запиши периодическую дробь (0,(8)) обыкновенной дробью.
Решение.
Достаточно очевидно, что (0,(8)=0,8+0,08+0,008+…) Слагаемые в правой части равенства образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен (0,8), знаменатель равен (0,1). Найдём сумму по формуле:
.
Осталось выполнить нужные действия с десятичными дробями:
.
Таким образом, бесконечная периодическая десятичная дробь (0,(8)) обращается в обыкновенную дробь (8/9).
Ответ: (0,(8)=8/9).
16
Июл 2013
Категория: Справочные материалы
Геометрическая прогрессия
2013-07-16
2021-06-28
А вы знаете удивительную легенду о зернах на шахматной доске? + показать
Определение
Геометрическая прогрессия — последовательность чисел (членов прогрессии) , в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число (знаменатель прогрессии):
, где
Например, последовательность 1, 2, 4, 8, 16, … – геометрическая ()
Геометрическая прогрессия
Знаменатель геометрической прогрессии
,
Характеристическое свойство геометрической прогрессии
для
Последовательность является геометрической тогда и только тогда, когда для любого n > 1 выполняется указанное выше соотношение.
В частности, для геометрической прогрессии с положительными членами, верно:
Формула n-го члена геометрической прогрессии
Сумма n первых членов геометрической прогрессии
, где
(если же , то )
Бесконечно убывающая геометрическая прогрессия
При , геометрическая прогрессия называется бесконечно убывающей. Суммой бесконечно убывающей геометрической прогрессии называется число и
Посмотри это видео
Примеры
Пример 1. Последовательность {} –геометрическая прогрессия.
Найдите , если ,
Решение: + показать
Приметр 2. Найдите знаменатель геометрической прогрессии {}, в которой
Решение: + показать
Пример 3. Найдите девятый член геометрической прогрессии, если ее десятый член равен , а одиннадцатый член равен
Решение: + показать
Пример 4. Найдите сумму первых шести членов геометрической прогрессии
Решение: + показать
Пример 5. Найдите сумму первых пяти членов геометрической прогрессии {}, в которой
Решение: + показать
Пример 6. Представьте в виде обыкновенной дроби число
Решение: + показать
Пример 7. Найдите , если известно, что числа являются последовательными членами геометрической прогрессии (в указанном порядке).
Решение: + показать
Пример 8. Найдите знаменатель геометрической прогрессии, отношение суммы первых четырех членов которой, к сумме первых двух членов равно
Решение: + показать
Пример 9. Между числами и вставьте три числа так, чтобы получилась геометрическая прогрессия
Решение: + показать
Вы можете пройти тест по теме «Геометрическая прогрессия»
Автор: egeMax |
комментариев 5
Печать страницы
Способ примитивный
Посчитать первые 6 членов и сложить.
Что такое геометрическая прогрессия? Это последовательность, каждый член которой (кроме первого) получается умножением предыдущего члена на знаменатель.
Первый член b1 нам дан, это -3/4
Чтобы найти второй член, нужно умножить первый член на знаменатель: b2 = b1 * 2 = -3/4 * 2 = -3/2
Чтобы найти третий член, нужно умножить второй член на знаменатель: b3 = b2 * 2 = -3/2 * 2 = -3
И так далее:
b4 = b3 * 2 = -3 * 2 = -6
b5 = b4 * 2 = -6 * 2 = -12
b6 = b5 * 2 = -24
Первые шесть членов прогрессии найдены, осталось найти их сумму, то есть попросту их сложить:
-3/4 + (-3/2) + (-3) + (-6) + (-12) + (-24) = -3/4-3/2-3-6-12-24=-47 1/4 (минус сорок семь целых и одна четвёртая).
Способ “умный”: по формуле
Подходит, если вы знаете формулу суммы первых n членов геомерической прогрессии: если вы не знаете формулу наизусть, ведь на экзамене нельзя пользоваться интернетом и справочными материалами, а значит, не получится её подсмотреть.
Итак, формула:
где b1 — это первый член, а q — знаменатель.
У нас знаменатель не равен единице, поэтому нам нужна только эта часть формулы:
Подставим b1 = -3/4, q = 2 и n = 6, получим -3/4 * (1-2^6) / (1-2) = -3/4 * (1-64) / -1 = 3/4*(-63)=-189/4, если выделить целую часть -47 1/4
(^ — знак возведения в степень)
А если не знаю наизусть формулу, но и “тупо” считать не хочу?
