Как найти сумму углов остроугольного треугольника

Остроугольный треугольник, элементы, свойства, признаки и формулы.

Остроугольный треугольник – это треугольник, у которого все углы острые.

Остроугольный треугольник (понятие и определение)

Элементы остроугольного треугольника

Свойства остроугольного треугольника

Формулы остроугольного треугольника

Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник

Остроугольный треугольник (понятие и определение): 

Остроугольный треугольник – это треугольник, у которого все углы острые, т.е. меньше 90°.

Остроугольный треугольник – это треугольник, у которого все три угла острые. В свою очередь, острый угол – это угол, градусная мера которого составляет менее 90 градусов.

Остроугольный треугольник, элементы, свойства, признаки и формулы

Рис. 1. Остроугольный треугольник

∠ АВС, ∠ BАC, ∠ BСA – острые углы треугольника

По определению, каждый правильный (равносторонний) треугольник также является остроугольным, но не каждый остроугольный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем остроугольного треугольника. У равностороннего треугольника каждый угол составляет 60 °.

Рис. 2. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника,

∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника

Остроугольный треугольник также может быть одновременно равнобедренным треугольником.

Рис. 3. Равнобедренный треугольник

АВ = ВС – боковые стороны, АС – основание,

∠ АВС – вершинный угол, ∠ BАC и ∠ BСA – углы при основании

Хотя в остроугольном треугольнике каждый угол меньше 90 градусов, сумма углов в треугольнике всегда равна 180 градусам.

Элементы остроугольного треугольника:

Кроме сторон и углов у одностороннего треугольника также имеются внешние углы. Внешний угол это угол, смежный с внутренним углом треугольника. У любого треугольника, в т.ч. остроугольного, 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым углом.

Остроугольный треугольник, элементы, свойства, признаки и формулы

Рис. 4. Остроугольный треугольник и внешний угол

∠ ВСD – внешний угол

Медиана остроугольного треугольника (как и любого другого треугольника), соединяющая вершину треугольника с противоположной стороной, делит ее пополам, т.е. на два одинаковых отрезка.

Остроугольный треугольник, элементы, свойства, признаки и формулы

Рис. 5. Остроугольный треугольник и медиана остроугольного треугольника

MС – медиана остроугольного треугольника

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Остроугольный треугольник, элементы, свойства, признаки и формулы

Рис. 6. Остроугольный треугольник и высота остроугольного треугольника

MС – высота остроугольного треугольника

Высота остроугольного треугольника находится внутри треугольника. Все 3 высоты остроугольного треугольника (как и любого треугольника) пересекаются в одной точке, называемой ортоцентром.

Биссектриса в остроугольном треугольнике (как и в любом другом треугольнике) делит угол пополам. Биссектрисы  пересекаются в точке, которая является центром вписанной окружности.

Остроугольный треугольник, элементы, свойства, признаки и формулы

Рис. 7. Остроугольный треугольник и биссектриса угла остроугольного треугольника

MС – биссектриса угла остроугольного треугольника

Кроме того, биссектриса остроугольного треугольника (как и любого другого треугольника) делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Свойства остроугольного треугольника:

Свойства остроугольного треугольника аналогичны свойствам обычного треугольника:

1. Против большей стороны лежит больший угол, и наоборот.

Остроугольный треугольник, элементы, свойства, признаки и формулы

Рис. 8. Остроугольный треугольник

2. Против равных сторон лежат равные углы, и наоборот.

Рис. 9. Остроугольный треугольник с равными боковыми сторонами

АВ = ВС

3. Сумма углов остроугольного треугольника равна 180°.

4. Любая сторона остроугольного треугольника меньше суммы двух других сторон и больше их разности:

    • a < b + c;
    • a > b – c;
    • b < a + c,
    • b > a – c;
    • c < a + b;
    • c > a – b.

Квадрат

Овал

Остроугольный треугольник

Полукруг

Прямой угол

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Ромб

Трапеция

Тупой угол

Шестиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Коэффициент востребованности
16 400

Сумма углов треугольника равна (180°).

Pierad.png

Доказательство

Рассмотрим произвольный треугольник (KLM) и докажем, что

 (K) (+)

 (L) (+)

 (M =)

180°

.

1. Через вершину (L) параллельно стороне (KM) проведём прямую (a).

