Как найти свертку оригинала

Задача 1.Найти оригинал для изображения

при помощи разложения на простейшие
дроби.

Решение.Разложимна сумму простейших дробей

.

Найдем неопределенные коэффициенты A,
B, C,
D. Так как

,

то, приравнивая коэффициенты при
одинаковых степенях
,
получаем

,
,
,
.

Таким образом,

.

Свертка оригиналов.Пустьи– функции-ориентиры и,
.
По определению, сверткой оригиналовназывается интеграл(3.1)

По теореме сложения изображений свертки
оригиналов
соответствует произведение изображений

.

Задача 2.Найти свертку функцийи.

Решение.Имеем

Задача 3.Восстановить оригинал по
изображениюпри помощи свертки.

Решение.Представимкак произведение двух функций и используя
теорему умножения, запишем

.
(см. задачу 2)

4. Решение линейных дифференциальных
уравнений и систем.

Рассмотрим применение правил и теорем
операционного исчисления к решению
линейных дифференциальных уравнений
с постоянными коэффициентами и их систем
при заданных начальных условиях.
Предлагаем, что искомое решение, его
производные и правая часть дифференциального
уравнения являются оригиналами.

Схема решения дифференциального
уравнения.

  1. Искомая функция, ее производные, входящие
    в данное уравнение, правая часть
    уравнения заменяются их изображениями.
    В результате получается так называемое
    операторное уравнение.

  2. Решаем операторное уравнение относительно
    изображения искомой функции.

  3. Переходим от изображения искомой
    функции к оригиналу.

Схема решения систем дифференциальных
уравнений такая же.

Задача 1.Решить дифференциальное
уравнение

,
если,

Решение.Пусть– искомое решение.

.

Запишем операторное уравнение

или

.

Находим A, B,
C.
,,.

Итак,

.

Задача 2.Найти решение системы
дифференциальных уравнений

удовлетворяющее начальным условиям
,
,
,

Решение.Пусть,
.
Тогда

;
;;.

Преобразованная система имеет вид

Определяем
,
по правилу Крамера

;

Вычислим
получим

Итак,

Вычислим
получим

Тогда

Итак,

Рассмотрим решение дифференциальных
уравнений при нулевых начальных условиях
с использованием интеграла Дюамеля.

Интеграл Дюамеля.

Если
и,
то

(4.1)

или

(4.1)

Рассмотрим линейное дифференциальное
уравнение с постоянными коэффицентами

при
Если

,

то получим

или
,
где
многочленn-ой степени;

отсюда

(4.2)

Если рассмотреть ещё одно дифференциальное
уравнение, у которого правая часть равна
единице,

то при тех же нулевых начальных условиях
в изображениях получим уравнение

Отсюда
(4.3)

Подставим (4.3) в (4.2), получим

(4.4)

Используя интеграл Дюамеля (4.1’) для
и учитывая, что,
получаем

(4.5)

Итак, достаточно решить уравнение с
правой частью равной единице, чтобы при
помощи интеграла (4.5) получить решения
при различных правых частях.

Задача 3.

Найти частное решение дифференциального
уравнения, используя интеграл Дюамеля:

(4.7)

Пусть
,
тогда

Получим уравнение для изображения

Отсюда

Возвращаясь к первоначальному уравнению
для
,
Запишем

Следует отметить, что преимущество
операционного метода решения
дифференциальных уравнений состоит в
том, что благодаря этому методу мы
заменяем решение дифференциального
уравнения на решение алгебраического
уравнения, что сильно упрощает вычисление.

Применение
методов операционного исчисления в

задачах
электротехники
.

Методы операционного исчисления широко
используются в решениях специальных
задач электротехники.

Задача1.

Включение дополнительного источника
ЭДС в цепь с ненулевыми начальными
условиями.

Рассмотрим электрическую цепь с
ненулевыми начальными условиями (рис.
5.1), где r- сопротивление;L- индуктивность;C– ёмкость конденсатора;k– выключатель.

рис 5.1

Эта цепь характеризуется тем, что при
отключении ЭДС Е в цепи происходит
арядка конденсатора. После зарядки
конденсатора ток в цепи становится
равным нулю. Требуется найти ток i(t)
после подключения к цепи дополнительной
ЭДС е(t).

По второму закону Кирхгофа (алгебраическая
сумма падения напряжения на сопротивлениях
равна алгебраической сумме действующих
в цепи ЭДС) для момента времени
имеем

,
(5.1)

где
– напряжение на конденсаторе;

(0)
– начальное напряжение на конденсаторе,
обусловленное тем, что конденсатор уже
был ранее заряжен.

Решение.