Можно вспомнить или заметить, что n-й член геометрической прогрессии можно выразить как b1*q^(n-1): если каждый следующий получается из предыдущего умножением на знаменатель, значит, n-ый получается из первого умножением на знаменатель n-1 раз. (Почему n-1, а не n? Потому что мы умножаем на знаменатель каждый раз, когда увеличиваем номер на один. Например, чтобы получить второй член, нужно умножить первый на знаменатель один раз, а не два).
Выразим сумму, которую нужно найти, через первый член b1: b1 + b1*2 + b1*2^2 + … + b1*2^5
Вынесем b1 за скобки:
b1(1 + 2 + 2^2 + … + 2^5)
Подставим степени:
b1(1 + 2 + 4 + … + 32)
Заметим, что если добавить к тому, что в скобках, единицу, все слагаемые “схлопнутся”, (как в игре “2048”, если знаете её): 1+1+2+4+…32 =2+2+4+…32=4+4+…32 и так далее до 32+32=64. Значит, добавим 1 и вычтем 1 — это этого результат не изменится:
b1(1 + 1 + 2 + 4 + … + 32 – 1) = b1(64-1)=b1*63
Теперь можно подставить b1=-3/4 и получить
-3/4*63 = -189/4 = -47 1/4
Правда, работает этот трюк только для знаменателя, равного 2! Для других знаменателей так просто не получится! Если вы не уверены, работает трюк или нет, лучше не экспериментировать, а посчитать по-простому.
Определение геометрической прогрессии:
Рассмотрим последовательность, членами которой являются степени числа 2 с натуральными показателями:
Каждый член этой последовательности, начиная со второго, получается умножением предыдущего члена на 2. Эта последовательность является примером геометрической прогрессии.
Определение:
Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.
Иначе говоря, последовательность — геометрическая прогрессия, если для любого натурального п выполняются условия
где q — некоторое число. Обозначим, например, через последовательность натуральных степеней числа 2. В этом случае для любого натурального п верно равенство здесь q = 2.
Из определения геометрической прогрессии следует, что отношение любого ее члена, начиная со второго, к предыдущему члену равно q, т. е. при любом натуральном n верно равенство
Число q называют знаменателем геометрической прогрессии.
Очевидно, что знаменатель геометрической прогрессии отличен от нуля.
Чтобы задать геометрическую прогрессию, достаточно указать ее первый член и знаменатель.
Приведем примеры.
Если то получим геометрическую прогрессию
Условиями задается геометрическая прогрессия
Если то имеем прогрессию
Если то получим геометрическую прогрессию
Зная первый член и знаменатель геометрической прогрессии, можно найти последовательно второй, третий и вообще любой ее член:
Точно так же находим, что Вообще, чтобы найти мы должны
Мы получили формулу n-го члена геометрической прогрессии.
Приведем примеры решения задач с использованием этой формулы.
Пример:
В геометрической прогрессии Найдем b7.
По формуле n-го члена геометрической прогрессии
Пример:
Найдем восьмой член геометрической прогрессии
Зная первый и третий члены геометрической прогрессии, можно найти ее знаменатель. Так как
Решив уравнение
найдем, что
Таким образом, существуют две прогрессии, удовлетворяющие условию задачи.
Если
Если
Задача имеет два решения:
Пример:
После каждого движения поршня разрежающего насоса из сосуда удаляется 20% находящегося в нем воздуха. Определим давление воздуха внутри сосуда, после шести движений поршня, если первоначально давление было 760 мм рт. ст.
Так как после каждого движения поршня из сосуда удаляется 20% имевшегося воздуха, то остается 80% воздуха. Чтобы узнать давление воздуха в сосуде после очередного движения поршня, нужно давление после предыдущего движения поршня умножить на 0,8.
Мы имеем геометрическую прогрессию, первый член которой равен 760, а знаменатель равен 0,8. Число, выражающее давление воздуха в сосуде (в мм рт. ст.) после шести движений поршня, является седьмым членом этой прогрессии. Оно равно
Произведя вычисления, получим:
Формула суммы n первых членов геометрической прогрессии
Древняя индийская легенда рассказывает, что изобретатель шахмат попросил в награду за свое изобретение столько пшеничных зерен, сколько их получится, если на первую клетку шахматной доски положить одно зерно, на вторую — в 2 раза больше, т. е. 2 зерна, на третью — еще в 2 раза больше, т. е. 4 зерна, и т. д. до 64-й клетки. Сколько зерен должен был получить изобретатель шахмат?
