Как найти сумму всех углов четырехугольника

Сумма углов четырехугольника

Обновлено 01.02.2022

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
    четырехугольник abcd
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
    квадрат
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.
    сумма противоположных углов равна 180 градусам

    Такие четырехугольники называют вписанными.

  4. Если сумма трех углов четырехугольника равна 270°,
    то четвертый угол прямой — 90°.
    ∠A + ∠B + ∠С = 270°, ⇒ ∠D = 90°(прямой угол).
    четырехугольник 360 градусов
  5. Виды четырехугольников: квадрат, прямоугольник,
    параллелограмм, ромб, трапеция.
    Сумма углов четырехугольника

    Это все виды четырехугольников,
    которые изучаются в школьном
    курсе по геометрии.

  6. Сумма внутренних углов любого четырехугольника равна 360°.
    α + β + γ + δ = 360°.
  7. Все углы вписанного четырёхугольника являются вписанными
    в окружность, а также, равны половине дуг, на которые опираются.
    ◡ABC = 180°, ⇒ ∠ADC = 90°.
    ◡BCD = 180°, ⇒ ∠BAD = 90°.
    Квадрат вписанный в окружность
  8.  Формула суммы углов четырехугольника:
    ∠A + ∠B + ∠C + ∠D = (n-2) · 180°,
    где n — количество сторон четырехугольника.
  9. Сумма трех углов четырехугольника равна 300°,
    значит четвертый угол равен 60 градусам.
  10. Сумма внешних и внутренних углов четырехугольника равна 720°.
  11.  Все углы имеют одинаковую градусную меру — 90°,
    только у квадрата и у прямоугольника.
  12. Сумма углов четырехугольника равна сумме углов фигур,
    из которых состоит четырехугольник.
    ∠DCA + ∠ADC + ∠CAD + ∠ACB + ∠CBA + ∠BAC = 360°.
    четырехугольник, состоящий из двух треугольников

Следствия

  • Если в четырехугольнике известны три угла,
    но неизвестен четвертый угол, то его можно найти,
    так: вычесть из 360 сумму всех трех известных углов,
    так мы найдем четвертый угол.
    ∠A = 360° — (∠B + ∠C + ∠D).
  • Если три угла четырехугольника равны
    90 градусов, то четвертый угол равен тоже 90.
  • Чтобы на рисунке измерить углы,
    и найти их градусную меру, нужно
    воспользоваться транспортиром.
  • Сумма углов четырехугольника
    не может быть равна 180 градусам.
    ∠A + ∠B + ∠C + ∠D ≠ 180°.
  • Чтобы найти сумму углов
    четырехугольника, нужно сложить все углы.
  • Сумма двух углов четырехугольника равна 180 градусам,
    только, в том случае, если этот четырехугольник вписан в окружность.

Сумма углов четырехугольника

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.

Такие четырехугольники называют вписанными.

Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.

Чему равна сумма углов четырехугольника

Чему равна сумма углов выпуклого четырехугольника? Ответ на этот вопрос связан с теоремой о сумме углов треугольника.

Сумма углов выпуклого четырехугольника равна 360º.

Проведем в четырехугольнике ABCD диагональ AC.

Она разбивает четырехугольник на два треугольника:

Сумма углов четырехугольника ABCD равна сумме углов этих треугольников:

Четырехугольник – виды и свойства с примерами решения

Содержание:

Четырёхугольник – это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки – сторонами четырёхугольника.

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне – противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин – противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области – внутреннюю и внешнюю.

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов углы являются внешними.

Каждый внутренний угол выпуклого четырёхугольника меньше Градусная мера внутреннего угла невыпуклого четырёхугольника может быть больше

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Доказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Теорема 1. Противоположные стороны параллелограмма конгруэнтны.

Теорема 2. Противоположные углы параллелограмма конгруэнтны.

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника.

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны.

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом.

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если то параллелограмм является ромбом.

Доказательство теоремы 1.

Дано: ромб.

Докажите, что

Доказательство (словестное): По определению ромба При этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что равнобедренный. Медиана (так как ), является также и биссектрисой и высотой. Т.е. Так как является прямым углом, то . Аналогичным образом можно доказать, что

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны.

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны.

План доказательства теоремы 2

Дано: равнобедренная трапеция.

Докажите:

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если тогда Запишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку проведем параллельную прямую к прямой

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике через точку – середину стороны проведите прямую параллельную Какая фигура получилась? Является ли трапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Можно ли утверждать, что

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине

Доказательство. Пусть дан треугольник и его средняя линия Проведём через точку прямую параллельную стороне По теореме Фалеса, она проходит через середину стороны т.е. совпадает со средней линией Т.е. средняя линия параллельна стороне Теперь проведём среднюю линию Т.к. то четырёхугольник является параллелограммом. По свойству параллелограмма По теореме Фалеса Тогда Теорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство: Через точку и точку середину проведём прямую и обозначим точку пересечения со стороной через

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке радиусом 3 единицы. Вычислите значение выражения Есть ли связь между значением данного выражения и координатой точки

Координаты середины отрезка

1) Пусть на числовой оси заданы точки и и точка которая является серединой отрезка

то а отсюда следует, что

2) По теореме Фалеса, если точка является серединой отрезка то на оси абсцисс точка является соответственно координатой середины отрезка концы которого находятся в точках и

3) Координаты середины отрезка с концами и точки находятся так:

Убедитесь, что данная формула верна в случае, если отрезок параллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки как показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Шаг 4. На сторонах другого квадрата отметьте отрезки как показано на рисунке и отрежьте четыре прямоугольных треугольника.

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах:

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если то, – прямоугольный.

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа являются Пифагоровыми тройками, то и числа также являются Пифагоровыми тройками.

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

(рис. 1).

Точки А, В, С, D – вершины четырёхугольника, отрезки АВ, ВС, CD, DA – его стороны. Углы DAB, ABC, BCD, CDA – это углы четырёхугольника. Их также обозначают одной буквой –

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой.

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA – неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ – соседние, а вершины А и С, , стороны AD и ВС – противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD – диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б – невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: =40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В + CD (по неравенству треугольника). Тогда . Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) . Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Решение:

(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично (АВ CD, ВС-секущая), (ВС || AD, CD – секущая), (АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Доказательство. по стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник – параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник – параллелограмм.

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). по трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Углы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие – параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD – не параллелограмм.

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник – параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). по двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, как внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Но углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. по двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, как вертикальные. Из равенства треугольников следует: ВС= AD и Но углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник – параллелограмм.

Чтобы установить, что четырёхугольник – параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и –у треугольники, можно разделить на виды. Прямоугольник – один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике.