Применяя к интегро-дифяфференциальному
уравнению (5.1) преобразование Лапласа,
запишем

где

начальный ток в цепи. Используя указанные
соотношения, получаем алгебраическое
уравнение в изобржениях

где неизвестной величиной является.
Остальные величины известныИз (5.2) получаем

(5.3)

Рассмотрим конкретный пример. Пусть
Применяя преобразование Лапласа,
получаемследовательно,С учётом этих условий из (5.3) получаем

(5.4)

Замечание.Из полученного решения
(5.4) следует, что,
при,
т.е.Это означает что за некоторое время
конденсатор дополнительно зарядится
и ток станет равным нулю.

Задача 2.

Определить ток в цепи, состоящей из
последовательно соединённых сопротивления
rи конденсатора С, если
в моментt=0 цепь подсоединяется
к источнику ЭДС (рис 5.2) в виде треугольного
импульса (рис 5.3).

рис 5.2
рис 5.3

В задаче задано

Решение.

Используя второй закон Кирхгофа, получим
интегральное уравнение для рассматриваемого
контура

(5.5)

Решение уравнения (5.5) выразим при помощи
интеграла Дюамеля (4.1)

(5.6)

где
– решение вспомогательного уравнения

(5.7)

Применяя преобразование Лапласа, имеем

Уравнение (5.7) преобразуется к
алгебраическому уравнению для нахождения
J(p)

откуда(5.8)

Подставляя найденное решение (5.8)
вспомогательного уравнения (5.7) в интеграл
Дюамеля (5.6) получаем решение исходного
уравнения (5.5)

.

Пример
контрольной работы по операционному
исчислению

и
комплексным числам.

Вариант 1.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

4. Представить в алгебраической форме:

5. Найти изображение оригинала, заданного
графически

6. Решить систему

Вариант 2.

  1. Найти изображение функции:

  1. Решить задачу Коши операторным методом:

3. Найти все значения корней

4. Представить в алгебраической
форме:

  1. Восстановить оригинал по изображению

6. Решить систему

Вариант 3.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

4. Представить в алгебраической форме:

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 4.

  1. Найти изображение функции:

  1. Решить задачу Коши операторным методом:

3. Найти все значения корней

4. Представить в алгебраической
форме:

  1. Восстановить оригинал по изображению

6. Решить систему

Вариант 5.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а);
б)

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 6.

  1. Найти изображение функции:

  1. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической
форме:

а)
;
б)

  1. Восстановить оригинал по изображению

6. Решить систему

Вариант 7.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 8.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;

б)

  1. Восстановить оригинал по изображению

6. Решить систему

Вариант 9.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 10.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Восстановить оригинал по изображению

6. Решить систему

Вариант 11.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 12.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Восстановить оригинал по изображению

6. Решить систему

Вариант 13.

1. Восстановить оригинал по изображению:

2. Решить задачу Коши операторным методом:

.

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 14.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Восстановить оригинал по изображению

6. Решить систему

Вариант 15.

1. Восстановить оригинал по изображению

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Найти изображение оригинала, заданного
графически:

6. Решить систему

Вариант 16.

1. Найти изображение функции:

2. Решить задачу Коши операторным методом:

3. Найти все значения корней

а)
;

б)

4. Представить в алгебраической форме:

а)
;
б)

5. Восстановить оригинал по изображению

6. Решить систему

Оглавление.

Введение.

  1. Комплексные числа.

  2. Преобразование Лапласа. Оригинал и
    изображение.

  3. Нахождение оригинала по изображению.

  4. Решение линейных дифференциальных
    уравнений и систем.

  5. Применение методов операционного
    исчисления в задачах электротехники.

  6. Пример контрольной работы по операционному
    исчислению и комплексным числам.

  7. Литература.

Литература.

  1. Бугров Я.С., Никольский С.М. Дифференциальные
    уравнения. Кратные интегралы. Ряды.
    Функции комплексного переменного. М.:
    Наука, 1981, 448с.

  2. Сборник задач по математике для втузов.
    Ч.З. Под ред. А.В. Ефимова, А.С. Поспелова.
    М.: издательства физико-математической
    литературы, 2002. 576с.

  3. Краснов М.Л., Киселев А.Н., Макаренко
    Г.Н. Функции комплексного переменного.
    Операционное исчисление. Теория
    устойчивости. М.: Наука, 1981. 304с.

  4. Глатенок И.В., Заварзина И.Ф. Теория
    функций комплексного переменного и
    операционное исчисление. М.: Московский
    энергетический институт, 1989. 48с.

31

Преобразование Лапласа и его свойства

Основные определения

1. Оригинал — это комплекснозначная функция f(t) действительного аргумента t, которая удовлетворяет следующим условиям:

а) f(t)=0 при t<0;

б) на любом конечном отрезке [a;b]in[0;+infty) функция f(t) имеет не более чем конечное число точек разрыва первого рода;

в) f(t)f(t) имеет ограниченный рост, т.е. возрастает не быстрее показательной функции: существуют такие постоянные M>0 и sigmageqslant0, что |f(t)|<M,e^{sigma t} при t>0.

