Как найти сумму острого угла

Сумма углов треугольника равна (180°).

Pierad.png

Доказательство

Рассмотрим произвольный треугольник (KLM) и докажем, что

 (K) (+)

 (L) (+)

 (M =)

180°

.

1. Через вершину (L) параллельно стороне (KM) проведём прямую (a).

2. При пересечении параллельных прямых (a) и (KM) секущей (KL), углы, которые обозначаются (1), будут накрест лежащими углами,  а углы, обозначенные (2) — это накрест лежащие углы при пересечении этих же параллельных прямых секущей (ML).

Очевидно, сумма углов (1), (2) и (3) равна развёрнутому углу с вершиной (L), т. е. 

 (1) (+)

 (2) (+)

 (3 =)

180°

, или

 (K) (+)

 (L) (+)

 (M =)

180°

.

Теорема доказана.

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна

90°

.

Следствие 2.  В равнобедренном прямоугольном треугольнике каждый острый угол равен

45°

.

Следствие 3.  В равностороннем треугольнике каждый угол равен

60°

.

Следствие 4.  В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Arejsl.png

Доказательство

Из равенств

 (KML) (+)

 (BML=)

180°

 и

 (K) (+)

 (L) (+)

 (KML =)

180°

 получаем, что

 (BML =)

 (K) (+)

 (L).

Остроугольный, прямоугольный и тупоугольный треугольники

Как гласит четвёртое следствие из теоремы о сумме углов треугольника, можно выделить три вида треугольников в зависимости от углов.

Saurl.png

У треугольника (KLM) все углы острые.

Taisnl.png

У треугольника (KMN) угол (K = 90)

°

.

У прямоугольного треугольника сторона, лежащая против прямого угла, называется гипотенузой, а две остальные стороны — катетами.

На рисунке (MN) — гипотенуза, (MK) и (KN) — катеты.

Platl.png

У треугольника (KLM) один угол тупой.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 марта 2023 года; проверки требуют 6 правок.

Теорема о сумме углов треугольника — классическая теорема евклидовой геометрии.

Формулировка[править | править код]

Сумма углов любого треугольника на евклидовой плоскости равна 180°.[1]

Доказательство[править | править код]

Пусть {displaystyle Delta {mathcal {ABC}}} — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.

Следствия[править | править код]

  • В треугольнике не может быть двух тупых или двух прямых углов, потому что тогда сумма углов была бы больше 180°. По той же причине треугольник не может содержать тупой и прямой углы одновременно.
  • У любого треугольника не меньше двух острых углов. Действительно, случай, когда у треугольника только один острый угол или вообще нет острых углов, противоречит предыдущему следствию.
  • В прямоугольном треугольнике оба угла при гипотенузе — острые.
  • В равнобедренном треугольнике углы при основании равны, поэтому тупым может быть только угол, противолежащий основанию.
  • В равнобедренном прямоугольном треугольнике углы при гипотенузе равны (180° — 90°) /2 = 45°.
  • В равностороннем треугольнике все три угла совпадают и поэтому равны 180° / 3 = 60°.
  • (Теорема о внешнем угле треугольника) Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним[2].

Вариации и обобщения[править | править код]

Многоугольники[править | править код]

Обобщение для симплексов[править | править код]

Существует более сложное соотношение между двугранными углами произвольного симплекса. А именно, если L_{{ij}} — угол между i и j гранями симплекса, то определитель следующей матрицы (являющейся циркулянтом) равен 0:

{displaystyle {begin{vmatrix}1&-cos L_{12}&-cos L_{13}&dots &-cos L_{1(n+1)}\-cos L_{21}&1&-cos L_{23}&dots &-cos L_{2(n+1)}\-cos L_{31}&-cos L_{32}&1&dots &-cos L_{3(n+1)}\vdots &vdots &vdots &ddots &vdots &\-cos L_{(n+1)1}&-cos L_{(n+1)2}&-cos L_{(n+1)3}&dots &1\end{vmatrix}}=0}.

Это следует из того, что этот определитель является определителем Грама нормалей к граням симплекса, а определитель Грама линейно зависимых векторов равен 0, и n+1 вектор в n-мерном пространстве всегда линейно зависимы.

В неевклидовых геометриях[править | править код]

Приведённое в этой статье доказательство опирается на определённое свойство параллельных прямых, а именно — утверждение о том, что внутренние накрест лежащие углы при параллельных прямых равны. Доказательство этого утверждения, в свою очередь, использует аксиому параллельности евклидовой геометрии. Можно показать, что любое доказательство теоремы о сумме углов треугольника будет использовать аксиому параллельности, и наоборот — из утверждения, что сумма углов треугольника равна 180°, можно вывести аксиому параллельности, если даны остальные аксиомы классической геометрии (абсолютная геометрия)[3].

