_8}{b_5}=frac{243}{9}=27=3^3, q^3=3^3Rightarrow q = 3 } $$ Найдём 1-й член: $$ mathrm{ b_1=frac{b_5}{q^4}=frac{9}{3^4}=frac{3^2}{3^4}=frac{1}{3^2}=frac19 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=frac{3^{10}-1}{9cdot 2}=frac{29524}{9}=3280frac49 } $$ Ответ: q = 3, S10 = (mathrm{3280frac49})

б) b1 = 3, bn = 96, Sn = 189
По формуле суммы: $$ mathrm{ S_{n}=frac{b_nq-b_1}{q-1}Rightarrow 189 =frac{96q-3}{q-1}Rightarrow 189(q-1)=96q-3Rightarrow 93q=186Rightarrow q = 2 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=3cdot frac{2^{10}-1}{2-1}=3cdot 1023=3069 } $$ Ответ: q = 2, S10 = 3069

Пример 2. Между числами (mathrm{40frac12 text{и} 5frac13}) вставьте такие четыре числа, чтобы они вместе с данными числами образовали геометрическую прогрессию.
По условию (mathrm{b_1=40frac12, b_6=5frac13}) $$ mathrm{ frac{b_6}{b_1}=q^5, frac{b_6}{b_1}=5frac13 : 40frac12=frac{16}{3} : frac{81}{2}=frac{16}{3} cdot frac{2}{81}=frac{32}{243}=frac{2^5}{3^5}=left(frac23right)^5 } $$ Знаменатель (mathrm{q=frac23})
Находим промежуточные члены прогрессии: begin{gather*} mathrm{ b_2=b_1q=40frac12cdotfrac23=frac{81}{2}cdot frac23=27, b_3=b_2q=27cdotfrac23=18, }\ mathrm{ b_4=b_3q=18cdotfrac23=12, b_5=b_4q=12cdotfrac23=8 } end{gather*} Ответ: 27, 18, 12 и 8

Пример 3. Найдите первый и последний члены геометрической прогрессии, если: $$ left{ begin{array}{ l } mathrm{b_4-b_2=0,6} & \ mathrm{b_5-b_3=1,2} & \ mathrm{S_n=12,7} & end{array}right. $$ Заметим, что b4=b2q2,   b5=b3q2. Для первых двух уравнений получаем: $$ left{ begin{array}{ l } mathrm{b_2q^2-b_2=0,6} & \ mathrm{b_3q^2-b-3=1,2} & end{array}right. Rightarrow left{ begin{array}{ l } mathrm{b_2(q^2-1)=0,6} & \ mathrm{b_3(q^2-1)=1,2} & end{array}right. $$ Делим второе уравнение на первое: $$ mathrm{ frac{b_3(q^2-1)}{b_2(q^2-1)}=frac{1,2}{0,6}Rightarrowfrac{b_3}{b_2}=q=2 } $$ Подставляем найденное значение знаменателя прогрессии в первое уравнение: $$ mathrm{ b_2(2^2-1)=0,6 Rightarrow b_2=frac{0,6}{3}=0,2 Rightarrow b_1=frac{b_2}{q}=frac{0,2}{2}=0,1 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=0,1cdotfrac{2^n-1}{2-1}=frac{2^n-1}{10}=12,7 Rightarrow 2^n-1=127 Rightarrow }\ mathrm{ Rightarrow 2^n=128=2^7 Rightarrow n=7 } end{gather*} 7-й член b7 = b1q6 = 0,1 · 26 = 6,4
Ответ: b1 = 0,1;   b7 = 6,4

Пример 4. В геометрической прогрессии, все члены которой положительны, сумма первого и второго членов равна 48, а сумма третьего и четвёртого членов равна 12. Найдите значение n, при котором Sn = 63. $$ text{По условию} left{ begin{array}{ l } mathrm{b_1+b_2=48} & \ mathrm{b_3+b_4=12} & \ mathrm{S_n=63} & end{array}right. $$ Заметим, что b3 = b1q2,   b_4=b_2q2. Второе уравнение можно переписать в виде: $$ mathrm{ b_3+b_4=b_1q^2+b2q^2=underbrace{(b_1+b_2)}_{=48} q^2=12 Rightarrow q^2=frac{12}{48}=frac14 Rightarrow q=frac12 } $$ Берём положительное значение q, т.к. по условию все члены положительны.
Из первого уравнения $$ mathrm{ b_1+b_2=b_1(1+q)=48 Rightarrow b_1=frac{48}{1+frac12}=48cdotfrac23=32 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=b_1frac{1-q^n}{1-q}=32cdotfrac{1-frac{1}{2^n}}{1-frac12}=64left(1-frac{1}{2^n}right)=63 }\ mathrm{ 64-frac{64}{2^n}=63 Rightarrow 1=frac{2^6}{2^n} Rightarrow n=6 } end{gather*} Ответ: 6

Пример 5. Бактерия, попав в организм, делится надвое каждые 20 мин. Сколько бактерий будет в организме через сутки?
Сутки – это 24 · 60 = 1440 мин, или n = 1440 : 20 = 72 цикла деления.
По условию необходимо найти

N = N0 · 2n,   где N0 = 1
N = 272 = 4 722 366 482 869 645 213 696 ≈ 4,7 · 1021

Ответ: 4,7 · 1021 бактерий

запиши периодическую дробь (0,(8)) обыкновенной дробью.

Решение.

Достаточно очевидно, что (0,(8)=0,8+0,08+0,008+…)  Слагаемые в правой части равенства образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен (0,8), знаменатель равен (0,1). Найдём сумму по  формуле:

S=b11−q=0,81−0,1

.

Осталось выполнить нужные действия с десятичными дробями:

0,81−0,1=0,80,9=89

.

Таким образом, бесконечная периодическая десятичная дробь (0,(8)) обращается в обыкновенную дробь (8/9).

Ответ: (0,(8)=8/9).

Добавить комментарий