Как найти сумму матрицы 3х3

Мы уже знаем, что матрица – это объект, который представляет собой совокупность взаимосвязанных строк (m) и столбцов (n). С ней можно проводить различные действия, от обычного вычитания до транспортирования. Разберёмся с самой простой матричной операцией – сложением.

Сложение матриц — теория

Сложение матриц – это алгоритм вычисления новой матрицы С при помощи попарного суммирования соответствующих элементов матриц А и В.

Формула:

(с_{ij} = a_{ij} + b_{ij})

где i – номер строки, а j – номер столбца.

Сложение матриц

 

То есть, чтобы получить, например, элемент (с_{11}), нужно сложить (а_{11}) и (b_{11})

Когда это возможно, можно ли складывать матрицы разной размерности

Как сложение, так и вычитание матриц возможно только в том случае, когда они равны по размеру.

Матрицы

 

Также подметим, что нельзя складывать матрицы с обычными целыми числами и дробями. Порядок элементов в таблице менять нельзя.

Экономический смысл сложения матриц

Матрица имеет прикладное значение, так как часто используется в экономике для систематизации информации и облегчения вычислений. К примеру, с помощью неё можно предоставить отчёт о продажах:

Экономический смысл

 

Пусть (х_{ij}) – это количество определённого товара, проданного в определённом магазине за первый год. Матрица У – отчёт о продажах за второй год. Тогда, чтобы посчитать сумму продаж за оба года, нужно сложить отчёты Х и У.

Свойства операции сложения матриц

Свойств немного, и все они легки для запоминания:

  1. Свойство коммутативности: AB = B + A.
  2. Свойство ассоциативности: (AB) + CA + (B + C).
  3. Свойство дистрибутивности: (AB) * CAC + BC.

При сложении А с нулевой матрицей 0, у которой все элементы равны нулю, исходная матрица не меняется:

А + О = А

При сложении А с противоположной матрицей (-А) сумма равна нулю:

А + (-А) = О

Примеры с решением на нахождение суммы матриц

Задача №1

Даны слагаемые:

Задача

 

Найти: С

Решение

(с_{11} = а_{11} + б_{11} = 2 + 1 = 3)

(с_{12} = а_{12} + б_{12} = 3 + (-3) = 0)

(с_{21} = а_{21} + б_{21} = (-1) + 2 = 1)

(с_{22} = а_{22} + б_{22} = 4 + 5 = 9)

Ответ:  

Решение

 

Задача №2

Даны слагаемые:

Задача 2

 

Найти: С

Решение: так как матрицы разного размера (А = 2 × 3; В = 3 × 2), данная операция невозможна.

Ответ: нет решения.

Не справляетесь с заданиями по учебе? Обращайтесь в ФениксХелп за помощью!

Вначале вспомним основные определения темы. Рассмотрим одно из основных действий. Разберемся в том, как проводится данная операция.

Матрица

Это прямоугольная таблица каких-либо элементов (ими могут быть числа, буквы, другие объекты).

Она состоит из некоторого числа строк и столбцов, которые образуют размер матрицы. При этом сначала указывают на количество строк, а затем на количество столбцов.

A=(2153)A=begin{pmatrix}2&1\5&3end{pmatrix} имеет размер «два на два», поскольку состоит из 2 строк и 2 столбцов.

B=(349279382143)B=begin{pmatrix}3&4&9\2&7&9\3&8&2\1&4&3end{pmatrix} имеет размер «четыре на три», поскольку состоит из 4 строк и 3 столбцов.

Онлайн-калькулятор

Сложение матриц

Складываем только те матрицы, которые имеют одинаковый размер.

Сложить матрицу «семь на пять» можно только с матрицей «семь на пять», а матрицу «шесть на шесть» только с матрицей «шесть на шесть». Поэтому невозможно найти сумму матриц «пять на семь» и «два на три».

При сложении матриц M и N суммируются их соответствующие элементы. Первый элемент новой матрицы получается сложением первого элемента матрицы M с первым элементом матрицы N, второй элемент новой матрицы — сложением второго элемента матрицы M со вторым элементом матрицы N. Также поступаем с остальными элементами.

Найдем сумму M=(m11m12m21m22)M=begin{pmatrix}m_{11}&m_{12}\m_{21}&m_{22}end{pmatrix} и N=(n11n12n21n22)N=begin{pmatrix}n_{11}&n_{12}\n_{21}&n_{22}end{pmatrix}.

M+N=(m11m12m21m22)+(n11n12n21n22)=(m11+n11m12+n12m21+n21m22+n22)M+N=begin{pmatrix}m_{11}&m_{12}\m_{21}&m_{22}end{pmatrix}+begin{pmatrix}n_{11}&n_{12}\n_{21}&n_{22}end{pmatrix}=begin{pmatrix}m_{11}+n_{11}&m_{12}+n_{12}\m_{21}+n_{21}&m_{22}+n_{22}end{pmatrix}.