Таким образом, равенство суммы углов треугольника 180° является одним из основных признаков именно евклидовой геометрии, отличающих её от неевклидовых, в которых аксиома параллельности не выполняется:

  • На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника. У сферического треугольника могут быть два или даже три прямых или тупых угла.
Пример. Одна вершина треугольника на сфере — северный полюс. Этот угол может иметь значение до 180°. Две другие вершины лежат на экваторе, соответствующие углы равны 90°.
  • В геометрии Лобачевского сумма углов треугольника всегда меньше 180° и может быть сколь угодно малой. Разность также пропорциональна площади треугольника.

Примечания[править | править код]

  1. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, § 81.
  2. Элементарная математика, 1976, с. 421.
  3. Лелон-Ферран Ж. Основания геометрии. — М.: Мир, 1989. — С. 255—256. — 312 с. — ISBN 5-03-001008-4.

Литература[править | править код]

  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Сумма углов треугольника:

Великий французский ученый XVII в. Блез Паскаль (1623—1662) еще в детстве любил изучать геометрические фигуры, открывать их свойства, измерять углы транспортиром.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Юный исследователь заметил, что у любого треугольника сумма углов одна и та Ж6 180°. «Как же это объяснить?» — думал Паскаль. Тогда он отрезал у треугольника два уголка и приложил их к третьему (рис. 219). Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие! Дальнейшая судьба мальчика была предопределена.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Теорема. Сумма углов треугольника равна 180°.

Дано: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВС (рис. 220).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Доказать: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA+Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC = 180°.

Доказательство:

Через вершину В треугольника ABC проведем прямую КМ, параллельную стороне АС. Тогда Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияKBA =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей АВ, aСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияMBC =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей ВС. Так как углы КВА, ABC и МВС образуют развернутый угол, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияKBA +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияABC +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияMBC = 180°. ОтсюдаСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC = 180°. Теорема доказана.

Следствия.

1.    Каждый угол равностороннего треугольника равен 60°. (рис. 221).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

2.    Сумма острых углов прямоугольного треугольника равна 90° (рис. 222).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

В прямоугольном треугольнике стороны, заключающие прямой угол, называются катетами, сторона, противолежащая прямому углу, — гипотенузой (см. рис. 222).    

Проведем в прямоугольном треугольнике ABC высоту СН к гипотенузе АВ (рис. 223). Так как в треугольнике ABC угол 1 дополняет угол В до 90°, а в треугольнике СНВ угол 2 также дополняет угол В до 90°, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решения1 =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения2.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Доказано свойство: «Угол между высотой прямоугольного треугольника, проведенной к гипотенузе, и катетом равен углу между другим катетом и гипотенузой».

Пример:

В треугольнике ABC градусные меры углов А, В и С относятся соответственно как 5:7:3. Найти углы треугольника (рис. 224).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Решение:

Пусть Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения (Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения — градусная мера одной части).

Так как сумма углов треугольника равна 180°, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Тогда Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения 

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Ответ: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

В треугольнике ABC (рис. 225) угол В равен 70°, АК и СМ — биссектрисы, О — точка их пересечения. Найти угол АОС между биссектрисами.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Решение:

Сумма углов А и С треугольника ABC равна 180° – 70° = 110°. Так как биссектриса делит угол пополам, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияСумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Из треугольника АОС находим: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Ответ: 125°.

Замечание. Если Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения то, рассуждая аналогично, получим формулу: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения Если, например, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то данный треугольник — прямоугольный.

Доказательство:

Пусть СМ — медиана, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения (рис. 226).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Докажем, чтоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = 90°. Обозначим Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияВ = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Так как медиана делит сторону пополам, то AM = MB = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения АВ. Тогда СМ=АМ=МВ. Так как Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАМС — равнобедренный, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения как углы при основании равнобедренного треугольника. Аналогично, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияСМВ — равнобедренный и Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Сумма углов треугольника ABC, с одной стороны, равна 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, с другой — равна 180°. Отсюда 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения = 180°, 2(Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения) = 180°, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения = 90°. НоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, поэтому

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = 90°. 

Замечание. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. На рисунке 227 это угол АСВ. Из задачи 3 следует свойство: «Вписанный угол, опирающийся на диаметр, — прямой». 

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Доказательство:

Пусть в треугольнике ABC (рис. 228) Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC=90°,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Проведем отрезок СМ так, чтоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, и докажем, что СМ — медиана и что СМ=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВ. Угол В дополняет угол А до 90°, aСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM дополняетСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM до 90°. Поскольку Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Треугольники АМС и ВМС — равнобедренные по признаку равнобедренного треугольника. Тогда AM = МС и МВ = МС. Отсюда СМ — медиана и СМ = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВ.

