Как найти сумму векторов по координатам формула

Уважаемые студенты!
Заказать решение задач по 200+ предметам можно здесь всего за 10 минут.

Сложение векторов

Формула

Чтобы складывать вектора нужно найти суммы соответствующих координат данных векторов. Например, пусть есть векторы на плоскости $ overline{a} = (x_1;y_1) $ и $ overline{b}=(x_2;y_2) $, тогда их сумму можно найти по формуле: $$ overline{a}+overline{b} = (x_1+x_2;y_1+y_2)$$

Если векторы заданы в пространстве тремя координатами $ overline{a} = (x_1;y_1;z_1) $ и $ overline{b}=(x_2;y_2;z_2) $, то выполнить сложение нужно по другой формуле:

$$ overline{a}+overline{b} = (x_1+x_2;y_1+y_2; z_1+z_2) $$

При сложении первая координата первого вектора складывается с первой координатой второго вектора, вторая координата первого вектора складывается со второй координатой второго вектора и так далее в зависимости от размерности векторов. Стоит отметить, что складывать векторы можно только одинаковой размерности.

Примеры решений

Пример
Даны два вектора $ overline{a} = (1,3) $ и $ overline{b} = (2,4) $. Нужно сложить два вектора.
Решение

Итак, как складывать вектора по координатам? К первой прибавляем первую, вторую ко второй:

$$ overline{a}+overline{b} = (1+2;3+4) = (3;7) $$

В этой задаче векторы заданы в двумерном пространстве и имеют только две координаты. Если бы координат было бы три, то применять нужно вторую формулу для трехмерной задачи.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ overline{a}+overline{b} = (3;7) $$

Содержание:

  • Формула
  • Примеры нахождения суммы векторов

Формула

Чтобы найти сумму векторов $bar{a}+bar{b}$, которые заданны координатами
$bar{a}=(a_x;a_y)$ и $bar{b}=(b_x;b_y)$, необходимо сложить соответствующие
координаты этих векторов,
то есть

$$bar{a}+bar{b}=left(a_{x}+b_{x} ; a_{y}+b_{y}right)$$

В случае если векторы заданы в пространстве, то есть $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$, то их сумма равна

$$bar{a}+bar{b}=left(a_{x}+b_{x} ; a_{y}+b_{y} ; a_{z}+b_{z}right)$$

Примеры нахождения суммы векторов

Пример

Задание. Найти сумму векторов
$bar{a}+bar{b}$,
$bar{a}=(2;0)$ и
$bar{b}=(1;3)$

Решение. Для нахождения суммы векторов, сложим их соответствующие координаты

$$bar{a}+bar{b}=(2 ; 0)+(1 ; 3)=(2+1 ; 0+3)=(3 ; 3)$$

Ответ. $bar{a}+bar{b}==(3 ; 3)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти суммы векторов
$bar{a}+bar{b}$,
$bar{a}+bar{c}$,
$bar{b}+bar{c}$ и
$bar{a}+bar{b} +bar{c}$, если
$bar{a}=(1;-1;0)$,
$bar{b}=(3;2;-1)$ и
$bar{c}=(4;2;-1)$

Решение. Для нахождения искомой суммы векторов сложим их соответствующие координаты:

$$bar{a}+bar{b}=(1+3 ;-1+2 ; 0+(-2))=(4 ; 1 ;-2)$$
$$bar{a}+bar{c}=(1+4 ;-1+2 ; 0+(-1))=(5 ; 1 ;-1)$$
$$bar{b}+bar{c}=(3+4 ; 2+2 ;-2+(-1))=(7 ; 4 ;-3)$$
$$bar{a}+bar{b}+bar{c}=(1+3+4 ;-1+2+2 ; 0+(-2)+(-1))=(8 ; 3 ;-3)$$

Ответ. $bar{a}+bar{b}=(4 ; 1 ;-2)$ , $bar{a}+bar{c}=(5 ; 1 ;-1)$ , $bar{b}+bar{c}=(7 ; 4 ;-3)$ , $bar{a}+bar{b}+bar{c}=(8 ; 3 ;-3)$

Читать дальше: как найти разность векторов.