2. При пересечении параллельных прямых (a) и (KM) секущей (KL), углы, которые обозначаются (1), будут накрест лежащими углами,  а углы, обозначенные (2) — это накрест лежащие углы при пересечении этих же параллельных прямых секущей (ML).

Очевидно, сумма углов (1), (2) и (3) равна развёрнутому углу с вершиной (L), т. е. 

 (1) (+)

 (2) (+)

 (3 =)

180°

, или

 (K) (+)

 (L) (+)

 (M =)

180°

.

Теорема доказана.

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна

90°

.

Следствие 2.  В равнобедренном прямоугольном треугольнике каждый острый угол равен

45°

.

Следствие 3.  В равностороннем треугольнике каждый угол равен

60°

.

Следствие 4.  В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Arejsl.png

Доказательство

Из равенств

 (KML) (+)

 (BML=)

180°

 и

 (K) (+)

 (L) (+)

 (KML =)

180°

 получаем, что

 (BML =)

 (K) (+)

 (L).

Остроугольный, прямоугольный и тупоугольный треугольники

Как гласит четвёртое следствие из теоремы о сумме углов треугольника, можно выделить три вида треугольников в зависимости от углов.

Saurl.png

У треугольника (KLM) все углы острые.

Taisnl.png

У треугольника (KMN) угол (K = 90)

°

.

У прямоугольного треугольника сторона, лежащая против прямого угла, называется гипотенузой, а две остальные стороны — катетами.

На рисунке (MN) — гипотенуза, (MK) и (KN) — катеты.

Platl.png

У треугольника (KLM) один угол тупой.

Сумма углов треугольника

Сумма углов треугольника — это сумма
всех внутренних углов треугольника.

Так, как углы измеряются в градусах, соответственно значение
суммы углов треугольника также измеряется в градусах.

Сумма углов треугольника есть величина постоянная,
неизменяемая, она равна 180 градусам, вне зависимости
от вида рассматриваемого треугольника.

На рисунке 1 изображены равносторонний,
разносторонний и прямоугольный треугольники,
их суммы внутренних углов равны 180 градусам.

Также, существует теорема, которая доказывает
утверждение о том, что сумма углов треугольника
180 градусов, она называется теоремой
о сумме углов треугольника.

Теорема о сумме углов треугольника — это теорема в
геометрии о сумме углов произвольного треугольника на плоскости.

Сумма углов треугольника – определение и вычисление с доказательствами и примерами решения

Сумма углов треугольника:

Великий французский ученый XVII в. Блез Паскаль (1623—1662) еще в детстве любил изучать геометрические фигуры, открывать их свойства, измерять углы транспортиром.

Юный исследователь заметил, что у любого треугольника сумма углов одна и та Ж6 180°. «Как же это объяснить?» — думал Паскаль. Тогда он отрезал у треугольника два уголка и приложил их к третьему (рис. 219). Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие! Дальнейшая судьба мальчика была предопределена.

Теорема. Сумма углов треугольника равна 180°.

Дано: АВС (рис. 220).

Доказать: A+B +C = 180°.

Доказательство:

Через вершину В треугольника ABC проведем прямую КМ, параллельную стороне АС. Тогда KBA =A как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей АВ, aMBC =C как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей ВС. Так как углы КВА, ABC и МВС образуют развернутый угол, то

KBA +ABC +MBC = 180°. ОтсюдаA +B +C = 180°. Теорема доказана.

Следствия.

1. Каждый угол равностороннего треугольника равен 60°. (рис. 221).

2. Сумма острых углов прямоугольного треугольника равна 90° (рис. 222).

В прямоугольном треугольнике стороны, заключающие прямой угол, называются катетами, сторона, противолежащая прямому углу, — гипотенузой (см. рис. 222).

Проведем в прямоугольном треугольнике ABC высоту СН к гипотенузе АВ (рис. 223). Так как в треугольнике ABC угол 1 дополняет угол В до 90°, а в треугольнике СНВ угол 2 также дополняет угол В до 90°, то1 =2.

Доказано свойство: «Угол между высотой прямоугольного треугольника, проведенной к гипотенузе, и катетом равен углу между другим катетом и гипотенузой».

Пример:

В треугольнике ABC градусные меры углов А, В и С относятся соответственно как 5:7:3. Найти углы треугольника (рис. 224).

Решение:

Пусть ( — градусная мера одной части).