  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Четырехугольник и его элементы
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике

Здравствуйте, уважаемые читатели. В этой статье рассмотрим задачи по геометрии за 7 класс. Задачи на применение теоремы о сумме углов треугольника. Они встречаются в 15 задании ОГЭ по математике.

Вспомним теорему о сумме углов треугольника:

Сумма углов в треугольнике равна 180 градусам.

Задача №1

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Сумма всех углов в треугольнике равна 180 градусам. Нам известны два угла в треугольнике. Они равны 72 и 42 градуса. Значит, третий угол равен:

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 66

Задача №2

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Отметив известный угол на чертеже. Необходимо найти внешний угол треугольника, который обозначен красным цветом.

Внешний угол треугольника – называется угол, который смежный с каким-нибудь внутренним углом этого треугольника.

Свойство смежных углов:

Смежный угол треугольника равен 180 градусам.

Рядом с чертежом треугольника сделаем смежные углы.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Теперь найдем угол, смежный с углом в 115 градусов.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 65

Задача №3

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

В треугольнике АВС АВ=ВС, т.е. две стороны равны. Значит треугольник равнобедренный. Третья сторона – основание.

Свойство равнобедренного треугольника:

В равнобедренном треугольнике углы при основании равны

Отметим на чертеже равные углы одинаковыми дугами и известный угол АВС.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.
Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 37

Задача №4

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Прямой угол на чертеже обозначается квадратиком и равен 90 градусов.

Отметим на чертеже все известные углы

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение задачи через теорему о сумме углов в треугольнике:

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение задачи через свойство прямоугольного треугольника

Сумма острых углов прямоугольного треугольника равна 90 градусам

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 69

Задача №5

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Отметим на чертеже известные углы. Для того чтобы найти угол АВН, нужно рассмотреть треугольник АВН (прямоугольный с прямым углом АНВ=90). В решении этой задачи можно воспользоваться теоремой о сумме углов треугольника или свойством острых углов прямоугольного треугольника.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 53

Задача №6

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Отметим на рисунке равные стороны, известные углы и то, что нужно найти.

Так как в треугольнике АВС стороны АС и ВС равны, то треугольник АВС равнобедренный. В равнобедренном треугольнике углы при основании равны (отмечено синими дугами).

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Найдем внутренний угол треугольника при внешнем угле в 125 градусов

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Вычислим угол АСВ применив теорему о сумме углов в треугольнике

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Задача №7

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Для решения этой задачи, нам необходимо вспомнить, что такое биссектриса и ее свойстве. Об этом было сказано здесь

Коротко: Биссектриса делит угол на две равные части. Отметим на рисунке, какие углы у нас получатся. Разделим углы М и N пополам и отметим это на чертеже.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Найдем градусную меру угла NAM по теореме о сумме углов в треугольнике

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 117.

Задание №8

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Отметим на чертеже известные углы и то, что надо найти.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Для решения необходимо найти еще угол ALB, смежный с углом ALC.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Теперь можно вычислить угол BAL который равен углу LAC по свойству биссектрисы угла треугольника.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Воспользуемся теоремой о сумме углов в треугольнике и вычислим угол ACB

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 16.

Задача №9

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Из первого предложения задачи выясняем, что треугольник ADC – равнобедренный, так как AD=AC. Отметим это на чертеже и вычислим углы при основании треугольника ADC.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.
Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Нам необходимо найти градусную меру угла DCB.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 53,5

Задача №10

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Решение

Так как углы А и С известны, то можем найти угол В по теореме о сумме углов в треугольнике.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.
Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Так как BD биссектриса в треугольнике ABC, то углы ABD и CBD равны.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Рассмотрим прямоугольный треугольник CHB. В треугольнике CHB по свойству острых углов в прямоугольном треугольнике найдем острый угол СВН.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Осталось по задаче найти градусную меру угла DBH.

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Ответ 20

Спасибо, что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог

Теорема о сумме углов треугольник. Задание №15 ОГЭ.

Сумма острых углов прямоугольного треугольника

Чему равна сумма острых углов прямоугольного треугольника? Это свойство прямоугольного треугольника вытекает из теоремы о сумме углов треугольника.

Утверждение.

Сумма острых углов прямоугольного треугольника равна 90º.

summa ostryih uglov pryamougolnogo treugolnika

Дано:

∆ABC,

∠C=90º.

Доказать:

∠A+∠B=90º.

Доказательство:

По теореме о сумме углов треугольника,

∠A+∠B+∠C=180º.

По условию, ∠C=90º.

Отсюда, ∠A+∠B+90º=180º.

Следовательно, ∠A+∠B=180º-90º= 90º.

Что и требовалось доказать.

Добавить комментарий

Добавить комментарий