Пример 1

Найдем сумму C=(1375)C=begin{pmatrix}1&3\7&5end{pmatrix} и D=(2698)D=begin{pmatrix}2&6\9&8end{pmatrix}.

C+D=(1375)+(2698)=(1+23+67+95+8)=(391613)C+D=begin{pmatrix}1&3\7&5end{pmatrix}+begin{pmatrix}2&6\9&8end{pmatrix}=begin{pmatrix}1+2&3+6\7+9&5+8end{pmatrix}=begin{pmatrix}3&9\16&13end{pmatrix}.

Пример 2

Найдем сумму E=(105974)E=begin{pmatrix}1&0\5&9\7&4end{pmatrix} и F=(35−4108)F=begin{pmatrix}3&5\-4&1\0&8end{pmatrix}.

E+F=(105974)+(35−4108)=(1+30+55+(−4)9+17+04+8)=(1+30+55−49+17+04+8)=(45110712)E+F=begin{pmatrix}1&0\5&9\7&4end{pmatrix}+begin{pmatrix}3&5\-4&1\0&8end{pmatrix}=begin{pmatrix}1+3&0+5\5+(-4)&9+1\7+0&4+8end{pmatrix}=begin{pmatrix}1+3&0+5\5-4&9+1\7+0&4+8end{pmatrix}=begin{pmatrix}4&5\1&10\7&12end{pmatrix}.

Так выполняется сложение матриц любого размера.

Помощь с выполнением контрольной работы по алгебре и другим предметам от профильных экспертов!

Тест по теме “Сложение матриц”

Калькулятор матриц – действия с матрицами онлайн

С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.

Матричный калькулятор

Матрица A
Матрица B

Показатель степени:

Число:

Метод поиска обратной матрицы
Метод Гауса-Жордана
Метод союзной матрицы

Метод решения СЛАУ AX=B
Метод Гауса
Матричный метод
Метод Крамера

Элементарное преобразование

и

Выводить числа в виде

с знаками после запятой

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji

Выполнено действий:

Также может быть интересно:

  • Калькулятор таблицы истинности. СДНФ. СКНФ. Полином Жегалкина
  • Калькулятор комплексных чисел

Как пользоваться калькулятором матриц

  1. Выберите матрицу (или матрицы) с помощью переключателей ()
  2. Укажите размер с помощью выпадающих списков под матрицей ( × )
  3. Заполните элементы (нулевые элементы можно не заполнять.)
  4. Выберите в выпадающем списке требуемую функцию и, если требуется, введите дополнительные параметры.
  5. Нажмите кнопку .
  6. Если вывод чисел не устраивает, просто поменяйте его — доступны три варианта представления: правильные дроби (2), неправильные дроби () и десятичные дроби (2.4) с указанием числа знаков после запятой.

Ввод данных и функционал

  • В качестве элементов используются обыкновенные правильные дроби (1/2, 29/7, -1/125), десятичные дроби (12, -0.01, 3.14), а также числа в экспоненциальной форме (2.5e3, 1e-2).
  • Длина вводимых чисел ничем не ограничена, вводите хоть 1000 цифр, правда, возможно, придётся подождать, пока будут идти вычисления!
  • Используйте для работы одну или две матрицы (чтобы выполнять операции с двумя матрицами, передвиньте переключатель второй матрицы).
  • Вставляйте результат в A или B с помощью кнопок “Вставить в A” и “Вставить в B”.
  • Перетаскивайте (drag-and-drop) матрицы из результата в A или B.
  • Используйте стрелки (, , , ) для перемещения по элементам

Что умеет наш калькулятор матриц?

С одной матрицей (только Матрица A или Матрица B)

  • Транспонировать;
  • Вычислять определитель;
  • Находить ранг и след;
  • Возводить в степень;
  • Умножать на число;
  • Вычислять обратную матрицу;
  • Приводить к треугольному и ступенчатому вид;
  • Находить LU-разложение;
  • Выполнять элементарные преобразования;
  • Выполнять действия с выражениями, содержащими матрицы.

С двумя матрицами (Матрица A и Матрица B)

  • Складывать;
  • Вычитать;
  • Умножать;
  • Решать системы линейных алгебраических уравнений (СЛАУ) вида AX=B;
  • Выполнять действия с выражениями, содержащими матрицы.

Вычисление выражений с матрицами

Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.

Из чего могут состоять выражения?

  • Целые и дробные числа
  • Матрицы A, B
  • Знаки арифметических действий: + - * /
  • Круглые скобки для изменения приоритета операций: ( )
  • Транспонирование: ^T
  • Возведение в целую степень: ^

Примеры корректных выражений

  • Cложение двух матриц: A+B, (A)+(B), ((A) + B)
  • Возведение линейной комбинации матриц в степень: (3A - 0.5B)^5
  • Произведение транспонированной матрицы на исходную: A^TA
  • Обратная матрица в квадрате для B: B^-2

Что такое матрица?