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник – частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Можно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что . по трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что . Поскольку в параллелограмме противоположные углы равны, то: . По свойству углов четырёхугольника,

Следовательно, : 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм – прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, – это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма – ромб.

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Дано: ABCD – ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать:

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому .

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором (рис. 96). Докажем, что ABCD— ромб. по двум сторонами и углу между ними.

Так как ромб – это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, по условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм – ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник – это частные виды параллелограмма. Соотношение между видами параллелограммов показано на

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки и Проведите с помощью чертёжного угольника и линейки через точки параллельные прямые, которые пересекут сторону ВС этого угла в точках При помощи циркуля сравните длины отрезков Сделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано:

Доказать:

Доказательство. Проведём через точки прямые параллельные ВС. по стороне и прилежащим к ней углам. У них по условию, как соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что и как противоположные стороны параллелограммов

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Отложим на луче АС пять равных отрезков: АА,Проведём прямую . Через точки проведём прямые, параллельные прямой . По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN – средняя линия , так как точки М и N – середины сторон АВ и ВС.

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: (рис. 122), AD = BD, СЕ= BE.

Доказать:

Доказательство. 1) Пусть DE- средняя линия . Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: . По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно,

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Поэтому . КР— средняя линия треугольника ADC. Поэтому КР || АС и

Получаем: MN || АС и КР || АС, отсюда MN || КР, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами – параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие – АВ и CD – непараллельны. Такой четырёхугольник – трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие – непараллельны.

Параллельные стороны трапеции называются её основаниями, а непараллельные – боковыми сторонами. На рисунке 144 AD и ВС – основания трапеции, АВ и CD – боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP – равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) – прямоугольная, поскольку = 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF – средняя линия трапеции ABCD, так как точки Е и F – середины боковых сторон АВ и CD.

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD – трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать:

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. no стороне и прилежащим к ней углам. У них CF = FD по условию, как вертикальные, внутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и равнобедренный. Поэтому соответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом.

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: — вписанный в окружность с центром О (рис. 188 — 190).

Доказать:

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом . По свойству внешнего угла треугольника, – равнобедренный (ОВ= OA = R). Поэтому измеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:

Из доказанного в первом случае следует, что измеряется половиной дуги AD, a — половиной дуги DC. Поэтому измеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда:

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, – прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°.

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). как вписанные, опирающиеся на дугу АС (следствие 1). Поэтому , так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно,

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, (рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около (рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо:

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность.

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность – описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность – вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Доказать:

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует:

Тогда

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник – вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225).

Докажем, что . В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, . По свойству равнобокой трапеции,

Тогда и, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения центры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника вписанного в окружность. Действительно,

Следовательно, четырёхугольник — вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD – вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

http://www.evkova.org/chetyirehugolnik

[/spoiler]

Четырёхугольники бывают выпуклые и невыпуклые. В школьной программе рассматриваются чаще всего именно выпуклые многоугольники и потому предполагаю, что ответ надо давать именно в этом направлении.

Если быть ещё более точным, тогда вспомнить и о наличии внешних и внутренних углов. Именно внутренние углы нас интересуют (чаще всего задачи сводятся к нахождению внутренних углов). Для четырёхугольника сумма внутренних углов составляет 360 градусов.

Допустим, что Вы не помните данный факт. Тогда все мы знаем свойства квадрата. У него все углы по 90 градусов. Сложите четыре угла квадрата по 90 градусов и Вы получаете те самые 360 градусов.

Есть ещё формула нахождения суммы углов выпуклого n-угольника: 180(n-2), где n- количество углов (сторон) выпуклого n-угольника. Подставьте вместо n число 4 (количество сторон четырёхугольника) и получите: 180(4-2)=180*2=360 (градусов).


Можно рассуждать иначе. Представьте себе на рисунке выпуклый четырёхугольник, разделите его на два треугольника при помощи любой диагонали и вспомните о том, что сумма внутренних углов каждого треугольника равна 180 градусов. Четырёхугольник разделён на два треугольника, тогда и сумма его внутренних углов будет 180+180=360 (градусов). Как ни крутим задачку, а всё равно получаем 360 градусов.

Иллюстрация, которая показывает разницу между выпуклым и невыпуклым четырёхугольником (прилагается). В школьном курсе были рассмотрены следующие четырёхугольники: ромб, прямоугольник, квадрат, трапеция, параллелограмм. Названия разные, а сумма углов одинаковая. Темы “сумма углов треугольника и четырёхугольника” считаю одними из самых лёгких в школьном курсе по математике.

Здравствуйте, дорогие читатели. В прошлом выпуске разбирали как вычислять углы в параллелограмме, используя накрест лежащие углы и односторонние. В этой статье рассмотрим еще несколько разновидностей задач, для нахождения углов в четырехугольнике.

Задача №1

Задача №1
Задача №1

В этой задаче неважно какой угол вы возьмете равным в 51 градус, главное в ответе указать острый угол. А острый угол, это угол меньше 90 градусов.

Вспомним свойство диагоналей прямоугольника:

Диагонали прямоугольника равны, и точкой пересечения делятся пополам.

В прямоугольнике образуются четыре равнобедренных треугольника. Углы при основании в равнобедренном треугольнике равны.

180-(51+51)=78
180-(51+51)=78

Как видите, не важно между какой стороной и диагональю взять угол, но правильно только на первом рисунке, где “нарисован” острый угол, и по градусам также получился острый угол. На втором рисунке “нарисован” тупой угол, а получился при решении острый.

В таком типе задачи в вопросе может стоять найти тупой угол. Тогда в ответ, записываем угол, который больше 90 градусов. В этом случае тупой угол будет равен 180-78=102.

Задача №2

Задача №2
Задача №2

Из условия задачи понимаем, что трапеция ABCD равнобедренная, т.к. АВ=CD, значит и углы при основаниях равны.

Решение
Решение

Так же для решения воспользовались теоремой о сумме углов в треугольнике: Сумма углов в треугольнике равна 180 градусам.

Задача №3

Задача №3
Задача №3

Запомни! Ромб – это параллелограмм, у которого все стороны равны. Значит треугольник АВС – равнобедренный. Диагонали ромба делят его углы пополам.

Решение
Решение

Задача №4

Задача №4
Задача №4

Так как АС в 2 раза больше чем АВ, и диагонали параллелограмма в точке пересечения делятся пополам, то АО=АВ

Решение
Решение

Задача №5

Задача №5
Задача №5

Решение: Проведем диагональ ВD. Треугольники BCD равен треугольнику BAD по трем сторонам. Значит угол С равен углу А. Сумма углов выпуклого четырехугольника равна 360. Угол А равен:

Решение
Решение

Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Легко вычисляем углы в четырехугольнике. Задание 17 ОГЭ
ЧЕТЫРЁХУГОЛЬНИКИ

┌─────────────┼────────────┐
простой невыпуклый выпуклый самопересекающийся
Concave quadrilateral.png Convex quadrilateral.svg Cross-quadrilateral.png

Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники[1].