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

  • Сумма векторов

    • Формула сложения векторов

    • Свойства сложения векторов

  • Разность векторов

    • Формула вычитания векторов

  • Примеры задач

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Правило треугольника для сложения векторов

Геометрическая интерпретация:

Суммой a и b является вектор c, начало которого совпадает с началом a, а конец – с концом b. При этом конец вектора a должен совпадать с началом вектора b.

Для сложения векторов также используется правило параллелограмма.

Правило параллелограмма для сложения векторов

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c, совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

ci = ai + bi

Элементы вектора c равняются попарной сумме соответствующих элементов a и b.

Для плоских задач a + b = {ax + bx; ay + by}
Для трехмерных задач a + b = {ax + bx; ay + by; az + bz}
Для n-мерных векторов a + b = {a1 + b1; a2 + b2; … an + bn}

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: (a + b) + c = a + (b + c)

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (-a) = 0

Примечание: Вектор a коллинеарен и равен по длине a, но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Правило треугольника для вычитания векторов

Если из вектора a вычесть b, то получится c, причем должно соблюдаться условие: b + c = a

Формула вычитания векторов

ci = ai – bi

Элементы вектора c равны попарной разности соответствующих элементов a и b.

Для плоских задач ab = {ax – bx; ay – by}
Для трехмерных задач ab = {ax – bx; ay – by; az – bz}
Для n-мерных векторов ab = {a1 – b1; a2 – b2; … an – bn}

Примеры задач

Задание 1
Вычислим сумму векторов a = {3; 5} и b = {2; 7}.

Решение:
a + b = {3 + 2; 5 + 7} = {5; 12}.

Задание 2
Найдем разность векторов a = {4; 8; -2} и b = {-1; 9; 5}.

Решение:
ab = {4 – (-1); 8 – 9; -2 – 5} = {5; -1; -7}.

В механике существуют два типа величин:

  • скалярные величины, задающие некоторое числовое значение – время, температура, масса и т.д.
  • векторные величины, которые вместе с некоторым числовым значением задают направление – скорость, сила и т.д..

Рассмотрим сначала алгебраический подход к сложению векторов.

Покоординатное сложение векторов.

Пусть даны два вектора, заданные покоординатно ( чтобы вычислить координаты вектора, нужно вычесть из соответствующих координат его конца соответствующие координаты его начала, т.е. из первой координаты – первую, из второй – вторую и т.д.):

сложение векторов

Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:

Покоординатное сложение векторов

В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.

Теперь перейдем к геометрическому смыслу сложения двух векторов:

При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:

  • правило параллелограмма
  • правило треугольника
  • тригонометрический способ

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Процедура сложения векторов по правилу параллелограмма заключается в следующем:

  • нарисовать первый вектор, учитывая его величину и направление
  • от начала первого вектора нарисовать второй вектор, также используя и его величину, и его направление
  • дополнить рисунок до параллелограмма, считая, что два нарисованных вектора – это его стороны
  • результирующим вектором будет диагональ параллелограмма, причем его начало будет совпадать с началом первого (а, значит, и второго) вектора.

Правило треугольника. Сложение векторов по правилу треугольника.

Правило треугольника. Сложение векторов по правилу треугольника.

Сложение векторов по правилу треугольника заключается в следующем:

  • нарисовать первый вектор, используя данные о его длине ( числовой величине) и направлении
  • от конца первого вектора нарисовать второй вектор, также учитывая и его размер, и его направление
  • результирующим вектором будет вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго.

Тригонометрический способ. Сложение векторов тригонометрическим способом.

Тригонометрический способ. Сложение векторов тригонометрическим способом. Результирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:

  • Fрез. = [ F12 + F22 -2 F1 F2 cos(180о-α) ]1/2         (1)
    • где
      • F = числовое значение вектора
      • α = угол между векторами 1 и 2

Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:

  • β = arcsin[ F*sin(180o-α) / FR ]         (2)
    • где
      • α = угол между исходными векторами

Пример – сложение векторов.