Матрицей размера n×m называется прямоугольная таблица специального вида, состоящая из n строк и m столбцов, заполненная числами. Матрицы обозначаются заглавными латинскими буквами. При необходимости размер записывается следующим образом: An×m.

Примеры матриц

Элементы матрицы

Элементы A обозначаются aij, где i – номер строки, в которой находится элемент, j – номер столбца.

Некоторые теоретические сведения

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji

Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii

Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.

Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)

След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)

Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.

Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: An

Обратная матрица A−1 — матрица, произведение которой на исходную матрицу A равно единичной матрице: A-1×A = A×A-1 = E

Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.

LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U

Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij

Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij

Умножение матриц An×k и Bk×m — матрица Cn×m, у которой элемент (cij) равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B: cij = ai1·b1j + ai2·b2j + ... + aik·bkj

Сложение матриц онлайн

Выберите размер матриц:

Введите значения матриц:

Определение суммы матриц

Суммой матриц A и B одинаковой размерности называется матрица той же размерности, обозначаемая A + B, каждый элемент которой равен сумме соответственных элементов матриц A и B, т.е. если A = (aij)m×n и B = (bij)m×n, то A + B = (aij + bij)m×n, где i = 1, 2, …, m; j = 1, 2, …, n

+

=

a11+b11 a12+b12
a21+b21 a22+b22

Свойства сложения матриц

Складывать можно матрицы только одинаковой размерности.

A + B = B + A для любых матриц A и B одинаковой размерности. Это коммутативное(переместительное) свойство сложения матриц.

(A + B) + C = A + (B + C) для любых матриц A, B и C одинаковой размерности. Это ассоциативное(сочетательное) свойство сложения матриц.

A + O = A для любых матриц A и O одинаковой размерности, где O — нулевая матрица.

Примеры сложения матриц

Пример сложения матрицы 2×2

Даны две матрицы A и B размерностью 2×2

Необходимо найти матрицу C = A + B

c11 = a11 + b11 = 4 + 3 = 7

c12 = a12 + b12 = 5 + 2 = 7

c21 = a21 + b21 = 7 + 6 = 13

c22 = a22 + b22 = 3 + 7 = 10


Пример сложения матрицы 3×3

Даны две матрицы A и B размерностью 3×3

Необходимо найти матрицу C = A + B

a11 a12 a13
a21 a22 a23
a31 a32 a33

+

b11 b12 b13
b21 b22 b23
b31 b32 b33

=

c11 c12 c13
c21 c22 c23
c31 c32 c33

c11 = a11 + b11 = 3 + 7 = 10

c12 = a12 + b12 = 5 + 2 = 7

c13 = a13 + b13 = 9 + 1 = 10

c21 = a21 + b21 = 1 + 6 = 7

c22 = a22 + b22 = 7 + 3 = 10

c23 = a23 + b23 = 3 + 8 = 11

c31 = a31 + b31 = 9 + 4 = 13

c32 = a32 + b32 = 2 + 2 = 4

c33 = a33 + b33 = 1 + 5 = 6

Похожие калькуляторы

Сложение матриц

Сложение матриц А и В – это нахождение такой матрицы С,
все элементы которой представляют собой сложенные попарно соответствующие элементы исходных матриц А и В.
Складывать допускается только матрицы одинаковой размерности (допустим m × n),
т.е. имеющие равное количество строк и равное количество столбцов.

Таким образом, математически сумма матриц выглядит так:

Аm×n + Bm×n = Cm×n

Каждый элемент искомой матрицы равен сумме соответствующих элементов заданных матриц:

cij = aij + bij,

где i принимает значение от 1 до m, j имеет значения от 1 до n.

Рассмотрим пример сложения двух матриц размера 2 × 3.
Даны две матрицы:
Матрицы, которые нобходимо сложить

Найти сумму матриц А и В.
Решение:
Пример сложения двух матриц

Свойства сложения матриц:

  1. Коммутативность – переместительный математический закон, согласно которому результат сложения матриц не зависит
    от их перестановки.
    A + В = В + А
  2. Ассоциативность – сочетательный математический закон, согласно которому результат сложения матриц не зависит
    от последовательности расстановки скобок.
    А + (В + С) = (А + В) + С
  3. Сложение с нулевой матрицей – для любой матрицы существует нейтральный элемент, которым является нулевая матрица,
    сложение с которым не изменяет исходную матрицу.
    Нулевая матрица O – матрица, все элементы
    которой имеют нулевое значение.
    А + О = А
  4. Существование противоположной матрицы – для ненулевой матрицы А всегда существует матрица
    –А, суммой которых является нулевая матрица.
    А + (-А) = О

Вы также можете

в качестве элементов матрицы вводить целые и дробные числа, а также выражения с переменной x
(например, в ячейку матрицы можно ввести 2x, или sin(x), или даже ((x+2)^2)/lg(x)).

Полный список доступных функций можно найти в справке.

Добавить комментарий