Виды четырёхугольников[править | править код]

Достоверность этого раздела статьи поставлена под сомнение.

Необходимо проверить точность фактов, изложенных в этом разделе.
На странице обсуждения могут быть пояснения. (26 апреля 2023)

Четырёхугольники с параллельными противоположными сторонами[править | править код]

  • Квадрат — четырёхугольник, у которого все углы прямые и все стороны равны;
  • Параллелограмм — четырёхугольник, у которого противоположные стороны попарно равны и параллельны;
  • Прямоугольник — четырёхугольник, у которого все углы прямые;
  • Ромб — четырёхугольник, у которого все стороны равны;
  • Ромбоид — это параллелограмм , в котором смежные стороны имеют разные длины, и углы не являются прямыми.
  • Трапеция — четырёхугольник, у которого две противоположные стороны параллельны и две другие не параллельны;

Четырёхугольники с антипараллельными противоположными сторонами[править | править код]

  • Антипараллелограмм или контрпараллелограмм — плоский невыпуклый (самсопересекающийся) четырёхугольник, в котором каждые две противоположные стороны равны между собой, но не параллельны, в отличие от параллелограмма.
  • Равнобедренная трапеция или Равнобокая трапеция.
  • Четырёхугольник, вписанный в окружность или вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Он же является четырёхугольником с антипараллельными противоположными сторонами

Четырёхугольники с перпендикулярными смежными сторонами[править | править код]

  • Квадрат
  • Прямоугольная трапеция
  • Прямоугольник
  • Прямоугольный дельтоид

Четырёхугольники с перпендикулярными диагоналями[править | править код]

  • Дельтоид
  • Квадрат
  • Четырёхугольник ортодиагональный или ортодиагональный четырёхугольник — это четырёхугольник, в котором диагонали пересекаются под прямым углом.
  • Ромб

Четырёхугольники с параллельными диагоналями[править | править код]

  • Антипараллелограмм

Четырёхугольники с равными противоположными сторонами[править | править код]

  • Антипараллелограмм
  • Квадрат
  • Параллелограмм
  • Прямоугольник
  • Ромб
  • Ромбоид
  • Равнобедренная трапеция или Равнобокая трапеция.

Четырёхугольники с равными диагоналями[править | править код]

  • Квадрат
  • Четырёхугольник равнодиагональный или равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины.
  • Прямоугольник
  • Равнобедренная трапеция или равнобокая трапеция.

Четырёхугольники, описанные около окружности[править | править код]

  • Четырёхугольник описанный или описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника.

Полный четырёхсторонник[править | править код]

Хотя такое название может быть эквивалентно четырёхугольнику, в него часто вкладывают дополнительный смысл. Четвёрка прямых, никакие две из которых не параллельны и никакие три не проходят через одну точку, называется полным четырёхсторонником. Такая конфигурация встречается в некоторых утверждениях евклидовой геометрии (например, теорема Менелая, прямая Ньютона — Гаусса, прямая Обера, теорема Микеля и др.), в которых часто все прямые являются взаимозаменяемыми.

Сумма углов[править | править код]

Согласно теореме о сумме углов многоугольника, сумма углов четырёхугольника без самопересечений равна 360°.

{displaystyle sum _{i=1}^{4}alpha _{i}=(4-2)cdot 180^{circ }=2cdot 180^{circ }=360^{circ }}

Метрические соотношения[править | править код]

Неравенство четырёхугольника[править | править код]

Модуль разности любых двух сторон четырёхугольника не превосходит суммы двух других сторон.

{displaystyle left|a-bright|leq c+d}.

Эквивалентно: в любом четырёхугольнике (включая вырожденный) сумма длин трёх его сторон не меньше длины четвёртой стороны, то есть:

{displaystyle aleq b+c+d};
{displaystyle bleq a+c+d};
{displaystyle cleq a+b+d};
{displaystyle dleq a+b+c}.

Равенство в неравенстве четырёхугольника достигается только в том случае, если он вырожденный, то есть все четыре его вершины лежат на одной прямой.

Неравенство Птолемея[править | править код]

Для сторон a,b,c,d и диагоналей {displaystyle e,f} выпуклого четырёхугольника выполнено неравенство Птолемея:

|e|cdot |f|leq |a|cdot |c|+|b|cdot |d|,

причём равенство достигается тогда и только тогда, когда выпуклый четырёхугольник вписан в окружность или его вершины лежат на одной прямой.

Соотношения между сторонами и диагоналями четырёхугольника[править | править код]

Шесть расстояний между четырьмя произвольными точками плоскости, взятыми попарно, связаны соотношением:

a^{2}c^{2}left(b^{2}+d^{2}+e^{2}+f^{2}-a^{2}-c^{2}right)+b^{2}d^{2}left(a^{2}+c^{2}+e^{2}+f^{2}-b^{2}-d^{2}right)+
+e^{2}f^{2}left(a^{2}+c^{2}+b^{2}+d^{2}-e^{2}-f^{2}right)=(abe)^{2}+(bcf)^{2}+(cde)^{2}+(daf)^{2}.

Это соотношение можно представить в виде определителя:

left|{begin{matrix}0&a^{2}&e^{2}&d^{2}&1\a^{2}&0&b^{2}&f^{2}&1\e^{2}&b^{2}&0&c^{2}&1\d^{2}&f^{2}&c^{2}&0&1\1&1&1&1&0end{matrix}}right|=0

Этот определитель с точностью до множителя 288 представляет собой выражение для квадрата объёма тетраэдра через длины его рёбер с помощью определителя Кэли-Менгера. Если вершины тетраэдра лежат в одной плоскости, то он имеет нулевой объём и превращается в четырёхугольник. Длины рёбер будут длинами сторон или диагоналей четырёхугольника.

Соотношения Бретшнайдера[править | править код]

Соотношения Бретшнайдера — соотношение между сторонами a, b, c и d и противоположными углами angle A,angle C и диагоналями e, f простого (несамопересекающегося) четырёхугольника:

e^{2}f^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcdcos(angle A+angle C),
{displaystyle e^{2}f^{2}=(ac+bd)^{2}-4abcdcos ^{2}{dfrac {angle A+angle C}{2}}},
{displaystyle e^{2}f^{2}=(ac-bd)^{2}+4abcdsin ^{2}{dfrac {angle A+angle C}{2}}}.

Специальные прямые линии четырёхугольника[править | править код]

Средние линии четырёхугольника[править | править код]

Пусть G, I, H и J — середины сторон выпуклого четырёхугольника ABCD, а E, F — середины его диагоналей. Назовем три отрезка GH, IJ, EF соответственно первой, второй и третьей средними линиями четырёхугольника. Первые две из них также называют бимедианами[2].