Число зерен, о которых идет речь, является суммой шестидесяти четырех членов геометрической прогрессии, первый член которой равен 1, а знаменатель равен 2. Обозначим эту сумму через S:
Умножим обе части записанного равенства на знаменатель прогрессии, получим:
Вычтем почленно из второго равенства первое и проведем упрощения:
Можно подсчитать, что масса такого числа пшеничных зерен больше триллиона тонн. Это заведомо превосходит количество пшеницы, собранной человечеством до настоящего времени.
Выведем теперь формулу суммы n первых членов произвольной геометрической прогрессии. Воспользуемся тем же приемом, с помощью которого была вычислена сумма S.
Пусть дана геометрическая прогрессия Обозначим сумму n первых ее членов через :
Умножим обе части этого равенства на q:
Учитывая, что
получим:
Вычтем почленно из равенства (2) равенство (1) и приведем подобные члены:
Отсюда следует, что при
Мы получили формулу суммы n первых членов геометрической прогрессии, в которой . Если q = 1, то все члены прогрессии равны первому члену и
При решении многих задач удобно пользоваться формулой суммы п первых членов геометрической прогрессии, записанной в другом виде. Подставим в формулу (I) вместо выражение Получим:
Пример:
Найдем сумму первых десяти членов геометрической прогрессии в которой
Так как известны первый член и знаменатель прогрессии, то удобно воспользоваться формулой (II). Получим:
Пример:
Найдем сумму слагаемые которой являются последовательными членами геометрической прогрессии
Первый член прогрессии равен 1, а знаменатель равен х. Так как является членом этой прогрессии с номером n, то задача состоит в нахождении суммы п первых ее членов. Воспользуемся формулой (I):
Таким образом, если то
Умножив левую и правую части последнего равенства на х — 1, получим тождество
В частности, при n = 2 и n = 3 приходим к известным формулам
Пример:
Найдем сумму шести первых членов геометрической прогрессии если известно, что
Зная можно найти знаменатель прогрессии q. Так как
Значит,
Таким образом, существуют две прогрессии, удовлетворяющие условию задачи.
Сумма бесконечной геометрической прогрессии при |q|< 1
Пусть длина отрезка АВ равна 2 ед. (рис. 50). Отметим точку В1 — середину отрезка А В, затем точку В2 — середину правой его половины, затем точку В3 — середину получившегося справа отрезка и т. д. Длины отрезков и т. д. образуют бесконечную геометрическую прогрессию, знаменатель которой равен
Найдем сумму n первых членов этой прогрессии:
При увеличении числа слагаемых n значение дроби приближается к нулю. Действительно,
Поэтому при неограниченном увеличении n разность становится сколь угодно близкой к числу 2 или, как говорят, стремится к числу 2.
Таким образом, сумма n первых членов геометрической прогрессии при неограниченном увеличении n стремится к числу 2. Число 2 называют суммой бесконечной геометрической прогрессии и пишут:
Это равенство легко истолковать геометрически: сумма длин отрезков равна длине отрезка АВ.
Рассмотрим теперь произвольную геометрическую прогрессию
у которой |q|< 1
Запишем формулу суммы п первых членов прогрессии:
Преобразуем выражение в правой части равенства:
Значит,
Можно доказать, что если то при неограниченном увеличении n множитель стремится к нулю, а значит, стремится к нулю и произведение Поэтому при неограниченном увеличении n сумма Sn стремится к числу
Число называют суммой бесконечной геометрической прогрессии у которой
Это записывают так:
Обозначив сумму прогрессии буквой S, получим формулу
Заметим, что если то сумма n первых членов геометрической прогрессии при неограниченном увеличении n не стремится ни к какому числу. Бесконечная геометрическая прогрессия имеет сумму только при
Пример:
Найдем сумму бесконечной геометрической прогрессии
У этой прогрессии значит, условие |q| < 1 выполнено. По формуле получим:
Пример:
Дан квадрат, сторона которого равна 4 см. Середины его сторон являются вершинами второго квадрата, середины сторон второго квадрата являются вершинами третьего квадрата и т. д. (рис. 51). Найдем сумму площадей всех квадратов.
Из геометрических соображений ясно, что площадь каждого следующего квадрата равна половине площади предыдущего. Таким образом, последовательность площадей квадратов является геометрической прогрессией, первый член которой равен 16, а знаменатель равен Найдем сумму этой геометрической прогрессии:
Значит, сумма площадей всех квадратов равна 32 см2.
