Мы уже знаем, что матрица – это объект, который представляет собой совокупность взаимосвязанных строк (m) и столбцов (n). С ней можно проводить различные действия, от обычного вычитания до транспортирования. Разберёмся с самой простой матричной операцией – сложением.
Сложение матриц — теория
Сложение матриц – это алгоритм вычисления новой матрицы С при помощи попарного суммирования соответствующих элементов матриц А и В.
Формула:
(с_{ij} = a_{ij} + b_{ij})
где i – номер строки, а j – номер столбца.
То есть, чтобы получить, например, элемент (с_{11}), нужно сложить (а_{11}) и (b_{11}).
Когда это возможно, можно ли складывать матрицы разной размерности
Как сложение, так и вычитание матриц возможно только в том случае, когда они равны по размеру.
Также подметим, что нельзя складывать матрицы с обычными целыми числами и дробями. Порядок элементов в таблице менять нельзя.
Экономический смысл сложения матриц
Матрица имеет прикладное значение, так как часто используется в экономике для систематизации информации и облегчения вычислений. К примеру, с помощью неё можно предоставить отчёт о продажах:
Пусть (х_{ij}) – это количество определённого товара, проданного в определённом магазине за первый год. Матрица У – отчёт о продажах за второй год. Тогда, чтобы посчитать сумму продаж за оба года, нужно сложить отчёты Х и У.
Свойства операции сложения матриц
Свойств немного, и все они легки для запоминания:
- Свойство коммутативности: A+ B = B + A.
- Свойство ассоциативности: (A+ B) + C= A + (B + C).
- Свойство дистрибутивности: (A+ B) * C= AC + BC.
При сложении А с нулевой матрицей 0, у которой все элементы равны нулю, исходная матрица не меняется:
А + О = А
При сложении А с противоположной матрицей (-А) сумма равна нулю:
А + (-А) = О
Примеры с решением на нахождение суммы матриц
Задача №1
Даны слагаемые:
Найти: С
Решение
(с_{11} = а_{11} + б_{11} = 2 + 1 = 3)
(с_{12} = а_{12} + б_{12} = 3 + (-3) = 0)
(с_{21} = а_{21} + б_{21} = (-1) + 2 = 1)
(с_{22} = а_{22} + б_{22} = 4 + 5 = 9)
Ответ:
Задача №2
Даны слагаемые:
Найти: С
Решение: так как матрицы разного размера (А = 2 × 3; В = 3 × 2), данная операция невозможна.
Ответ: нет решения.
Не справляетесь с заданиями по учебе? Обращайтесь в ФениксХелп за помощью!
Вначале вспомним основные определения темы. Рассмотрим одно из основных действий. Разберемся в том, как проводится данная операция.
Это прямоугольная таблица каких-либо элементов (ими могут быть числа, буквы, другие объекты).
Она состоит из некоторого числа строк и столбцов, которые образуют размер матрицы. При этом сначала указывают на количество строк, а затем на количество столбцов.
A=(2153)A=begin{pmatrix}2&1\5&3end{pmatrix} имеет размер «два на два», поскольку состоит из 2 строк и 2 столбцов.
B=(349279382143)B=begin{pmatrix}3&4&9\2&7&9\3&8&2\1&4&3end{pmatrix} имеет размер «четыре на три», поскольку состоит из 4 строк и 3 столбцов.
Онлайн-калькулятор
Сложение матриц
Складываем только те матрицы, которые имеют одинаковый размер.
Сложить матрицу «семь на пять» можно только с матрицей «семь на пять», а матрицу «шесть на шесть» только с матрицей «шесть на шесть». Поэтому невозможно найти сумму матриц «пять на семь» и «два на три».
При сложении матриц M и N суммируются их соответствующие элементы. Первый элемент новой матрицы получается сложением первого элемента матрицы M с первым элементом матрицы N, второй элемент новой матрицы — сложением второго элемента матрицы M со вторым элементом матрицы N. Также поступаем с остальными элементами.
Найдем сумму M=(m11m12m21m22)M=begin{pmatrix}m_{11}&m_{12}\m_{21}&m_{22}end{pmatrix} и N=(n11n12n21n22)N=begin{pmatrix}n_{11}&n_{12}\n_{21}&n_{22}end{pmatrix}.
M+N=(m11m12m21m22)+(n11n12n21n22)=(m11+n11m12+n12m21+n21m22+n22)M+N=begin{pmatrix}m_{11}&m_{12}\m_{21}&m_{22}end{pmatrix}+begin{pmatrix}n_{11}&n_{12}\n_{21}&n_{22}end{pmatrix}=begin{pmatrix}m_{11}+n_{11}&m_{12}+n_{12}\m_{21}+n_{21}&m_{22}+n_{22}end{pmatrix}.
Пример 1
Найдем сумму C=(1375)C=begin{pmatrix}1&3\7&5end{pmatrix} и D=(2698)D=begin{pmatrix}2&6\9&8end{pmatrix}.