Так как сумма углов треугольника равна 180°, то

Тогда

Ответ:

Пример:

В треугольнике ABC (рис. 225) угол В равен 70°, АК и СМ — биссектрисы, О — точка их пересечения. Найти угол АОС между биссектрисами.

Решение:

Сумма углов А и С треугольника ABC равна 180° – 70° = 110°. Так как биссектриса делит угол пополам, то

Из треугольника АОС находим:

Замечание. Если то, рассуждая аналогично, получим формулу: Если, например,

Пример:

Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то данный треугольник — прямоугольный.

Доказательство:

Пусть СМ — медиана, (рис. 226).

Докажем, чтоACB = 90°. Обозначим A = ,В = . Так как медиана делит сторону пополам, то AM = MB = АВ. Тогда СМ=АМ=МВ. Так как АМС — равнобедренный, тоA =ACM = как углы при основании равнобедренного треугольника. Аналогично, СМВ — равнобедренный и B =BCM = . Сумма углов треугольника ABC, с одной стороны, равна 2 + 2, с другой — равна 180°. Отсюда 2 + 2 = 180°, 2( + ) = 180°, + = 90°. НоACB = + , поэтому

ACB = 90°.

Замечание. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. На рисунке 227 это угол АСВ. Из задачи 3 следует свойство: «Вписанный угол, опирающийся на диаметр, — прямой».

Пример:

Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Доказательство:

Пусть в треугольнике ABC (рис. 228) C=90°,A=,B=.

Проведем отрезок СМ так, чтоACM=, и докажем, что СМ — медиана и что СМ=АВ. Угол В дополняет угол А до 90°, aBCM дополняетACM до 90°. Поскольку ACM =A = , тоBCM =. Треугольники АМС и ВМС — равнобедренные по признаку равнобедренного треугольника. Тогда AM = МС и МВ = МС. Отсюда СМ — медиана и СМ = АВ.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Четырехугольник и его элементы
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Сумма углов треугольника

Сумма треугольника равна 180 градусов.

Это легко доказать. Нарисуйте треугольник. Через одну из его вершин проведите прямую, параллельную противоположной стороне, и найдите на рисунке равные углы. Сравните с решением в конце статьи.

А мы разберем задачи ЕГЭ, в которых фигурирует сумма углов треугольника.

1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х. Получим уравнение

2. Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?

Нет, конечно! Ведь сумма углов треугольника равна 180 градусов. Значит, один из углов треугольника равен , а два других равны .

3. На рисунке угол равен , угол равен , угол равен . Найдите угол . Ответ дайте в градусах.

Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.

Сначала найдем угол .

Угол , смежный с углом равен .

Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.

Ты нашел то, что искал? Поделись с друзьями!

4. Углы треугольника относятся как . Найдите меньший из них. Ответ дайте в градусах.

Пусть углы треугольника равны , и . Запишем, чему равна сумма углов этого треугольника.

Как же все-таки доказать, что сумма углов треугольника равна 180 градусов? Очень просто. На нашем рисунке угол равен углу (они накрест лежащие). Угол равен углу (тоже накрест лежащие). Развернутый угол равен . Значит, и сумма углов треугольника тоже равна 180 градусов.

[spoiler title=”источники:”]

http://www.evkova.org/summa-uglov-treugolnika

http://ege-study.ru/ru/ege/materialy/matematika/summa-uglov-treugolnika/

[/spoiler]

Геометрия

7 класс

Урок №23

Сумма углов треугольника

Перечень рассматриваемых вопросов:

  • Формулирование и доказательство теоремы о сумме углов треугольника.
  • Следствия теоремы о сумме углов треугольника.
  • Классификация треугольников по видам углов.
  • Формулирование и доказательство теоремы о свойствах прямоугольного треугольника.
  • Решение задач с применением пройденного материала;
  • Угловой отражатель.

Тезаурус:

Внешний угол треугольника– это угол, смежный с каким-либо углом этого треугольника.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее, на уроках математики, вы познакомились с различными геометрическими фигурами, в том числе и с треугольниками. При изучении геометрии, вы узнали признаки равенства треугольников, выяснили, что такое медиана, биссектриса и высота треугольника.

Сегодня мы продолжим изучать треугольники и рассмотрим одну из важнейших теорем геометрии– теорему о сумме углов треугольника.

Сформулируем эту теорему.