Точки E, K, F лежат на одной прямой, прямой Ньютона

Теоремы о средних линиях четырёхугольника[править | править код]

Запрос «Бимедиана» перенаправляется сюда; о бимедиане тетраэдра см. Тетраэдр#Свойства.

  • Обобщённая теорема Ньютона. Все три средние линии четырёхугольника пересекаются в одной точке (в центроиде вершин («vertex centroid») четырёхугольника) и делятся ею пополам.
  • Середины E и F двух диагоналей, а также центроид вершин K выпуклого четырёхугольника лежат на одной прямой EF. Указанная прямая называется прямой Ньютона.
  • Заметим, что прямая Ньютона — Гаусса совпадает с прямой Ньютона, ибо обе проходят через середины диагоналей.
  • Теорема Вариньона:
  • Формула Эйлера: учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей.
  • Математически для рисунка справа вверху с серым четырёхугольником ABCD формула Эйлера записывается в виде:
    (2EF)^{2}=AB^{2}+BC^{2}+CD^{2}+DA^{2}-BD^{2}-AC^{2}.

Прямая Ньютона[править | править код]

Прямая, получаемая соединением середин диагоналей (L, M и N), называется прямой Ньютона — Гаусса (зелёная)

  • Если в четырёхугольнике две пары противоположных сторон не параллельны, то две середины его диагоналей лежат на прямой, которая проходит через середину отрезка, соединяющего две точки пересечения этих двух пар противоположных сторон (на рисунке точки показаны красным цветом). Указанная прямая называется прямой Ньютона (на рисунке она показана зелёным цветом). При этом прямая Ньютона всегда перпендикулярна прямой Обера.
  • Точки, лежащие на прямой Ньютона, удовлетворяют теореме Анна.

Ортополярные линии ортополюсов троек вершин четырехугольника[править | править код]

Если задана фиксированная прямая линия , и выбрана любая из трех вершин четырехугольника {displaystyle ABCD}, то все ортополюсы данной прямой линии относительно всех таких треугольников лежат на одной прямой. Эта линия называется ортополярной линией для данной линии относительно четырехугольника {displaystyle ABCD}[3]

Специальные точки четырёхугольника[править | править код]

Центроид четырёхугольника[править | править код]

  • Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырёхугольника и делятся им в отношении 3:1, считая от вершин.
  • См. также свойства центроида четырёхугольника.

Точка Понселе четырёхугольника[править | править код]

Внутри четырёхугольника существует точка Понселе (см. параграф “Окружности девяти точек треугольников внутри четырёхугольника”).

Точка Микеля четырёхугольника[править | править код]

Внутри четырёхугольника существует точка Микеля.

Окружности девяти точек треугольников внутри четырёхугольника[править | править код]

В произвольном выпуклом четырёхугольнике ABCD окружности девяти точек треугольников {displaystyle ABC,BCD,CDA,DAB}, на которые его разбивают две диагонали, пересекаются в одной точке — в точке Понселе[4].

Частные случаи четырёхугольников[править | править код]

Вписанные четырёхугольники[править | править код]

  • Говорят, что если около четырёхугольника можно описать окружность, то четырёхугольник вписан в эту окружность, и наоборот.
  • В частности, четырёхугольниками, вписанными в окружность, являются: прямоугольник, квадрат, равнобедренная или равнобочная трапеция, антипараллелограмм.
  • Теоремы для вписанных четырёхугольников:
    • Две теоремы Птолемея. Для простого (несамопересекающегося) четырёхугольника, вписанного в окружность, имеющего длины пар противоположных сторон: a и c, b и d, а также длины диагоналей e и f, справедливы:
1) Первая теорема Птолемея
{displaystyle ef=ac+bd};
2) Вторая теорема Птолемея

{frac {e}{f}}={frac {acdot d+bcdot c}{acdot b+ccdot d}}.
В последней формуле пары смежных сторон числителя a и d, b и c опираются своими концами на диагональ длиной e. Аналогичное утверждение имеет место для знаменателя.

3) Формулы для длин диагоналей (следствия первой и второй теорем Птолемея)
{displaystyle e={sqrt {frac {(ac+bd)(ad+bc)}{ab+cd}}}} и {displaystyle f={sqrt {frac {(ac+bd)(ab+cd)}{ad+bc}}}}
    • Теорема Монжа об ортоцентре вписанного четырехугольника. 4 отрезка прямых (4 антимедатрисы[5]), проведенных из середин 4 сторон вписанного четырехугольника перпендикулярно к противолежащим сторонам, пересекаются в ортоцентре Н этого четырехугольника[6][7].
    • Теорема о вписанности в окружность пары диагональных треугольников. Если выпуклый четырёхугольник вписан в некоторую окружность, то в ту же самую окружность вписаны и пара треугольников, на которые разбивает четырёхугольник любая из его диагоналей (связь с окружностями треугольника).
    • Теорема о четырёх медиатрисах. Из последнего утверждения следует: если три из четырёх медиатрис (или срединных перпендикуляров), проведённых к сторонам выпуклого четырёхугольника, пресекаются в одной точке, то в той же точке пресекается и медиатриса его четвёртой стороны. Более того, такой четырёхугольник вписан в некоторую окружность, центр которой находится в точке пресечения указанных медиатрис[8].

Японская теорема (Japanese theorem)

    • Теоремы о четырех диагональных треугольниках и об их вписанных окружностях[9]. Если во вписанном в окружность четырёхугольнике провести диагональ, а в полученные два треугольника вписать две окружности, затем аналогично поступить, проведя вторую диагональ, тогда центры четырёх образовавшихся окружностей являются вершинами прямоугольника (то есть лежат на одной окружности). Эту теорему называют японской теоремой (Japanese theorem). (см. рис.). Кроме того, ортоцентры четырёх описанных здесь треугольников являются вершинами четырёхугольника, подобного исходному четырёхугольнику ABCD (то есть также лежат на другой окружности, ибо вершины исходного вписанного четырёхугольника лежат на некоторой окружности). Наконец, центроиды этих четырёх треугольников лежат на третьей окружности[10].
    • Теорема о четырёх проекциях вершин вписанного четырёхугольника на его диагонали[11]. Пусть ABCD — вписанный четырёхугольник, A_{1} — основание перпендикуляра, опущенного из вершины A на диагональ BD; аналогично определяются точки {displaystyle B_{1},C_{1},D_{1}}. Тогда точки {displaystyle A_{1},B_{1},C_{1},D_{1}} лежат на одной окружности.
    • Теорема Брокара. Центр описанной около четырёхугольника окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и в точках пересечения противоположных сторон.
  • Критерии вписанности четырёхугольников:
    • Первый критерий вписанности четырёхугольника. Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180°, то есть:
{displaystyle angle A+angle C=angle B+angle D=180^{circ }}.
    • Второй критерий вписанности четырёхугольника. Около четырёхугольника можно описать окружность тогда и только тогда, когда любая пара его противоположных сторон антипараллельна.

