ferenerughe
Вопрос по геометрии:
Найдите сумму внутренних и сумму внешних углов взятых по одному при каждой вершине пятиугольника abcde
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 1
reperth897
Формула для нахождения суммы внутренних углов выпуклого n – угольника: S=180*(n – 2). У пятиугольника S= 180*(5 – 2) = 180*3=540 градусов.сумма внешних углов S1=5*180-540=360.
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
Найдите сумму внутренних и сумму внешних углов взятых по одному при каждой вершине пятиугольника abcde.
Вы открыли страницу вопроса Найдите сумму внутренних и сумму внешних углов взятых по одному при каждой вершине пятиугольника abcde?. Он относится к категории
Геометрия. Уровень сложности вопроса – для учащихся 5 – 9 классов.
Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие
ответы по интересующей теме. Чтобы получить наиболее развернутый ответ,
можно просмотреть другие, похожие вопросы в категории Геометрия,
воспользовавшись поисковой системой, или ознакомиться с ответами других
пользователей. Для расширения границ поиска создайте новый вопрос, используя
ключевые слова. Введите его в строку, нажав кнопку вверху.
По теореме о сумме углов выпуклого многоугольника, сумма углов правильного пятиугольника равна 180º(5-2)=540º.
Так как все углы правильного n-угольника равны между собой, каждый внутренний угол правильного пятиугольника равен 540º:5=108º (в частности, ∠A2A1A5=108º).
Сумма внешних углов многоугольника, взятых по одному при каждой вершине, равна 360º. Поскольку все внешние углы правильного пятиугольника равны между собой, градусная мера каждого, например, угла 1, равна
∠1=360º:5=72º (можно было внешний угол искать как смежный с внутренним).
Каждый центральный угол правильного пятиугольника, например, угол A1O A2, равен
∠A1O A2=360º:5=72º.
Как и любой другой правильный многоугольник, правильный пятиугольник вписан в окружность и описан около окружности.
Соединив центр правильного многоугольника с его вершинами, получим пять равных равнобедренных треугольников.
Основанием каждого такого треугольника равно стороне 5-угольника, боковые стороны равны радиусу описанной окружности, угол при вершине — центральному углу 5-угольника.
В треугольнике A1OA5
Проведём из вершины высоту OF.
По свойству равнобедренного треугольника, OF является также медианой и биссектрисой треугольника A1OA5, то есть
OF — радиус вписанной в A1A2A3A4A5 окружности: OF=r.
Рассмотрим прямоугольный треугольник A1OF.
По определению синуса,
откуда
Так как
то
Таким образом, формула радиуса описанной около правильного пятиугольника окружности —
По определению котангенса,
Подставив значение котангенса 36°, получаем:
Итак, формула радиуса вписанной в правильный пятиугольник окружности
Применив формулу
можно найти площадь правильного пятиугольника. Здесь
следовательно, формула для нахождения площади A1A2A3A4A5
Все диагонали правильного пятиугольника равны.
Длина диагонали равна
Геометрия
найдите сумму внутренних и сумму внешних углов взятых по одному при каждой вершине пятиугольника abcde
Попроси больше объяснений
Следить
Отметить нарушение
Автор: Гость
Ответ(ы) на вопрос:
Гость:
Формула для нахождения суммы внутренних углов выпуклого n – угольника: S=180*(n – 2). У пятиугольника S= 180*(5 – 2) = 180*3=540 градусов.сумма внешних углов S1=5*180-540=360.
Пожаловаться
Геометрия, опубликовано 2018-08-22 16:33:00 by Гость
Чему равна сумма внешних углов выпуклого четырёх угольника и пятиугольника.(с решением)
Ответ оставил Гость
Сумма внутренних углов любого (не обязательно правильного)
выпуклого n-угольника равна 180(n-2).
Каждый внутренний угол даёт в сумме с прилежащим к нему
внешним углом 180 градусов (развёрнутый угол), их сумма
при n вершинах составит 180n.
Сумму внешних углов находим вычитанием суммы внутренних
углов из суммы развёрнутых:
180n – 180(n-2) = 180*2 = 360
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.