Содержание:
- Формула
- Примеры нахождения суммы векторов
Формула
Чтобы найти сумму векторов $bar{a}+bar{b}$, которые заданны координатами
$bar{a}=(a_x;a_y)$ и $bar{b}=(b_x;b_y)$, необходимо сложить соответствующие
координаты этих векторов,
то есть
$$bar{a}+bar{b}=left(a_{x}+b_{x} ; a_{y}+b_{y}right)$$
В случае если векторы заданы в пространстве, то есть $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$, то их сумма равна
$$bar{a}+bar{b}=left(a_{x}+b_{x} ; a_{y}+b_{y} ; a_{z}+b_{z}right)$$
Примеры нахождения суммы векторов
Пример
Задание. Найти сумму векторов
$bar{a}+bar{b}$,
$bar{a}=(2;0)$ и
$bar{b}=(1;3)$
Решение. Для нахождения суммы векторов, сложим их соответствующие координаты
$$bar{a}+bar{b}=(2 ; 0)+(1 ; 3)=(2+1 ; 0+3)=(3 ; 3)$$
Ответ. $bar{a}+bar{b}==(3 ; 3)$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Найти суммы векторов
$bar{a}+bar{b}$,
$bar{a}+bar{c}$,
$bar{b}+bar{c}$ и
$bar{a}+bar{b} +bar{c}$, если
$bar{a}=(1;-1;0)$,
$bar{b}=(3;2;-1)$ и
$bar{c}=(4;2;-1)$
Решение. Для нахождения искомой суммы векторов сложим их соответствующие координаты:
$$bar{a}+bar{b}=(1+3 ;-1+2 ; 0+(-2))=(4 ; 1 ;-2)$$
$$bar{a}+bar{c}=(1+4 ;-1+2 ; 0+(-1))=(5 ; 1 ;-1)$$
$$bar{b}+bar{c}=(3+4 ; 2+2 ;-2+(-1))=(7 ; 4 ;-3)$$
$$bar{a}+bar{b}+bar{c}=(1+3+4 ;-1+2+2 ; 0+(-2)+(-1))=(8 ; 3 ;-3)$$
Ответ. $bar{a}+bar{b}=(4 ; 1 ;-2)$ , $bar{a}+bar{c}=(5 ; 1 ;-1)$ , $bar{b}+bar{c}=(7 ; 4 ;-3)$ , $bar{a}+bar{b}+bar{c}=(8 ; 3 ;-3)$
Читать дальше: как найти разность векторов.
Уважаемые студенты!
Срочно заказать решение своих задач можно здесь всего за 10 минут.
Сложение векторов
Формула
Чтобы складывать вектора нужно найти суммы соответствующих координат данных векторов. Например, пусть есть векторы на плоскости $ overline{a} = (x_1;y_1) $ и $ overline{b}=(x_2;y_2) $, тогда их сумму можно найти по формуле: $$ overline{a}+overline{b} = (x_1+x_2;y_1+y_2)$$
Если векторы заданы в пространстве тремя координатами $ overline{a} = (x_1;y_1;z_1) $ и $ overline{b}=(x_2;y_2;z_2) $, то выполнить сложение нужно по другой формуле:
$$ overline{a}+overline{b} = (x_1+x_2;y_1+y_2; z_1+z_2) $$
При сложении первая координата первого вектора складывается с первой координатой второго вектора, вторая координата первого вектора складывается со второй координатой второго вектора и так далее в зависимости от размерности векторов. Стоит отметить, что складывать векторы можно только одинаковой размерности.
Примеры решений
Пример |
Даны два вектора $ overline{a} = (1,3) $ и $ overline{b} = (2,4) $. Нужно сложить два вектора. |
Решение |
Итак, как складывать вектора по координатам? К первой прибавляем первую, вторую ко второй: $$ overline{a}+overline{b} = (1+2;3+4) = (3;7) $$ В этой задаче векторы заданы в двумерном пространстве и имеют только две координаты. Если бы координат было бы три, то применять нужно вторую формулу для трехмерной задачи. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ overline{a}+overline{b} = (3;7) $$ |
Как находить координаты суммы векторов
Координаты вектора. Направляющие косинусы
Для решения задач с векторами необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении и длине.
Координаты вектора
Пусть задана прямоугольная декартова система координат (ПДСК) $x O y$ и произвольный вектор $overline$, начало которого совпадает с началом системы координат (рис. 1).