Теорема Микеля-Штейнера для четырёхстронника

    • Третий критерий вписанности четырёхугольника. Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля, вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF.
    • Прямая, антипараллельная стороне треугольника и пересекающая его, отсекает от него четырёхугольник, около которого всегда можно описать окружность.
    • Четвертый критерий вписанности четырёхугольника. Условие, при котором совмещение двух треугольников с одной равной стороной даёт четырёхугольник, вписанный в окружность[12]. Для того, чтобы два треугольника с тройками длин сторон соответственно (a, b, f) и (c, d, f) при их совмещении вдоль общей стороны с длиной, равной f, давали в итоге четырёхугольник, вписанный в окружность с последовательностью сторон (a, b, c, d), необходимо условие[13]:84
{displaystyle f^{2}={frac {(ac+bd)(ad+bc)}{(ab+cd)}}.}
    • Последнее условие даёт выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырёх его сторон (a, b, c, d). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея (см. выше).
  • Площадь вписанного в окружность четырёхугольника:
    • Площадь вписанного в окружность четырёхугольника по формуле Брахмагупты равна[14]:
S={sqrt {(p-a)(p-b)(p-c)(p-d)}}, где p — полупериметр четырёхугольника.
    • Последняя формула следует из общей формулы (1) в рамке в параграфе «Площадь», если в ней учесть, что {displaystyle 2theta =angle A+angle C=angle B+angle D=180^{circ }}
    • Последняя формула есть обобщение формулы Герона на случай четырёхугольника.
    • Формула Брахмагупты для площади вписанного в окружность четырёхугольника может быть записана через определитель[8]:

S={frac {1}{4}}{sqrt {-{begin{vmatrix}a&b&c&-d\b&a&-d&c\c&-d&a&b\-d&c&b&aend{vmatrix}}}}

  • Радиус окружности, описанной около четырёхугольника:

R={frac {1}{4}}{sqrt {frac {(ab+cd)(ad+bc)(ac+bd)}{(p-a)(p-b)(p-c)(p-d)}}}

Вписанные четырёхугольники с перпендикулярными диагоналями[править | править код]

Описанные четырёхугольники[править | править код]

  • Говорят, что если в четырёхугольник можно вписать окружность, то четырёхугольник описан около этой окружности, и наоборот.
  • Некоторые (но не все) четырёхугольники имеют вписанную окружность. Они называются описанными четырёхугольниками.
    • Частными четырёхугольниками, описанными около окружности, являются: ромб, квадрат, дельтоид.
  • Критерии описанности четырёхугольников:
    • Среди свойств описанных четырёхугольников наиболее важным является то, что суммы противоположных сторон равны. Это утверждение называется теоремой Пито.
    • Иными словами, выпуклый четырёхугольник является описанным около окружности тогда и только тогда, когда суммы длин противоположных сторон равны, то есть: {displaystyle AB+CD=BC+AD}.
  • Теоремы для описанных четырёхугольников:
    • Теорема о двух равных сторонах угла, касающегося окружности. Точки касания вписанной окружности с четырёхугольником отсекают равные отрезки от углов четырёхугольника.
    • Теорема о продолжении двух пар противоположных сторон четырёхугольника. Если выпуклый четырёхугольник — не трапеция и не параллелограмм и он описан около некоторой окружности, то около этой же самой окружности описаны и пара треугольников, которые получаются при продолжении двух его пар противоположных сторон до их пересечения (связь с окружностями треугольника).
    • Теорема о четырёх биссектрисах. Из последнего утверждения следует: если три из четырёх биссектрис (или биссекторов), проведённых для внутренних углов выпуклого четырёхугольника, пресекаются в одной точке, то в той же точке пресекается и биссектриса его четвёртого внутреннего угла. Более того такой четырёхугольник описан около некоторой окружности, центр которой находится в точке пресечения указанных биссектрис[17].
    • Теорема Ньютона. Если четырёхугольник является описанным около окружности, то центр его вписанной окружности лежит на прямой Ньютона. Более точное утверждение ниже.
    • Теорема Ньютона. Во всяком описанном четырёхугольнике две середины диагоналей и центр вписанной окружности лежат на одной прямой. На ней же лежит середина отрезка с концами в точках пересечения продолжений противоположных сторон четырёхугольника (если они не параллельны). Эта прямая называется прямой Ньютона. На рисунке (вторая группа рисунков сверху) она зелёная, диагонали красные, отрезок с концами в точках пересечения продолжений противоположных сторон четырёхугольника тоже красный.
    • Теорема Брокара. Центр описанной около четырёхугольника окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и в точках пересечения противоположных сторон.
  • Площадь описанного четырёхугольника

Вводя понятие полупериметра p, имеем {displaystyle p=(a+d+b+c)/2=a+c=b+d}. Следовательно, также имеем {displaystyle p=(a+d+b+c)/2=a+c=b+d}. Далее можно заметить: p-a=c;p-b=d;p-c=a;p-d=b. Следовательно, {displaystyle (p-a)(p-b)(p-c)(p-d)=abcd.} Тогда по формуле (1) в рамке в параграфе «Площадь» имеем

S={sqrt {(p-a)(p-b)(p-c)(p-d)-abcdcos ^{2}theta }}=

={sqrt {abcd-abcdcos ^{2}theta }}={sqrt {abcdsin ^{2}theta }}={sqrt {abcd}}sin theta .

    • Поскольку четырёхугольник описан, то его площадь также равна половине периметра p, умноженной на радиус r вписанной окружности: {displaystyle S=pr}.

Вписано-описанные четырёхугольники[править | править код]

Вписано-описанные четырёхугольники ABCD и EFGH и Поризм Понселе для них

  • Вписанно-описанные четырёхугольники — четырёхугольники, которые могут быть одновременно описаны около некоторой окружности, а также вписаны в некоторую окружность. Другие их названия — бицентрические четырёхугольники (Bicentric quadrilateral), хордо-касающиеся четырёхугольники (chord-tangent quadrilateral) или двух-окружностные четырёхугольники (double circle quadrilateral).
  • Частными вписанно-описанными четырёхугольниками являются квадрат и ромбоид с парой равных противоположных углов по 90 градусов.