Замечания 5.1

1. Величина sigma_0=infsigma называется показателем роста функции f(t). Для любой ограниченной функции, являющейся оригиналом, можно принять sigma_0=0.

2. Обозначим f(+0)= limlimits_{tto+0} f(t),~ f(+infty)= limlimits_{tto+infty} f(t), если пределы существуют и конечны.

3. Совокупность всех оригиналов называется пространством оригиналов.

4. В точке t_0 разрыва первого рода функция имеет конечные односторонние пределы: limlimits_{tto t_0+0} f(t),~ limlimits_{tto t_0-0} f(t).

Пример 5.1

2. Изображение функции f(t) — функция F(p) комплексного переменного p, определяемая равенством

F(p)= intlimits_{0}^{+infty} e^{-pt}f(t),dt,.

(5.1)

Область существования этой функции определяется областью сходимости интеграла Лапласа, стоящего в правой части равенства (5.1). Исследование интeгpaлa позволяет определить эту область и установить свойства функции F(p). Имеет место следующее утверждение.

Утверждение 5.1. Если функция f(t), является оригиналом, то интеграл Лапласа сходится абсолютно в области operatorname{Re}p=sigma> sigma_0 (рис. 5.1) , где sigma_0 — показатель роста оригинала. Внутри этой области, т.е. на любом замкнутом подмножестве operatorname{Re}p=sigma geqslant a>sigma_0, интеграл сходится равномерно и определяет аналитическую функцию F(p).

Рис. 5.1.

Замечания 5.2

1. Утверждение 5.1 аналогично свойствам степенных рядов, сходящихся в круге и равномерно сходящихся внутри этого круга, где сумма ряда является аналитической функцией.

2. Свойство аналитичности изображения имеет важное значение в теории и практике применения преобразования Лапласа, так как позволяет использовать в пространстве изображений методы теории аналитических функций, в частности разложения функций в ряды и теорию вычетов.

3. Совокупность всех изображений F(p) называется пространством изображений.

4. Переход, определяющий изображение F(p) по оригиналу f(t), называется преобразованием Лапласа:

F(p)= Lbigl[f(t)bigr]= intlimits_{0}^{+infty} e^{-pt}f(t),dt,.

(5.2)

Запись F(p)=L[f(t)] означает, что оригиналу f(t) соответствует изображение F(p).

5. Оригинал по изображению находится с помощью обратного преобразования Лапласа по формуле обращения

f(t)=L^{-1}bigl[F(p)bigr]= frac{1}{2pi i} intlimits_{sigma-iinfty}^{sigma+iinfty} e^{pt}F(p),dp,,

(5.3)

где путь интегрирования — любая прямая operatorname{Re}p=sigma, параллельная мнимой оси и лежащая правее прямой operatorname{Re}p=sigma_0 (рис. 5.1).

Непосредственное применение формулы обращения часто затруднительно. Поэтому на практике пользуются методами, изложенными ранее.

Замечания 5.3

1. Для преобразования Лапласа используются различные обозначения, на пример f(t)risingdotseq F(p) и F(p)fallingdotseq f(t), что означает: оригиналу f(t) соответствует изображение F(p) и изображению F(p) соответствует оригинал f(t). В некоторых учебниках вместо аргумента p применяется s, то есть F(s)=L[f(t)] и L^{-1}[F(s)]=f(t).

2. Для компактной записи оригиналов используется единичная ступенчатая функция boldsymbol{1}(t-tau)colon

boldsymbol{1}(t-tau)= begin{cases}1,& t>tau,\ 0,& t leqslant tau,end{cases}

(5.4)

Рис. 5.2.

где tau — точка приложения (рис. 5.2). Так как во многих практических задачах аргумент t имеет смысл текущего времени, то tau также называется моментом приложения единичной ступенчатой функции. В системах автоматического регулирования и управления функция boldsymbol{1}(t-tau) рассматривается как типовой входной сигнал.

При tau=0 функция boldsymbol{1}(t-tau) является функцией Хевисайда:

boldsymbol{1}(t)= begin{cases}1,& t>0,\ 0,& t leqslant 0.end{cases}

(5.5)

Тогда, если функция f(t) удовлетворяет условиям “б”, “в” в определении оригинала (п. 1), но не удовлетворяет условию “а”, то функция f(t)cdot boldsymbol{1}(t) будет оригиналом, так как

f(t)cdotboldsymbol{1}(t)= begin{cases}f(t),& t>0,\ 0,& tleqslant0. end{cases}

Далее под заданной с помощью аналитической формулы функцией f(t), там, где это не вызывает недоразумений, будем понимать произведение этой функции на функцию Хевисайда, а множитель boldsymbol{1}(t) опускать.