Сумма двух векторов, заданных координатами
Чтобы найти сумму двух векторов, заданных своими координатами, надо сложить их соответствующие координаты.
Умножение вектора на число
Чтобы умножить вектор на число, надо каждую координату этого вектора умножить на заданное число.
Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две точки $Aleft(a_ ; a_ right)$ и $Bleft(b_ ; b_ right)$. Тогда координаты вектора $overline=left(x_ ; y_ right)$ находятся по формулам (рис. 4):
Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат конца отнять соответствующие координаты начала.
Задание. Найти координаты вектора $overline$, если $A(-4 ; 2), B(1 ;-3)$
Направляющие косинусы
Направляющими косинусами вектора называются косинусы углов, образованных вектором с положительными направлениями осей координат.
Направление вектора однозначно задается направляющими косинусами. Для единичного вектора направляющие косинусы равны его координатам.
Здесь $alpha$, $beta$ и $gamma$ — углы, которые составляет вектор с положительными направлениями осей $O x$, $O y$ и $O z$ соответственно.
Основное свойство направляющих косинусов
Сумма квадратов направляющих косинусов равна единице.
Основные сведения о сумме двух векторов
Основные понятия
Направленный отрезок, то есть отрезок, который имеет длину и определенное направление, носит название вектора.
Обозначается буквенным символом со стрелкой над ним:
Сонаправленные векторы — это векторы, направления которых совпадают (одинаковые по направлению).
Противоположно направленные векторы — это векторы, которые направлены в разные стороны.
С векторами можно производить такие операции, как:
Для начала, рассмотрим подробно сложение.
Сложение (сумма) векторов «a + b» — это операция вычисления вектора c, все элементы которого равны попарной сумме соответствующих элементов векторов a и b, то есть каждый элемент вектора c равен:
Вычитание (разность) векторов «a — b» — это операция вычисления вектора c, все элементы которого равны попарной разности соответствующих элементов векторов a и b, то есть каждый элемент вектора c равен:
Сложение векторов может осуществляться по трем правилам:
- Правило параллелограмма. Из произвольной точки необходимо отложить два данных вектора и построить на них параллелограмм. Диагональ параллелограмма, исходящая из начальной точки, будет суммой заданных векторов.
- Правило многоугольника. Из произвольной точки отложить первый вектор, из его конца отложить второй вектор, из конца второго вектора отложить третий и так далее. Когда все векторы отложены, соединим начальную точку с концом последнего вектора и получим сумму нескольких векторов.
- Правило треугольника.
Сумма сонаправленных и противоположно направленных векторов, правило треугольника
Правило треугольника заключается в следующем: для того чтобы сложить два сонаправленных вектора, необходимо из произвольной точки отложить первый вектор, из конца полученного вектора отложить второй вектор, и построить вектор, соединяющий начало первого с концом второго. Конечный вектор и будет суммой двух векторов.
Чертеж поможет наглядно объяснить правило:
AC — сумма векторов.
Разность векторов a и b является суммой векторов a и -b.
Как вычислить координаты суммы двух векторов, пояснение на примерах
Кроме геометрического способа сложения (вычитания) векторов (правила треугольника, параллелограмма, многоугольника), существует способ сложения координат векторов.
Для того чтобы найти координаты суммы двух векторов, нужно сложить их соответствующие координаты по следующей формуле:
Найти сумму векторов a(7;5) и b(3;8)
Найти сумму координат векторов a(-7;2), b(-3;6), c(6;-5)
Примеры решения задач
Найти сумму векторов a(1;2), b(7;9)
Найти разность координат векторов a(4;-6), b(5;-1)
Сумма векторов координаты суммы
Сумма и разность векторов
В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.
Сумма векторов
Сложение векторов выполняется по правилу треугольника.
Геометрическая интерпретация:
Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .
Для сложения векторов также используется правило параллелограмма.
Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.
Формула сложения векторов
Элементы вектора c равняются попарной сумме соответствующих элементов a и b .
Для плоских задач
Для трехмерных задач | Для n-мерных векторов |
Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие: Формула вычитания векторовЭлементы вектора c равны попарной разности соответствующих элементов a и b . Для плоских задач
Правило треугольника. Сложение векторов по правилу треугольника. |
|||||
Сложение векторов по правилу треугольника заключается в следующем:
|
Тригонометрический способ. Сложение векторов тригонометрическим способом.
Результирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:
- Fрез. = [ F1 2 + F2 2 -2 F1 F2 cos(180 о -α) ] 1/2 (1)
- где
- F = числовое значение вектора
- α = угол между векторами 1 и 2
- где
Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:
- β = arcsin[ F2 *sin(180 o -α) / FR ] (2)
- где
- α = угол между исходными векторами
- где
Пример — сложение векторов.
Сила 1 равна 5кН и воздействует на тело в направлении, на 80 o отличающемся от направления действия второй силы, равной 8 кН.
Результирующая сила вычисляется следующим образом:
Fрез = [ (5 кН) 2 + (8 кН) 2 — 2 (5 кН)(8 kН) cos(180 o — (80 o )) ] 1/2
Угол между результирующей силой и первой силой равен:
А угол между второй и результирующей силой можно посчитать следующим образом: as
α = arcsin [ (5 кН) sin(180 o — (80 o )) / (10,2 кН) ]
Он-лайн калькулятор сложения векторов.
Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.
Консультации и техническая
поддержка сайта: Zavarka Team
Координаты вектора. Направляющие косинусы
Для решения задач с векторами необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении и длине.
Координаты вектора
Пусть задана прямоугольная декартова система координат (ПДСК) $x O y$ и произвольный вектор $overline$, начало которого совпадает с началом системы координат (рис. 1).
Сумма двух векторов, заданных координатами
Чтобы найти сумму двух векторов, заданных своими координатами, надо сложить их соответствующие координаты.
Умножение вектора на число
Чтобы умножить вектор на число, надо каждую координату этого вектора умножить на заданное число.
Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две точки $Aleft(a_ ; a_right)$ и $Bleft(b_ ; b_right)$. Тогда координаты вектора $overline=left(x_ <1>; y_<1>right)$ находятся по формулам (рис. 4):
Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат конца отнять соответствующие координаты начала.
Задание. Найти координаты вектора $overline$, если $A(-4 ; 2), B(1 ;-3)$
Решение. $overline=(1-(-4) ;-3-2)=(5 ;-5)$
Направляющие косинусы
Направляющими косинусами вектора называются косинусы углов, образованных вектором с положительными направлениями осей координат.
Направление вектора однозначно задается направляющими косинусами. Для единичного вектора направляющие косинусы равны его координатам.
Здесь $alpha$, $beta$ и $gamma$ – углы, которые составляет вектор с положительными направлениями осей $O x$, $O y$ и $O z$ соответственно.
Основное свойство направляющих косинусов
Сумма квадратов направляющих косинусов равна единице.
Сложение и вычитание векторов
Формулы сложения и вычитания векторов
Формулы сложения и вычитания векторов для плоских задач
В случае плоской задачи сумму и разность векторов a = < ax ; ay > и b = < bx ; by > можно найти, воспользовавшись следующими формулами:
Формулы сложения и вычитания векторов для пространчтвенных задач
В случае пространственной задачи сумму и разность векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > можно найти, воспользовавшись следующими формулами:
Формулы сложения и вычитания n -мерных векторов
В случае n -мерного пространства сумму и разность векторов a = < a 1 ; a 2 ; . ; an > и b = < b 1 ; b 2 ; . ; bn > можно найти, воспользовавшись следующими формулами:
Примеры задач на сложение и вычитание векторов
Примеры плоских задач на сложение и вычитание векторов
Примеры пространственных задач на сложение и вычитание векторов
Примеры задач на сложение и вычитание векторов с размерностью большей 3
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
[spoiler title=”источники:”]
http://www.webmath.ru/poleznoe/formules_4_5.php
http://ru.onlinemschool.com/math/library/vector/add_subtract/
[/spoiler]
В статье Понятие вектора мы сказали, что векторы можно складывать друг с другом. Рассмотрим этот вопрос подробнее.
Пусть нам даны два вектора a⃗vec{a} и b⃗vec{b}. Что понимать под суммой этих двух векторов, то есть под a⃗+b⃗vec{a}+vec{b}? Во первых, сумма двух векторов это вектор. То есть, если мы складываем два вектора (две стрелки) то снова получаем вектор (стрелку). Существуют два способа (или правила) как можно складывать векторы. Они, конечно, дают один и тот же самый результат. Говорят о правиле треугольника и правиле параллелограмма. Оба эти правила графические, то есть сумма векторов находится путем геометрического построения. О сумме векторов, выраженной через координаты векторов речь пойдет в другой статье.