Свойства[править | править код]

  • Критерии одновременной вписанности и описанности четырёхугольника
    • Любое одно из двух указанных ниже условий по отдельности является необходимым, но не достаточным условием для того, чтобы данный выпуклый четырёхугольник был вписанно-описанным для некоторых окружностей:
{displaystyle AB+CD=BC+AD} и {displaystyle angle A+angle C=angle B+angle D=180^{circ }}.
    • Выполнение двух последних условий одновременно для некоторого выпуклого четырёхугольника является необходимым и достаточным для того, чтобы данный четырёхугольник был вписанно-описанным.
  • Теоремы для вписанно-описанных четырёхугольников

Вписано-описанный четырёхугольник ABCD с центром I вписанной и с центром O описанной окружностей

{displaystyle {frac {1}{(R+x)^{2}}}+{frac {1}{(R-x)^{2}}}={frac {1}{r^{2}}}}

или

{displaystyle displaystyle 2r^{2}(R^{2}+x^{2})=(R^{2}-x^{2})^{2}.}

или

{displaystyle x^{2}=R^{2}+r^{2}-r{sqrt {4R^{2}+r^{2}}}}

или

{displaystyle x={sqrt {R^{2}+r^{2}-r{sqrt {4R^{2}+r^{2}}}}}.}

Вписанно-описанный четырёхугольник ABCD и его внутренне-касающийся вписанный четырёхугольник WXYZ

Площадь вписанно-описанного четырёхугольника[править | править код]

{displaystyle S={frac {p^{2}}{operatorname {tg} {frac {A}{2}}+operatorname {tg} {frac {B}{2}}+operatorname {tg} {frac {C}{2}}+operatorname {tg} {frac {D}{2}}}}}

Разбиение сторон касательного четырехугольника точками касания с окружностью[править | править код]

Разбиение сторон касательного четырехугольника точками касания с окружностью

  • Восемь «длин касательных» («e», «f», «g», «h» на рисунке справа) касательного четырехугольника — это отрезки прямой от вершины до точек, где окружность касается сторон. Из каждой вершины есть две касательных к окружности равной длины (см. рис.).
  • Обозначим также две «касательные хорды» («k» и «l» на рисунке) касательного четырехугольника — это отрезки линий, которые соединяют точки на противоположных сторонах, где окружность касается этих сторон. Они также являются диагоналями «контактного четырехугольника», имеющего вершины в точках касания четырехугольника ABCD с окружностью.

Тогда площадь вписанно-описанного четырёхугольника равна[21]:p.128

{displaystyle S={sqrt[{4}]{efgh}}(e+f+g+h),}

а также

{displaystyle S=AIcdot CI+BIcdot DI.}
  • Если к двум хордам для касательных k и l и диагоналям p и q ввести дополнительно еще две бимедианы m и n выпуклого четырехугольника, как отрезки прямых, соединяющих середины противоположных сторон, то площадь вписанно-описанного четырёхугольника будет равна[22]
{displaystyle S=left|{frac {m^{2}-n^{2}}{k^{2}-l^{2}}}right|kl}
{displaystyle S={frac {klpq}{k^{2}+l^{2}}}.}

Внеописанные четырёхугольники[править | править код]

Внеописанный четырёхугольник для окружности[править | править код]

Внеописанный четырёхугольник ABCD и его вневписанная окружность

  • Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника)[23]. Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис.
  • Вневписанная окружность существует не для всякого четырёхугольника. Если противоположные стороны выпуклого четырёхугольника ABCD пересекаются в точках E и F, то условием его внеописанности является любое из двух условий ниже:
{displaystyle AB+BC=AD+DCquad Leftrightarrow quad AE+EC=AF+FC.}

Внеописанный четырёхугольник для параболы[править | править код]

  • Парабола, вневписанная для четырёхугольника. Такая парабола существует у любого выпуклого четырёхугольника и она касается всех 4 сторон данного четырёхугольника (четырёхсторонника) или их продолжений. Её директриса совпадает с прямой Обера — Штейнера[24].

Четырёхугольники с перпендикулярными элементами[править | править код]

  • Ниже выделены параграфы для четырёхугольников с перпендикулярными парами элементов: с 2 перпендикулярными сторонами и с 2 перпендикулярными диагоналями.
  • Эти четырёхугольники вырождаются в прямоугольный треугольник, если длина одной нужной стороны (из их 4 сторон), лежащей вблизи прямого угла или же опирающейся концами на этот угол, стремится к нулю.

Четырёхугольники с перпендикулярными сторонами[править | править код]

Четырёхугольники с перпендикулярными противоположными сторонами[править | править код]

  • Две противоположные стороны четырёхугольника перпендикулярны тогда и только тогда, когда сумма квадратов двух других противоположных сторон равна сумме квадратов диагоналей.
  • Если сумма углов при одном из оснований трапеции равна 90°, то продолжения боковых (противоположных) сторон пересекаются под прямым углом, а отрезок, соединяющий середины оснований, равен полуразности оснований.

Четырёхугольники с 2 парами перпендикулярных смежных сторон[править | править код]

  • Если у выпуклого четырёхугольника перпендикулярны две пары смежных сторон (то есть два противоположных угла прямые), то этот четырёхугольник может быть вписан в некоторую окружность. Более того, диаметром этой окружности будет служить диагональ, на которую опираются одними концами указанные две пары смежных сторон.
  • Частными четырёхугольниками с перпендикулярными сторонами являются: прямоугольник, квадрат и прямоугольная трапеция.

Четырёхугольники с 3 перпендикулярными смежными сторонами[править | править код]

  • Если у выпуклого четырёхугольника перпендикулярны 3 смежные стороны (то есть 2 внутренних угла прямые), то этот четырёхугольник – прямоугольная трапеция.

Четырёхугольники с перпендикулярными диагоналями[править | править код]

  • Четырёхугольники с перпендикулярными диагоналями называются ортодиагональными четырёхугольниками.
  • Диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов противоположных сторон равны.
  • Площадь ортодиагонального четырёхугольника равна половине произведения его диагоналей: {displaystyle S={frac {1}{2}}ef}.
  • Средние линии четырёхугольника равны тогда и только тогда, когда равны суммы квадратов его противоположных сторон.
  • Антимедиатрисой четырёхугольника называются отрезок прямой, выходящий из середины одной его стороны и перпендикулярный противоположной ей стороне.
  • Теорема Брахмагупты. Если у четырёхугольника перпендикулярны диагонали и он может быть вписан в некоторую окружность, то четыре его антимедиатрисы пересекаются в одной точке. Более того, этой точкой пересечения антимедиатрис является точка пересечения его диагоналей.
  • Если у четырёхугольника перпендикулярны диагонали и он может быть вписан в некоторую окружность, то учетверённый квадрат её радиуса R равен сумме квадратов любой пары противоположных его сторон: {displaystyle a^{2}+c^{2}=b^{2}+d^{2}=4R^{2}.}
  • Если у четырёхугольника перпендикулярны диагонали и он может быть описан около некоторой окружности, то у него равны произведения двух пар противоположных сторон: {displaystyle ac=bd.}
  • Параллелограмм Вариньона с вершинами в серединах сторон ортодиагонального четырёхугольника является прямоугольником.
  • Если в четырёхугольнике перпендикулярны диагонали, то на одной окружности (окружность восьми точек четырёхугольника) лежат восемь точек: середины сторон и проекции середин сторон на противоположные стороны[16].
  • Частными ортодиагональными четырёхугольниками являются: ромб, квадрат, дельтоид.
  • Если у выпуклого четырёхугольника перпендикулярны диагонали, то середины четырёх его сторон являются вершинами прямоугольника (следствие теоремы Вариньона). Верно и обратное. Кроме того, у прямоугольника равны диагонали. Следовательно, у выпуклого четырёхугольника диагонали перпендикулярны тогда и только тогда, когда у него равны между собой длины двух его бимедиан (длины двух отрезков, соединяющих середины противоположных сторон)[25].
  • Таблица сравнения свойств описанного и ортодиагонального четырёхугольника:

Их метрические свойства очень похожи (см. табл.)[25]. Здесь обозначены: a, b, c, d — длины их сторон, R1, R2, R3, R4, и радиусы описанных окружностей, проведённых через эти стороны и через точку пересечения диагоналей, h1, h2, h3, h4 — высоты, опущенные на них из точки пересечения диагоналей.

описанный четырёхугольник ортодиагональный четырёхугольник
{displaystyle a+c=b+d} {displaystyle a^{2}+c^{2}=b^{2}+d^{2}}
{displaystyle R_{1}+R_{3}=R_{2}+R_{4}} {displaystyle R_{1}^{2}+R_{3}^{2}=R_{2}^{2}+R_{4}^{2}}
{displaystyle {frac {1}{h_{1}}}+{frac {1}{h_{3}}}={frac {1}{h_{2}}}+{frac {1}{h_{4}}}} {displaystyle {frac {1}{h_{1}^{2}}}+{frac {1}{h_{3}^{2}}}={frac {1}{h_{2}^{2}}}+{frac {1}{h_{4}^{2}}}}
  • Кроме того, для медиан на стороны ортодиагонального четырёхугольника, опущенных из точки пересечения диагоналей, верно: {displaystyle m_{1}^{2}+m_{3}^{2}=m_{2}^{2}+m_{4}^{2}}.
  • В любой ортодиагональный четырехугольник можно вписать бесконечно много прямоугольников, относящихся к следующим двум множествам:
(i) прямоугольники, чьи стороны параллельны диагоналям ортодиагонального четырехугольника
(ii) прямоугольники, определяемые окружностями точек Паскаля[26][27][28].

ABCD – ортодиагональный четырехугольник, {displaystyle P_{1}X_{1}Z_{1}Y_{1}} и {displaystyle P_{2}X_{2}Z_{2}Y_{2}} прямоугольники, вписанные в ABCD, и стороны которых параллельны диагоналям четырехугольник.

Свойства диагоналей некоторых четырёхугольников[править | править код]

В следующей таблице указано, есть ли у диагоналей некоторых из самых основных четырёхугольников деление пополам в точке их пересечения, есть ли перпендикулярность диагоналей, есть ли равенство длин диагоналей, и есть ли деление ими углов пополам[29]. Список относится к наиболее общим случаям и исчерпывает собой названные подмножества четырёхугольников.

Четырёхугольник Деление диагоналей пополам в точке их пересечения Перпендикулярность диагоналей Равенство длин диагоналей Деление углов пополам диагоналями
Трапеция Нет См. замечание 1 Нет Нет
Равнобедренная трапеция Нет См. замечание 1 Да Хотя бы двух противоположных углов
Параллелограмм Да Нет Нет Нет
Дельтоид См. замечание 2 Да См. замечание 2 См. замечание 2
Прямоугольник Да Нет Да Нет
Ромб Да Да Нет Да
Квадрат Да Да Да Да

Замечание 1: Наиболее общие трапеции и равнобедренные трапеций не имеют перпендикулярных диагоналей, но есть бесконечное число (неподобных) трапеций и равнобедренных трапеций, которые действительно имеют перпендикулярные диагонали и не похожи на какой-либо другой названный четырёхугольник.
Замечание 2: У дельтоида одна диагональ делит пополам другую. Другая же диагональ делит его противоположные углы пополам. Наиболее общий дельтоид имеет неодинаковые диагонали, но есть бесконечное число (неподобных) дельтоидов, у которых диагонали равны по длине (и дельтоиды не являются каким-либо другим из названных четырёхугольников).

Симметрия четырёхугольников[править | править код]

Симметрии некоторых четырёхугольников

На рис. показаны некоторые симметричные четырёхугольники, их переход друг в друга, а также дуальные к ним. Обозначения на рис.:

  • Kite (змей) — дельтоид (ромбоид)
  • Parallelogram — параллелограмм
  • Irregular quadrilateral — неправильный четырёхугольник
  • Rhombus — ромб
  • Rectangle — прямоугольник
  • Square — квадрат
  • Gyrational Square — вращающийся квадрат
  • Isosceles Trapezoid — равнобедренная трапеция

Площадь[править | править код]

S={frac {d_{1}d_{2}sin alpha }{2}}

{displaystyle S_{ABCD}=GHcdot IJsin phi }.

Замечание. Первая и вторая средние линии четырёхугольника — отрезки, соединяющие середины его противоположных сторон

  • Площадь произвольного выпуклого четырёхугольника равна[14]:
16S^{2}=4d_{1}^{2}d_{2}^{2}-left(b^{2}+d^{2}-a^{2}-c^{2}right)^{2}, где d_{1}, d_{2} — длины диагоналей; a, b, c, d — длины сторон.
  • Площадь произвольного выпуклого четырёхугольника также равна

S={sqrt {(p-a)(p-b)(p-c)(p-d)-abcdcos ^{2}theta }}, (1)

где p — полупериметр, а theta ={frac {angle A+angle C}{2}} есть полусумма противоположных углов четырёхугольника (Какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна theta , то полусумма двух других углов будет 180^{circ }-theta и cos ^{2}(180^{circ }-theta )=cos ^{2}theta ). Из этой формулы для вписанных четырёхугольников следует формула Брахмагупты.

  • Площадь произвольного выпуклого четырёхугольника по формуле (1) в рамке выше с учётом одного из соотношений Бретшнайдера (см. выше) может быть записана в виде:

S={sqrt {(p-a)(p-b)(p-c)(p-d)+textstyle {1 over 4}((ef)^{2}-(ac+bd)^{2})}}=
={sqrt {(p-a)(p-b)(p-c)(p-d)+textstyle {1 over 4}(ef+ac+bd)(ef-ac-bd)}}
где p — полупериметр, e и f — диагонали четырёхугольника.