Из курса VIII класса нам известно, что каждое рациональное число может быть представлено в виде бесконечной десятичной периодической дроби. Чтобы выразить рациональное число — целое число, а n — натуральное, в виде бесконечной десятичной дроби, достаточно разделить числитель на знаменатель. Наоборот, каждая бесконечная десятичная периодическая дробь представляет некоторое рациональное число. Покажем на примере, как с помощью формулы суммы бесконечной геометрической прогрессии можно представить бесконечную десятичную периодическую дробь в виде отношения
Пример:
Представим бесконечную десятичную периодическую дробь 0,(18) в виде обыкновенной дроби.
По аналогии с конечными десятичными дробями представим бесконечную десятичную дробь 0,(18) в виде суммы:
Слагаемые в правой части равенства — члены геометрической прогрессии, у которой первый член равен 0,18, а знаменатель равен 0,01, т. е. условие выполнено. Найдем сумму этой прогрессии:
Значит,
Таким же способом можно представить в виде обыкновенной дроби любую бесконечную десятичную периодическую дробь.
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
Геометрическая прогрессия
Кусочек теории.
Геометрическая прогрессия – это последовательность чисел, не равных нулю, в которой каждый следующий член, начиная со второго, в одно и то же количество раз больше (или меньше) предыдущего.
Последовательность чисел 2; 4; 8; 16; 32; 64; … будет являться геометрической прогрессией, причем возрастающей, т.к. каждое следующее число больше предыдущего в 2 раза. В данном случае число 2 является знаменателем этой прогрессии.
Также геометрической прогрессией будет являться последовательность чисел 12; 6; 3; 1,5; 0,75; 0,375; … , причем убывающей, т.к. в ней числа уменьшаются в 2 раза. Но геометрическую прогрессию прежде всего связывают с умножением, поэтому правильнее сказать, что в последовательности числа увеличиваются в 0,5 раз. Здесь знаменателем будет число 0,5.
Знаменатель геометрической прогрессии обозначают буквой q. Если знаменатель не дан, то найти его можно делением текущего члена прогрессии на предыдущий:
Найти любой по счету член геометрической прогрессии можно, зная ее первый член и знаменатель. Запишем формулу n-ого члена:
Но необязательно знать именно первый член прогрессии. Пригодится может любое по счету число. Только тогда формула чутка изменится:
И держи третью формулу для нахождения n-ого члена геометрической прогрессии через предыдущий и последующий члены (правда по модулю)!
Помимо этих трех формул пригодится еще формула суммы:
Практика.
Задание 1.
Это задание можно решить без формул. Но если уж так хочется, то можно и по формулам, но мне вот не хочется)
Откинем пока минусы…
Если разделить 125 на 100, то мы увидим во сколько раз следующее число меньше предыдущего: в 1,25 раз. То же самое число получится, если 100 разделить на 80.
Найдем 4-ое число в этой последовательности: 80 : 1,25 = 64.
И 5-ое: 64 : 1,25 = 51,2.
Но не забываем, что знаки у чисел чередуются: четвертое число будет отрицательным, а пятое – положительным.
Ответ: 51,2.
Задание 2.
Опять знаки у чисел чередуются, значит число, спрятанное под иксом, будет отрицательным.
Не будем морочить голову формулами, пойдем задом наперед: разделим 4-ое число на 3-ое (найдем знаменатель прогрессии):
96 : 24 = 4 (знаки у чисел мы откинули временно).
Значит, чтобы найти икс надо 24 разделить на знаменатель 4 и взять результат с минусом.
Ответ: -6.
Задание 3.
По данной нам в условии задаче формуле можно сразу понять, что 2 – знаменатель прогрессии. Если это не понятно – вот доказательство:
Здесь схитрить не получится, поэтому используем формулу и находим b6.
Ответ: -192.
Задание 4.
Каждое следующее число в 4 раза больше предыдущего, значит знаменатель q равен 4.
Зная первый член прогрессии и знаменатель можно найти сумму первых шести членов (n = 6).
Ответ: 682,5.
Задание 5.
Похожее условие уже встречалось в задании 3. Из данной формулы делаем вывод, что знаменатель q = 3.
Находим сумму:
Ответ: -847.
Вот и всё!
С наилучшими пожеланиями, твой персональный препод)