Сумма углов треугольника равна 180°.

Дано: ∆АВС.

Доказать:

∠А+∠В +∠С = 180º

Доказательство:

Проведем через вершину В прямую аАС.

∠1 = ∠4 (по свойству параллельных прямых, т. к. это накрест лежащие углы при пересечении прямых а и АС и секущей АВ), ∠3 = ∠5 (по свойству параллельных прямых, т. к. это – накрест лежащие углы при пересечении прямых а и АС и секущей ВС)→ ∠4 + ∠2 + ∠5 = 180° (по свойству развёрнутого угла) → ∠1 + ∠2 + ∠3 = 180° → ∠А + ∠В + ∠С = 180°.

Что и требовалось доказать.

Теперь введём ещё одно понятие, связанное с треугольниками –внешний угол треугольника. Это угол, смежный с каким-либо углом этого треугольника.

Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Дано: ∆АВС.

Доказать:

∠4 = ∠1 + ∠2.

∠3 + ∠4 = 180° (по свойству развёрнутого угла).

∠3 + (∠2 + ∠1) = 180° (по теореме о сумме углов треугольника) → ∠4 = ∠2 + ∠1.

Что и требовалось доказать.

Из теоремы о сумме углов треугольника следует, что если один из углов треугольника равен 90 градусам или больше 90 градусов, то остальные два угла будут острые, т.к. их сумма не должна превышать 90 градусов. Поэтому, в любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

Исходя из этого, можно классифицировать треугольники по углам.

По углам треугольник может быть:

‑ остроугольным, если все его углы являются острыми (т.е. меньше 90°);

‑ тупоугольным, если один из его углов тупой (т.е. больше 90°);

‑ прямоугольным, если один угол 90° (т.е. прямой).

В прямоугольном треугольнике стороны имеют свои названия.

Сторона треугольника, лежащая напротив прямого угла, называется гипотенузой, а две другие – катетами.

∆АВС– прямоугольный.

∠В = 90°.

АС – гипотенуза.

АВ,ВС – катеты.

Докажем свойство прямоугольного треугольника, которое устанавливается с помощью теоремы о сумме углов треугольника.

Сумма двух острых углов прямоугольного треугольника равна 90º.

Дано:

∆АВС – прямоугольный.

∠В = 90°.

Доказать: ∠А +∠С = 90°.

Доказательство:

∠А +∠С + ∠В = 180° (по теореме о сумме углов треугольника).

∠В = 90° (по определению прямоугольного треугольника) →∠А + ∠С + 90° = 180°

∠А + ∠С = 180 – 90° = 90°

Что и требовалось доказать.

Решим задачу.

Докажем, что в равностороннем треугольнике каждый угол равен 60 °.

Дано:

∆АВС – равносторонний

Доказать: ∠А =∠С = ∠В = 60°.

Доказательство:

Так как треугольник АВС равносторонний →АС = АВ = ВС (по определению равностороннего треугольника) → если АС = АВ → ∠С = ∠В (по свойству равнобедренного треугольника). Аналогично, если АС = СВ → ∠А = ∠В (по свойству равнобедренного треугольника) → ∠А = ∠С = ∠В.

∠А + ∠С + ∠В = 180° (по теореме о сумме углов треугольника).

∠А = ∠С = ∠В = 180° : 3 = 60°.

Что и требовалось доказать.

Материал для углублённого изучения темы.

Угловой отражатель.

Одно из свойств прямоугольного треугольника ‑сумма двух его острых углов равна 90°‑используется в технике, например, в угловом отражателе. Это устройство, которое отражает падающий на него пучок параллельных лучей при любом расположении отражателя по отношению к падающему пучку лучей.

Отражатель, например, устанавливается на заднем крыле велосипеда, для того, чтобы «возвращать назад» свет автомобильных фар, чтобы водитель машины видел велосипедиста ночью.

Ещё угловой отражаетель был установлен на автоматической космической станции, запущенной на Луну( выделен на рисунке кружочком), с целью определения точного расстояния от Земли до Луны.

Разбор заданий тренировочного модуля

1. Чему равна градусная мера углаА, если треугольник АВС прямоугольный?

Решение:

По условию, ∆АВС – прямоугольный → сумма его острых углов равна 90°.

∠А+∠В=90°

∠В = 45° (по рисунку) →∠А + 45° = 90°.

