Загрузить PDF
Загрузить PDF
Если вы готовитесь к тестированию или просто хотите научиться быстро складывать числа, запомните, как суммировать целые числа от 1 до . Так как вы собираетесь складывать целые числа, вам не придется беспокоиться о дробях (обыкновенных и десятичных). Просто решите, какой формулой воспользоваться. Затем подставьте данное целое число вместо и найдите ответ.
-
1
Определите арифметическую последовательность. Посмотрите на ряд чисел, которые вы хотите сложить. Чтобы воспользоваться формулой для суммирования целых чисел, убедитесь, что ряд чисел действительно является последовательностью, то есть каждое число возрастает на одну и ту же величину.[1]
- Например, ряд чисел 5, 6, 7, 8, 9 представляет собой последовательность, как и ряд 17, 19, 21, 23, 25.
- Ряд чисел 5, 6, 9, 11, 14 не является последовательностью, потому что числа возрастают на разные величины.
-
2
-
3
Найдите количество складываемых целых чисел. Чтобы суммировать целые числа от начального числа до , необходимо найти общее количество складываемых чисел. Например, если вы хотите сложить целые числа от 1 до 200, общее количество чисел вычисляется так: 200+1 = 201.[2]
- Например, если нужно найти сумму целых чисел от 1 до 12, количество чисел: 12+1 = 13.
-
4
Найдите сумму целых чисел между двумя целыми числами, которые в расчете не участвуют. В этом случае вычтите 1 из .[3]
- Например, чтобы найти сумму целых чисел между 1 и 100, вычтите 1 из 100 и получите 99.
Реклама
-
1
-
2
-
3
-
4
Пользуйтесь представленными формулами, чтобы найти сумму. Когда вы подставили нужно число в формулу, умножьте его на себя, прибавьте 1, 2 или 4 (в зависимости от формулы), а затем разделите результат на 2 или 4. [7]
- Пример 1: 100*101/2 = 10100/2 = 5050.
- Пример 2 (с четными числами): 20*22/4 = 440/4 = 110.
Реклама
Об этой статье
Эту страницу просматривали 191 459 раз.
Была ли эта статья полезной?
Как сложить целые числа от 1 до N? Целые числа – это числа, не содержащие дробную или десятичную часть. Если в задаче требуется сложить определенное количество целых чисел от 1 до заданного значения N, то их не нужно складывать вручную. Вместо этого воспользуйтесь формулой (N(N+1))/2, где N – наибольшее число ряда. Окончательный ответ есть сумма всех целых чисел от 1 до данного N. Пример: (100(100+1))/2 = 100(101)/2 = (10100)/2 = 5050 Сумма всех целых чисел от 1 до 100 равна 5050. автор вопроса выбрал этот ответ лучшим В Рокотов более месяца назад Этот вопрос один из самых популярных в школьном образовании, даже несмотря на то, что сейчас на любое действие имеется онлайн калькулятор или иной электронный ресурс с подстановкой данных. Однако, более пригодится все-таки иметь представление о счете в диапазоне самому. Самая удобная формула нахождения суммы последовательного ряда в диапазоне от 1 до какого-то еще числа, назовем его N, такая: S =(n+1)*n/2; где N – наибольшее число ряда. Математику на пальцах не объяснишь, нужны примеры. Возьмем скажем последовательный ряд от единицы до пятнадцати., где нужно найти сумму диапазона от 1 до 15: (1+15)*15/2=120. Теперь стало более понятно. Удачи в будущих свершениях! -Irinka- более месяца назад Для того, чтобы облегчить жизнь – сделать расчеты более быстрыми и легкими, необходимо знать и пользоваться формулами. Для того, чтобы быстро и легко рассчитать сумму чисел, не производить сложение чисел в ручную, стоит воспользоваться формулой. Данная формула проверена ниже в ответе. В данной формуле буквой n обозначено максимальное число в данном ряду. Для того, чтобы понять формулу, можно произвести наглядный рассчет. За n условно возьмём число 6. Теперь подставляем зга, гения в формулу. S = 6×(6+1)/2 = 42/2 = 21. Теперь произведём сложение чисел последовательно без использования формулы. S = 6 + 5 + 4 + 3 + 2 + 1 = 21. Данные расчёты доказывают, что формула рабочая и ч её помощью произвести расчёт быстрее. Extrimal более месяца назад В математике данный вопрос можно встретить довольно часто. Многие считают, что это проще сделать вручную, складывая числа друг с другом по очереди. Однако если речь идет о больших числах, например если N=100, то проще воспользоваться формулой. Формула следующая Сумма равна (n+1) умножаем на n и делим на 2. Пробуем вычислить сумму, если n равно 100. 