{displaystyle S={frac {1}{2}}{big |}(x_{1}-x_{2})(y_{1}+y_{2})+(x_{2}-x_{3})(y_{2}+y_{3})+(x_{3}-x_{4})(y_{3}+y_{4})+(x_{4}-x_{1})(y_{4}+y_{1}){big |}}

История[править | править код]

В древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника неверную формулу — произведение полусумм его противоположных сторон a, b, c, d[30]:

S={frac {a+c}{2}}cdot {frac {b+d}{2}}.

Для непрямоугольных четырёхугольников эта формула даёт завышенное значение площади. Можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. При неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счёт усреднения исходных измерений.

См. также[править | править код]

  • Глоссарий планиметрии
  • Лемма о шестой окружности
  • Теорема Тебо
  • Теорема Кейси
  • Теорема косинусов для четырёхугольника
  • Теорема о бабочке
  • Четырёхугольник Ламберта
  • Четырёхугольник Саккери

Примечания[править | править код]

  1. Яков Понарин. Элементарная геометрия. Том 1: Планиметрия, преобразования плоскости. — Litres, 2018-07-11. — С. 52. — 312 с.
  2. E.W. Weisstein. Bimedian. MathWorld – A Wolfram Web Resource.
  3. Steve Phelps. The Orthopole// https://www.geogebra.org/m/CKKH9ZZA
  4. Заславский, Пермякова и др., 2009, с. 118, задача 9.
  5. Определение антимедатрис см. в глоссарии планиметрии
  6. Замечательные точки и линии четырехугольников// https://math.mosolymp.ru/upload/files/2018/khamovniki/geom-10/2018-04-17-Zam_pr_ch-ka.pdf
  7. Теорема Монжа// https://bambookes.ru/stuff/reshenie_zadach/geometrija/4-1-0-8264
  8. 1 2 Стариков, 2014, с. 38, правая колонка, пункт 7.
  9. Ayeme, с. 6, Упр. 8, рис. 13.
  10. Andreescu, Titu & Enescu, Bogdan (2004), 2.3 Cyclic quads, Mathematical Olympiad Treasures, Springer, с. 44–46, 50, ISBN 978-0-8176-4305-8
  11. Ayeme, с. 5, Упр. 7, рис. 11, следствие.
  12. См. подраздел «Диагонали» статьи «Вписанный четырёхугольник»
  13. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ. Co., 2007
  14. 1 2 Понарин, с. 74.
  15. Стариков, 2014, с. 7—39.
  16. 1 2 Заславский, Пермякова и др., 2009, с. 118, задача 11.
  17. Стариков, 2014, с. 39, левая колонка, последний абзац.
  18. Dörrie, Heinrich. 100 Great Problems of Elementary Mathematics: Their History and Solutions (англ.). — New York: Dover, 1965. — P. 188—193. — ISBN 978-0-486-61348-2.
  19. Yiu, Paul, Euclidean Geometry, [1] (недоступная ссылка), 1998, pp. 158—164.
  20. Salazar, Juan Carlos (2006), Fuss’s Theorem, Mathematical Gazette Т. 90 (July): 306–307.
  21. 1 2 Josefsson, Martin (2010), Characterizations of Bicentric Quadrilaterals, Forum Geometricorum Т. 10: 165–173, <http://forumgeom.fau.edu/FG2010volume10/FG201019.pdf>.
  22. Josefsson, Martin (2011), The Area of a Bicentric Quadrilateral, Forum Geometricorum Т. 11: 155–164, <http://forumgeom.fau.edu/FG2011volume11/FG201116.pdf>.
  23. Radic, Kaliman, Kadum, 2007, с. 33—52.
  24. Junko HIRAKAWA. Some Theorems on the Orthopole. Tohoku Mathematical Journal, First Series. 1933. Vol. 36. P. 253, Lemma I// https://www.jstage.jst.go.jp/article/tmj1911/36/0/36_0_253/_pdf/-char/en
  25. 1 2 Josefsson, Martin (2012), Characterizations of Orthodiagonal Quadrilaterals, Forum Geometricorum Т. 12: 13–25, <http://forumgeom.fau.edu/FG2012volume12/FG201202.pdf>.
  26. David, Fraivert (2019), A Set of Rectangles Inscribed in an Orthodiagonal Quadrilateral and Defined by Pascal-Points Circles, Journal for Geometry and Graphics Т. 23: 5–27, <http://www.heldermann.de/JGG/JGG23/JGG231/jgg23002.htm>.
  27. David, Fraivert (2017), Properties of a Pascal points circle in a quadrilateral with perpendicular diagonals, Forum Geometricorum Т. 17: 509–526, <http://forumgeom.fau.edu/FG2017volume17/FG201748.pdf>.
  28. Фрейверт, Д. М. (2019), Новая тема в евклидовой геометрии на плоскости: теория «точек Паскаля», формируемых с помощью окружности на сторонах четырехугольника, Математическое образование: современное состояние и перспективы : материалы Международной научной конференции, <https://libr.msu.by/handle/123456789/9675>
  29. Jennifer Kahle, Geometry: Basic ideas (англ. яз.).Геометрия: Основные идеи [2], accessed 28 December 2012.
  30. Г. Г. Цейтен История математики в древности и в средние века, ГТТИ, М-Л, 1932.

Литература[править | править код]

  • Болтянский В., Четырёхугольники. Квант, № 9,1974.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 74. — ISBN 5-94057-170-0.
  • Стариков В. Н. Исследования по геометрии// Сборник публикаций научного журнала Globus по материалам V-й международной научно-практической конференции «Достижения и проблемы современной науки» г. Санкт-Петербург: сборник со статьями (уровень стандарта, академический уровень) // Научный журнал Globus. — С-П., 2016.
  • Стариков В. Н. Заметки по геометрии// Научный поиск: гуманитарные и социально-экономические науки: сборник научных трудов / Гл. ред. Романова И. В.. — Чебоксары: ЦДИП «INet», 2014. — Вып. 1.
  • Математика в задачах. Сборник материалов выездных школ команды Москвы на Всероссийскую математическую олимпиаду / Под редакцией А. А. Заславского, Д. А. Пермякова, А. Б. Скопенкова, М. Б. Скопенкова и А. В. Шаповалова.. — Москва: МЦНМО, 2009. — ISBN 978-5-94057-477-4.
  • Jean-Louis Ayeme. Feurbach’s theorem. A new purely synthetic proof. Дата обращения: 2 октября 2016. Архивировано из оригинала 13 ноября 2013 года. Несколько расширенный перевод — «Вокруг задачи Архимеда»
  • Mirko Radic, Zoran Kaliman, Vladimir Kadum. A condition that a tangential quadrilateral is also a chordal one // Mathematical Communications. — 2007. — Вып. 12.
  • D. Fraivert, A. Sigler and M. Stupel. Common properties of trapezoids and convex quadrilaterals // Journal of Mathematical Sciences: Advances and Applications. — 2016. — Т. 38. — P. 49–71. — doi:10.18642/jmsaa_7100121635.

Добавить комментарий