C+D=(1375)+(2698)=(1+23+67+95+8)=(391613)C+D=begin{pmatrix}1&3\7&5end{pmatrix}+begin{pmatrix}2&6\9&8end{pmatrix}=begin{pmatrix}1+2&3+6\7+9&5+8end{pmatrix}=begin{pmatrix}3&9\16&13end{pmatrix}.
Пример 2
Найдем сумму E=(105974)E=begin{pmatrix}1&0\5&9\7&4end{pmatrix} и F=(35−4108)F=begin{pmatrix}3&5\-4&1\0&8end{pmatrix}.
E+F=(105974)+(35−4108)=(1+30+55+(−4)9+17+04+8)=(1+30+55−49+17+04+8)=(45110712)E+F=begin{pmatrix}1&0\5&9\7&4end{pmatrix}+begin{pmatrix}3&5\-4&1\0&8end{pmatrix}=begin{pmatrix}1+3&0+5\5+(-4)&9+1\7+0&4+8end{pmatrix}=begin{pmatrix}1+3&0+5\5-4&9+1\7+0&4+8end{pmatrix}=begin{pmatrix}4&5\1&10\7&12end{pmatrix}.
Так выполняется сложение матриц любого размера.
Помощь с выполнением контрольной работы по алгебре и другим предметам от профильных экспертов!
Тест по теме “Сложение матриц”
Калькулятор матриц – действия с матрицами онлайн
С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.
Матричный калькулятор
Матрица A
Матрица B
Показатель степени:
Число:
Метод поиска обратной матрицы
Метод Гауса-Жордана
Метод союзной матрицы
Метод решения СЛАУ AX=B
Метод Гауса
Матричный метод
Метод Крамера
Элементарное преобразование
и
Выводить числа в виде
с знаками после запятой
Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji
Выполнено действий:
Также может быть интересно:
- Калькулятор таблицы истинности. СДНФ. СКНФ. Полином Жегалкина
- Калькулятор комплексных чисел
Как пользоваться калькулятором матриц
- Выберите матрицу (или матрицы) с помощью переключателей ()
- Укажите размер с помощью выпадающих списков под матрицей ( × )
- Заполните элементы (нулевые элементы можно не заполнять.)
- Выберите в выпадающем списке требуемую функцию и, если требуется, введите дополнительные параметры.
- Нажмите кнопку .
- Если вывод чисел не устраивает, просто поменяйте его — доступны три варианта представления: правильные дроби (2), неправильные дроби () и десятичные дроби (2.4) с указанием числа знаков после запятой.
Ввод данных и функционал
- В качестве элементов используются обыкновенные правильные дроби (
1/2
,29/7
,-1/125
), десятичные дроби (12
,-0.01
,3.14
), а также числа в экспоненциальной форме (2.5e3
,1e-2
). - Длина вводимых чисел ничем не ограничена, вводите хоть 1000 цифр, правда, возможно, придётся подождать, пока будут идти вычисления!
- Используйте для работы одну или две матрицы (чтобы выполнять операции с двумя матрицами, передвиньте переключатель второй матрицы).
- Вставляйте результат в A или B с помощью кнопок “Вставить в A” и “Вставить в B”.
- Перетаскивайте (drag-and-drop) матрицы из результата в A или B.
- Используйте стрелки (
←
,↑
,→
,↓
) для перемещения по элементам
Что умеет наш калькулятор матриц?
С одной матрицей (только Матрица A или Матрица B)
- Транспонировать;
- Вычислять определитель;
- Находить ранг и след;
- Возводить в степень;
- Умножать на число;
- Вычислять обратную матрицу;
- Приводить к треугольному и ступенчатому вид;
- Находить LU-разложение;
- Выполнять элементарные преобразования;
- Выполнять действия с выражениями, содержащими матрицы.
С двумя матрицами (Матрица A и Матрица B)
- Складывать;
- Вычитать;
- Умножать;
- Решать системы линейных алгебраических уравнений (СЛАУ) вида AX=B;
- Выполнять действия с выражениями, содержащими матрицы.
Вычисление выражений с матрицами
Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.
Из чего могут состоять выражения?
- Целые и дробные числа
- Матрицы A, B
- Знаки арифметических действий:
+
-
*
/
- Круглые скобки для изменения приоритета операций:
(
)
- Транспонирование:
^T
- Возведение в целую степень:
^
Примеры корректных выражений
- Cложение двух матриц:
A+B
,(A)+(B)
,((A) + B)
- Возведение линейной комбинации матриц в степень:
(3A - 0.5B)^5
- Произведение транспонированной матрицы на исходную:
A^TA
- Обратная матрица в квадрате для B:
B^-2
Что такое матрица?