Сила 1 равна 5кН и воздействует на тело в направлении, на 80o отличающемся от направления действия второй силы, равной 8 кН.

Результирующая сила вычисляется следующим образом:

Fрез = [ (5 кН)2 + (8 кН)2 – 2 (5 кН)(8 kН) cos(180o – (80o)) ]1/2

    = 10,14кН

Угол между результирующей силой и первой силой равен:

β= arcsin[ (8кН) sin(180o – (80o)) / (10,14кН) ]

    = 51o

А угол между второй и результирующей силой можно посчитать следующим образом: as

α = arcsin [ (5 кН) sin(180o – (80o)) / (10,2 кН) ]

    = 29o

Он-лайн калькулятор сложения векторов.

Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.

Распечатать: Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма.

Сложение и вычитание векторов

Навигация по странице:

  • Определение операции сложения векторов
  • Определение операции вычитания векторов
  • Формулы для сложения и вычитания вектора
    • для плоских задач
    • для пространственных задач
    • для n -мерных векторов
  • Примеры задач на сложение и вычитание векторов
    • плоские задачи
    • пространственные задачи
    • задачи в n -мерном пространстве

Определение.

Сложение векторов (сумма векторов) a + b есть операция вычисления вектора c, все элементы которого равны попарной сумме соответствующих элементов векторов a и b, то есть каждый элемент вектора c равен:

сi = ai + bi

Определение.

Вычитание векторов (разность векторов) ab есть операция вычисления вектора c, все элементы которого равны попарной разности соответствующих элементов векторов a и b, то есть каждый элемент вектора c равен:

сi = aibi

Формулы сложения и вычитания векторов

Формулы сложения и вычитания векторов для плоских задач

В случае плоской задачи сумму и разность векторов a = {ax ; ay} и b = {bx ; by} можно найти, воспользовавшись следующими формулами:

a + b = {ax + bx; ay + by}

ab = {axbx; ayby}

Формулы сложения и вычитания векторов для пространчтвенных задач

В случае пространственной задачи сумму и разность векторов a = {ax ; ay ; az} и b = {bx ; by ; bz} можно найти, воспользовавшись следующими формулами:

a + b = {ax + bx; ay + by; az + bz}

ab = {axbx; ayby; azbz}

Формулы сложения и вычитания n -мерных векторов

В случае n -мерного пространства сумму и разность векторов a = {a1 ; a2 ; … ; an} и b = {b1 ; b2 ; … ; bn} можно найти, воспользовавшись следующими формулами:

a + b = {a1 + b1; a2 + b2; … ; an + bn}

ab = {a1b1; a2b2; … ; anbn}

Примеры задач на сложение и вычитание векторов

Примеры плоских задач на сложение и вычитание векторов

Пример 1. Найти сумму векторов a = {1; 2} и b = {4; 8}.

Решение:

a + b = {1 + 4; 2 + 8} = {5; 10}

Пример 2. Найти разность векторов a = {1; 2} и b = {4; 8}.

Решение:

ab = {1 – 4; 2 – 8} = {-3; -6}

Примеры пространственных задач на сложение и вычитание векторов

Пример 3. Найти сумму векторов a = {1; 2; 5} и b = {4; 8; 1}.

Решение:

a + b = {1 + 4; 2 + 8; 5 + 1} = {5; 10; 6}

Пример 4. Найти разность векторов a = {1; 2; 5} и b = {4; 8; 1}.

Решение:

ab = {1 – 4; 2 – 8; 5 – 1} = {-3; -6; 4}

Примеры задач на сложение и вычитание векторов с размерностью большей 3

Пример 5. Найти сумму векторов a = {1; 2; 5; 9} и b = {4; 8; 1; -20}.

Решение:

a + b = {1 + 4; 2 + 8; 5 + 1; 9 + (-20)} = {5; 10; 6; -11}

Пример 6. Найти разность векторов a = {1; 2; 5; -1; 5} и b = {4; 8; 1; -1; 2}.

Решение:

ab = {1 – 4; 2 – 8; 5 – 1; -1 – (-1); 5 – 2} = {-3; -6; 4; 0; 3}

Добавить комментарий