101*100/2 получаем 5050. КорнетОболенский 2 года назад Имеем ряд натуральных чисел. Первое число в ряду – единица, последнее N. Их сумму можно вычислить по формуле Для примера рассмотри сумму первых 10 натуральных чисел. В формулу вместо N поставим 10. Получим 10*(10+1)/2 = 55. Проверить несложно, посчитав эту сумму вручную. Сергей11110 3 года назад На самом деле, можно заметить, что ряд натуральных чисел образует арифметическую прогрессию с шагом 1. Сумма первых n членов арифметической прогрессии определяется формулой: S = (a1+an)*n/2; a1 = 1, а значит S = (n+1)*n/2 Это и есть сумма первых n натуральных чисел. Есть еще много способов ее посчитать, к примеру, написать программу на языке программирования (примерный код прилагаю): program a; var sum, i, n:longint; begin sum = 0; read(n); for i:=1 to n do begin sum:=sum+i; end; writeln(sum); end. Это код на языке программирования “Паскаль”. Думаю, есть еще много способов посчитать сумму n первых натуральных чисел, но основные я перечислил. Просвет 7 лет назад Целые числа – это все числа, которые не дробные и не имеют десятично части, то есть 1, 2, 3, 10, 14, и так далее. Чтобы узнать их сумму, нужно ввести такой процесс с циклом: 1.. Задается N. A=0 S=0 2.. От 1 до N делать A=А+1 S=S+A В результате вы получите окончательный ответ S – сумма. (Вводить можно в паскале) MarkTolkien 6 лет назад Задача сложить ряд чисел от единицы до N не так сложна, но она требует слишком много времени. Упростить задачу призвана довольно простая формула: (N * (N + 1)) / 2 . Проверить формулу можем на простом примере вычисления суммы чисел от 1 до 5. 5 + 4 + 3 + 2 + 1 = 15. По формуле получаем 5 * (5 + 1) / 2 = 15. Чосик более года назад В данном примере мы обозначаем сумму чисел как S, а N – будет числом, до которого будет идти счет. То есть, N является самым большим числом среди всех. Рассчитываем сумму по формуле: Проверить правильность решения можно на малом числе. Допустим, N = 7. Можно просчитать сумму от 1 до 7. Выходит S = 1 +2 + 3 + 4 + 5 + 6 + 7 = 28. Теперь решим по формуле. S = 7 * (7+1)/ 2 = 7*8/2 = 56/2 = 28 владсандрович более года назад Если у нас идут натуральные числа вряд. При этом первым числом будет цифра 1, а последним N, то есть неизвестное. Тогда сумма их вычисляется вот такой вот формулой: (N * (N + 1)) / 2 . К примеру у вас в сумме идут 5 натуральных чисел. В формуле вместо N должна быть цифра 5. В итоге рассчитываем все так 5*(5+1)/2 =15. Степан БВ более месяца назад Сложить целые числа от 1 до N можно по формуле суммы арифметической прогрессии: S = (N * (N + 1)) / 2 где S – сумма чисел от 1 до N, N – последнее число в ряду. Например, если нужно сложить числа от 1 до 10, то S = (10 * (10 + 1)) / 2 = 55 Таким образом, сумма чисел от 1 до 10 равна 55. Natasha145 7 лет назад Это арифметическая прогрессия. Формула суммы N – первых членов такава: Знаете ответ? |
Download Article
Download Article
An arithmetic sequence is a series of numbers in which each term increases by a constant amount. To sum the numbers in an arithmetic sequence, you can manually add up all of the numbers. This is impractical, however, when the sequence contains a large amount of numbers. Instead, you can quickly find the sum of any arithmetic sequence by multiplying the average of the first and last term by the number of terms in the sequence.