Матрицей размера n×m
называется прямоугольная таблица специального вида, состоящая из n
строк и m
столбцов, заполненная числами. Матрицы обозначаются заглавными латинскими буквами. При необходимости размер записывается следующим образом: An×m
.
Примеры матриц
Элементы матрицы
Элементы A
обозначаются aij
, где i
– номер строки, в которой находится элемент, j
– номер столбца.
Некоторые теоретические сведения
Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji
Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii
Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.
Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)
След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A)
или track(A)
Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.
Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: An
Обратная матрица A−1 — матрица, произведение которой на исходную матрицу A равно единичной матрице: A-1×A = A×A-1 = E
Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.
LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U
Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij
Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij
Умножение матриц An×k и Bk×m — матрица Cn×m, у которой элемент (cij) равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B: cij = ai1·b1j + ai2·b2j + ... + aik·bkj
Сложение матриц онлайн
Выберите размер матриц:
Введите значения матриц:
Определение суммы матриц
Суммой матриц A и B одинаковой размерности называется матрица той же размерности, обозначаемая A + B, каждый элемент которой равен сумме соответственных элементов матриц A и B, т.е. если A = (aij)m×n и B = (bij)m×n, то A + B = (aij + bij)m×n, где i = 1, 2, …, m; j = 1, 2, …, n
+
=
a11+b11 | a12+b12 |
a21+b21 | a22+b22 |
Свойства сложения матриц
Складывать можно матрицы только одинаковой размерности.
A + B = B + A для любых матриц A и B одинаковой размерности. Это коммутативное(переместительное) свойство сложения матриц.
(A + B) + C = A + (B + C) для любых матриц A, B и C одинаковой размерности. Это ассоциативное(сочетательное) свойство сложения матриц.
A + O = A для любых матриц A и O одинаковой размерности, где O — нулевая матрица.
Примеры сложения матриц
Пример сложения матрицы 2×2
Даны две матрицы A и B размерностью 2×2
Необходимо найти матрицу C = A + B
c11 = a11 + b11 = 4 + 3 = 7
c12 = a12 + b12 = 5 + 2 = 7
c21 = a21 + b21 = 7 + 6 = 13
c22 = a22 + b22 = 3 + 7 = 10
Пример сложения матрицы 3×3
Даны две матрицы A и B размерностью 3×3
Необходимо найти матрицу C = A + B
a11 | a12 | a13 |
a21 | a22 | a23 |
a31 | a32 | a33 |
+
b11 | b12 | b13 |
b21 | b22 | b23 |
b31 | b32 | b33 |
=
c11 | c12 | c13 |
c21 | c22 | c23 |
c31 | c32 | c33 |
c11 = a11 + b11 = 3 + 7 = 10
c12 = a12 + b12 = 5 + 2 = 7
c13 = a13 + b13 = 9 + 1 = 10
c21 = a21 + b21 = 1 + 6 = 7
c22 = a22 + b22 = 7 + 3 = 10
c23 = a23 + b23 = 3 + 8 = 11
c31 = a31 + b31 = 9 + 4 = 13
c32 = a32 + b32 = 2 + 2 = 4
c33 = a33 + b33 = 1 + 5 = 6
Похожие калькуляторы
Сложение матриц
Сложение матриц А
и В
– это нахождение такой матрицы С
,
все элементы которой представляют собой сложенные попарно соответствующие элементы исходных матриц А
и В
.
Складывать допускается только матрицы одинаковой размерности (допустим m × n
),
т.е. имеющие равное количество строк и равное количество столбцов.
Таким образом, математически сумма матриц выглядит так:
Аm×n + Bm×n = Cm×n
Каждый элемент искомой матрицы равен сумме соответствующих элементов заданных матриц:
cij = aij + bij
,
где i принимает значение от 1 до m, j имеет значения от 1 до n.
Рассмотрим пример сложения двух матриц размера 2 × 3
.
Даны две матрицы:
Найти сумму матриц А
и В
.
Решение:
Свойства сложения матриц:
- Коммутативность – переместительный математический закон, согласно которому результат сложения матриц не зависит
от их перестановки.A + В = В + А
- Ассоциативность – сочетательный математический закон, согласно которому результат сложения матриц не зависит
от последовательности расстановки скобок.
А + (В + С) = (А + В) + С
-
Сложение с нулевой матрицей – для любой матрицы существует нейтральный элемент, которым является нулевая матрица,
сложение с которым не изменяет исходную матрицу.
Нулевая матрицаO
– матрица, все элементы
которой имеют нулевое значение.
А + О = А
-
Существование противоположной матрицы – для ненулевой матрицы
А
всегда существует матрица
–А
, суммой которых является нулевая матрица.
А + (-А) = О
Вы также можете
в качестве элементов матрицы вводить целые и дробные числа, а также выражения с переменной x
(например, в ячейку матрицы можно ввести 2x
, или sin(x)
, или даже ((x+2)^2)/lg(x)
).
Полный список доступных функций можно найти в справке.