Правило треугольника
Вот нам даны два вектора a⃗vec{a} и b⃗vec{b}. Для того чтобы найти их сумму, пользуясь правилом треугольника, нужно чтобы начало одного из векторов находилось в точке конца другого вектора. То есть, чтобы точки начала одного вектора и конца другого вектора совпадали. Но что делать, если это не так? Для этого нужно параллельно перенести любой из векторов так чтобы это условие выполнялось. Например, пусть вначале векторы у нас расположены так:
Перенесем теперь вектор b⃗vec{b} параллельно самому себе так чтобы его начало совпало с концом вектора a⃗vec{a}. Получим:
Теперь, чтобы найти сумму этих векторов, нужно провести вектор (стрелку) из начала вектора a⃗vec{a} в конец вектора b⃗vec{b}. Получим вектор c⃗=a⃗+b⃗vec{c}=vec{a}+vec{b}:
Правило параллелограмма
Решим ту же задачу вторым способом. Для этого нам нужно сделать так чтобы векторы a⃗vec{a} и b⃗vec{b} исходили из одной точки, то есть, чтобы точки начала этих векторов совпали. Получим:
Теперь построим на этих двух векторах параллелограмм. Суммой векторов a⃗vec{a} и b⃗vec{b} будет вектор, совпадающий с диагональю этого параллелограмма, и начало этого суммарного вектора c⃗vec{c} будет совпадать с началом векторов a⃗vec{a} и b⃗vec{b}:
На самом деле, по своему смыслу, оба эти правила это одно и то же правило. Просто так уж вышло, что в зависимости от построения треугольника или параллелограмма, говорят о соответствующем правиле складывания векторов.
Сумма любого числа векторов
Складывать между собой можно не только два вектора, но и любое их количество. Для этого удобно воспользоваться правилом треугольника. Пусть у нас есть векторы a⃗,b⃗,c⃗,d⃗,e⃗vec{a}, vec{b}, vec{c}, vec{d}, vec{e}. Пусть мы перенесли параллельно векторы так, что начало каждого последующего вектора берет свое начало в конце предыдущего вектора, тогда сумма этих векторов, вектор s⃗vec{s} — это вектор с началом, совпадающим с началом первого вектора (вектора a⃗vec{a}) и концом, совпадающим с концом последнего вектора (вектора e⃗vec{e}):
Тест по теме “Сумма векторов”
В механике существуют два типа величин:
- скалярные величины, задающие некоторое числовое значение – время, температура, масса и т.д.
- векторные величины, которые вместе с некоторым числовым значением задают направление – скорость, сила и т.д..
Рассмотрим сначала алгебраический подход к сложению векторов.
Покоординатное сложение векторов.
Пусть даны два вектора, заданные покоординатно ( чтобы вычислить координаты вектора, нужно вычесть из соответствующих координат его конца соответствующие координаты его начала, т.е. из первой координаты – первую, из второй – вторую и т.д.):
Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:
В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.
Теперь перейдем к геометрическому смыслу сложения двух векторов:
При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:
- правило параллелограмма
- правило треугольника
- тригонометрический способ
Правило параллелограмма. Сложение векторов по правилу параллелограмма. |
|
Процедура сложения векторов по правилу параллелограмма заключается в следующем:
|
Правило треугольника. Сложение векторов по правилу треугольника. |
|
Сложение векторов по правилу треугольника заключается в следующем:
|
Тригонометрический способ. Сложение векторов тригонометрическим способом. |
|
Результирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:
Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:
|
Пример – сложение векторов.
Сила 1 равна 5кН и воздействует на тело в направлении, на 80o отличающемся от направления действия второй силы, равной 8 кН.
Результирующая сила вычисляется следующим образом:
Fрез = [ (5 кН)2 + (8 кН)2 – 2 (5 кН)(8 kН) cos(180o – (80o)) ]1/2
= 10,14кН
Угол между результирующей силой и первой силой равен:
β= arcsin[ (8кН) sin(180o – (80o)) / (10,14кН) ]
= 51o
А угол между второй и результирующей силой можно посчитать следующим образом: as
α = arcsin [ (5 кН) sin(180o – (80o)) / (10,2 кН) ]
= 29o
Он-лайн калькулятор сложения векторов.
Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.