-
1
Make sure you have an arithmetic sequence. An arithmetic sequence is an ordered series of numbers, in which the change in numbers is constant.[1]
This method only works if your set of numbers is an arithmetic sequence.- To determine whether you have an arithmetic sequence, find the difference between the first few and the last few numbers. Ensure that the difference is always the same.
- For example, the series 10, 15, 20, 25, 30 is an arithmetic sequence, because the difference between each term is constant (5).
-
2
Identify the number of terms in your sequence. Each number is a term. If there are only a few terms listed, you can count them. Otherwise, if you know the first term, last term, and common difference (the difference between each term) you can use a formula to find the number of terms. Let this number be represented by the variable .
- For example, if you are calculating the sum of the sequence 10, 15, 20, 25, 30, , since there are 5 terms in the sequence.
Advertisement
-
3
Identify the first and last terms in the sequence. You need to know both of these numbers in order to calculate the sum of the arithmetic sequence. Often the first numbers will be 1, but not always. Let the variable equal the first term in the sequence, and equal the last term in the sequence.
Advertisement
-
1
Set up the formula for finding the sum of an arithmetic sequence. The formula is , where equals the sum of the sequence.[2]
- Note that this formula is indicating that the sum of the arithmetic sequence is equal to the average of the first and last term, multiplied by the number of terms.[3]
- Note that this formula is indicating that the sum of the arithmetic sequence is equal to the average of the first and last term, multiplied by the number of terms.[3]
-
2
-
3
Calculate the average of the first and second term. To do this, add the two numbers, and divide by 2.[5]
-
4
Multiply the average by the number of terms in the series. This will give you the sum of the arithmetic sequence.[6]
Advertisement
-
1
Find the sum of numbers between 1 and 500. Consider all consecutive integers.
-
2
Find the sum of the described arithmetic sequence. The first term in the sequence is 3. The last term in the sequence is 24. The common difference is 7.
-
3
Solve the following problem. Mara saves 5 dollars the first week of the year. For the rest of the year, she increases her weekly savings by 5 dollars every week. How much money does Mara save by the end of the year?
Advertisement
Add New Question
-
Question
How can I determine whether the sequence is arithmetic?
A sequence is arithmetic if there is a constant difference between any term and the terms immediately before and after it: for example, if each term is 7 more than the term before it.
-
Question
Why do I need to divide by 2?
You do this so that you can find the average of the two numbers. For example, if you were finding the average between 7, 12, and 8, you would add them up (27) and divide them by the number of values you have. In this case, you have three numbers, so you’d divide 27 by 3 to get an average of 9. In the case of the sum of an arithmetic sequence, you have two numbers that you are finding the average of, so you divide it by the amount of values you have, which is two.
-
Question
What is the sum of all integers from 1 to 50?
LyKaxandra Caimoy
Community Answer
You will find that 1 + 50 = 2 + 49 = 3 + 48 (and so on). Multiply the sum, which is 51, by half of the last term. You have the equation 51 × 25 = 1275. The sum is therefore 1275.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
Thanks for submitting a tip for review!
About This Article
Article SummaryX
To find the sum of an arithmetic sequence, start by identifying the first and last number in the sequence. Then, add those numbers together and divide the sum by 2. Finally, multiply that number by the total number of terms in the sequence to find the sum. To see example problems, scroll down!
Did this summary help you?
Thanks to all authors for creating a page that has been read 604,044 times.
Did this article help you?
Сложить все числа
Онлайн калькулятор поможет сложить все числа в ряду, вычислит сумму нескольких чисел. Вводите каждое новое число через разделитель, в качестве разделителя можно использовать любой символ, кроме точки и запятой, калькулятор автоматически определит сумму чисел в списке.
Числа |
Цифр 0 Чисел 0 Сумма чисел 0 |
|
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Очень помогает то, что видит только цифры, не надо переписывать, а можно закинуть целиком с текстом
- reply
не работает с отрицательными числами
- reply
Administration
113 дн. назад
Исправили.
- reply
Благодарю, весьма удобно
- reply
Полезное решение, спасибо
- reply
Спасибо большое облегчает множественные подсчёты
- reply
Если вы готовитесь к экзамену или хотите научиться быстро складывать числа, этот материал для вас.
Как найти сумму чисел 1 до N?