∠А=90° – 45° = 45°.

Ответ: ∠А = 45°.

2. По рисунку найдите угол N треугольника FNA.

Решение:

По рисунку ∠NAP= 140°, этот угол внешний к углу А треугольника FNA→

∠NAP = ∠N +∠F= 140° (т.к. внешний угол треугольника равен сумме двух углов треугольника не смежных с ним).

∠F = 60° (по рисунку).

∠N + 60° = 140°.

∠N = 140° – 60° = 80°.

Ответ:∠N = 80°.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 марта 2023 года; проверки требуют 6 правок.

Теорема о сумме углов треугольника — классическая теорема евклидовой геометрии.

Формулировка[править | править код]

Сумма углов любого треугольника на евклидовой плоскости равна 180°.[1]

Доказательство[править | править код]

Пусть {displaystyle Delta {mathcal {ABC}}} — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.

Следствия[править | править код]

  • В треугольнике не может быть двух тупых или двух прямых углов, потому что тогда сумма углов была бы больше 180°. По той же причине треугольник не может содержать тупой и прямой углы одновременно.
  • У любого треугольника не меньше двух острых углов. Действительно, случай, когда у треугольника только один острый угол или вообще нет острых углов, противоречит предыдущему следствию.
  • В прямоугольном треугольнике оба угла при гипотенузе — острые.
  • В равнобедренном треугольнике углы при основании равны, поэтому тупым может быть только угол, противолежащий основанию.
  • В равнобедренном прямоугольном треугольнике углы при гипотенузе равны (180° — 90°) /2 = 45°.
  • В равностороннем треугольнике все три угла совпадают и поэтому равны 180° / 3 = 60°.
  • (Теорема о внешнем угле треугольника) Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним[2].

Вариации и обобщения[править | править код]

Многоугольники[править | править код]

Обобщение для симплексов[править | править код]

Существует более сложное соотношение между двугранными углами произвольного симплекса. А именно, если L_{{ij}} — угол между i и j гранями симплекса, то определитель следующей матрицы (являющейся циркулянтом) равен 0:

{displaystyle {begin{vmatrix}1&-cos L_{12}&-cos L_{13}&dots &-cos L_{1(n+1)}\-cos L_{21}&1&-cos L_{23}&dots &-cos L_{2(n+1)}\-cos L_{31}&-cos L_{32}&1&dots &-cos L_{3(n+1)}\vdots &vdots &vdots &ddots &vdots &\-cos L_{(n+1)1}&-cos L_{(n+1)2}&-cos L_{(n+1)3}&dots &1\end{vmatrix}}=0}.

Это следует из того, что этот определитель является определителем Грама нормалей к граням симплекса, а определитель Грама линейно зависимых векторов равен 0, и n+1 вектор в n-мерном пространстве всегда линейно зависимы.

В неевклидовых геометриях[править | править код]

Приведённое в этой статье доказательство опирается на определённое свойство параллельных прямых, а именно — утверждение о том, что внутренние накрест лежащие углы при параллельных прямых равны. Доказательство этого утверждения, в свою очередь, использует аксиому параллельности евклидовой геометрии. Можно показать, что любое доказательство теоремы о сумме углов треугольника будет использовать аксиому параллельности, и наоборот — из утверждения, что сумма углов треугольника равна 180°, можно вывести аксиому параллельности, если даны остальные аксиомы классической геометрии (абсолютная геометрия)[3].

Таким образом, равенство суммы углов треугольника 180° является одним из основных признаков именно евклидовой геометрии, отличающих её от неевклидовых, в которых аксиома параллельности не выполняется:

  • На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника. У сферического треугольника могут быть два или даже три прямых или тупых угла.
Пример. Одна вершина треугольника на сфере — северный полюс. Этот угол может иметь значение до 180°. Две другие вершины лежат на экваторе, соответствующие углы равны 90°.
  • В геометрии Лобачевского сумма углов треугольника всегда меньше 180° и может быть сколь угодно малой. Разность также пропорциональна площади треугольника.

Примечания[править | править код]

  1. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, § 81.
  2. Элементарная математика, 1976, с. 421.
  3. Лелон-Ферран Ж. Основания геометрии. — М.: Мир, 1989. — С. 255—256. — 312 с. — ISBN 5-03-001008-4.

Литература[править | править код]

  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Добавить комментарий