Для сложения определенного количества целых чисел в диапазоне от 1 до заданного значения N используется формула: N⋅(N+1)2frac{Ncdot(N+1)}{2}. Где NN — наибольшее число ряда.
Как работать с последовательностью чисел
- Определите арифметическую прогрессию, проверив последовательность чисел, которые вы собираетесь суммировать. Чтобы применить формулу для вычисления суммы целых чисел, убедитесь, что ряд чисел является арифметической прогрессией, то есть каждое последующее число увеличивается на одно и то же значение.
Пример
Последовательности чисел 5,6,7,8,95, 6, 7, 8, 9 и 17,19,21,23,257, 19, 21, 23, 25 являются арифметическими прогрессиями. Однако ряд чисел 5,6,9,11,145, 6, 9, 11, 14 не является арифметической прогрессией, так как числа увеличиваются на различные значения.
- Определите значение N в последовательности. Чтобы применить формулу для вычисления суммы целых чисел от 1 до N, определите наибольшее целое число, которое вы подставите вместо N.
Пример
Если вам нужно вычислить сумму всех целых чисел от 1 до 100, то N=100N = 100, поскольку это наибольшее целое число в последовательности. Помните, что вы работаете только с целыми числами, следовательно, NN не может быть дробным (обычным или десятичным) или отрицательным числом.
- Определите количество целых чисел, которые нужно сложить. Для того чтобы получить сумму целых чисел от начального числа до N, необходимо знать общее количество чисел, которые нужно сложить.
Пример
Если требуется сложить целые числа от 11 до 200200, то общее количество чисел равно 200−1+1=200200 – 1 + 1 = 200. Если нужно найти сумму целых чисел от 11 до 1212, то количество чисел равно 12−1+1=1212 – 1 + 1 = 12.
- Найдите сумму целых чисел между двумя заданными значениями, не включая сами эти значения. Для этого нужно вычесть единицу из разности между наибольшим и наименьшим числами.
Пример
Чтобы найти сумму целых чисел между 11 и 100100, нужно вычесть единицу из 100−1100 – 1, что даст 9999.
Как использовать формулу для сложения целых чисел
- Сформулируйте уравнение для вычисления суммы последовательных целых чисел. Чтобы вычислить сумму последовательных целых чисел до определенного значения n, используйте следующую формулу: Сумма =N⋅(N+1)2= Ncdotfrac{(N+1)}{2}.
Пример
Чтобы вычислить сумму целых чисел от 11 до 100100, замените NN на 100100 : 100⋅(100+1)2100cdotfrac{(100+1)}{2}.
- Запишите формулу для вычисления суммы четных целых чисел. Если вы хотите вычислить сумму четных целых чисел в последовательности, начинающейся с 1, воспользуйтесь формулой: Сумма =N⋅(N+2)4= frac{Ncdot(N+2)}{4} , где NN – наибольшее четное число в последовательности.
Пример
Чтобы вычислить сумму четных чисел от 1 до 20, замените N на 20⋅(20+2)4frac {20cdot(20+2)}{4}.
- Запишите уравнение для вычисления суммы нечетных целых чисел. Если вы хотите вычислить сумму нечетных целых чисел, то сначала найдите n, прибавив 1 к наибольшему числу в последовательности. Затем используйте следующую формулу: Сумма =(n+1)⋅(n+1)4= frac{(n+1)cdot(n+1)}{4}.
Пример
Чтобы вычислить сумму нечетных чисел от 1 до 9, замените NN на 99: (9+1)⋅(9+1)4frac{(9+1)cdot(9+1)}{4}.
- Примените соответствующую формулу, чтобы найти сумму. Когда вы подставили нужное число в формулу, умножьте его на себя, прибавьте 1,21, 2 или 44 (в зависимости от формулы), а затем разделите результат на 22 или 44.
Пример 1
Чтобы найти сумму целых чисел от 1 до 100, используйте формулу Сумма =100⋅(100+1)2= frac{100cdot(100+1)}{2}. Умножьте 100 на 101, затем поделите на 2, чтобы получить ответ: 50505050.
Пример 2
Чтобы найти сумму четных чисел от 1 до 20, используйте формулу Сумма =20⋅224= frac{20cdot22}{4}. Умножьте 20 на 22, затем поделите на 4, чтобы получить ответ: 110110.