3. Функции F(p), являющиеся изображениями, удовлетворяют необходимому условию: если F(p) есть изображение, то F(p)to0 при operatorname{Re}p=sigmato+infty. Поэтому функции F_1(p)=1,~ F_2(p)=p,~ F_3(p)=sin p,~ F_4(p)= frac{p}{p-1} не являются изображениями. Однако в практических задачах функции типа F_1(p)=1,~ F_2(p)=p и другие встречаются. Это требует расширения понятий оригинала и изображения.

Класс оригиналов можно расширить, включив в него функции, которые могут быть не ограничены в окрестности некоторых конечных точек, но такие, что интеграл Лапласа от них, тем не менее, сходится абсолютно в некоторой полуплоскости operatorname{Re}p>sigma_0. К числу таких обобщенных оригиналов относятся степенная функция f(t)=t^{mu} при mu>-1,~ln t и некоторые другие.

4. Во всякой точке t_0, являющейся точкой разрыва функции f(t), правая часть формулы (5.3) равна frac{1}{2}bigl[f(t_0-0)+f(t_0+0)bigr].

Примеры 5.2-5.3

Пример 5.2. Найти изображение единичной функции Хевисайда f(t)= boldsymbol{1}(t).

Решение. Так как функция boldsymbol{1}(t) ограничена, то в качестве показателя роста можно положить sigma_0=0. По формуле (5.2) имеем

F(p)= L[boldsymbol{1}(t)]= intlimits_{0}^{+infty} boldsymbol{1}(t) e^{-pt},dt=left.{-frac{1}{p},e^{-pt}}right|_{0}^{+infty}= frac{1}{p},.

так как из равенства |e^{-pt}|= e^{operatorname{Re}(-pt)}= e^{-t operatorname{Re}p}= e^{-sigma t} следует, что limlimits_{tto+infty} e^{-pt}=0 при operatorname{Re}p= sigma>sigma_0=0.

Пример 5.3. Найти изображение функции f(t)=e^{at}, где a — действительное число.

Решение. Показателем роста можно считать sigma_0=a. По формуле (5.2)

F(p)= intlimits_{0}^{+infty} e^{at}e^{-pt},dt= intlimits_{0}^{+infty} e^{(a-p)t},dt= left.{frac{e^{(a-p)t}}{a-p}}right|_{0}^{+infty}=-frac{1}{a-p}=frac{1}{p-a},.

так как из равенства |e^{(a-p)t}|= e^{-t(operatorname{Re}p-a)}= e^{-t(sigma-a)} следует, что limlimits_{tto+infty} e^{(a-p)t}=0 при operatorname{Re}p=sigma>a.


Свойства преобразования Лапласа

Будем предполагать, что рассматриваемые далее функции f(t),f_1(t),ldots,f_n(t) являются оригиналами. Соответствующие им изображения (при operatorname{Re}p> sigma_i,~ i=0,1,ldots,n) обозначим F(p),F_1(p),ldots,F_n(p).

1. Линейность. Если f_1(t),ldots,f_n(t) — оригиналы, то для любых комплексных чисел c_i,~ i=1,2,ldots,n, функция textstyle{f(t)= sumlimits_{k=1}^{n} c_kf_k(t)} также является оригиналом и справедливо равенство textstyle{L!left[ sumlimits_{k=1}^{n} c_kf_k(t)right]= sumlimits_{k=1}^{n}c_k L[f_k(t)]}

L bigl[c_1f_1(t)+ldots+ c_nf_n(t)bigr]= c_1F_1(p)+ldots+ c_nF_n(p),quad operatorname{Re}p>max{sigma_1,ldots,sigma_n}.

(5.6)

Заметим, что для функции textstyle{f(t)= sumlimits_{k=1}^{n} c_kf_k(t)} существенно, что все слагаемыс являются оригиналами, так как, например, функция f(t)=frac{e^{t}-1}{t} является оригиналом, а слагаемые f_1(t)=frac{e^t}{t} и f_2(t)=-frac{1}{t} не являются.

Справедливо и обратное утверждение: если F_1(p),ldots,F_n(p) — изображения, то

L^{-1} bigl[c_1F_1(p)+ldots+ c_nF_n(p)bigr]= c_1f_1(t)+ldots+ c_nf_n(t).

Здесь также важно, что слагаемые функции c_1F_1(p)+ldots+ c_nF_n(p) являются изображениями, поскольку из того, что F(p)= c_1F_1(p)+ldots+ c_nF_n(p) — изображение, не следует, что F_1(p)+ldots+ F_n(p) — изображения. Например, функция F(p)= ln frac{p-1}{p} является изображением, а слагаемые F_1(p)= ln(p-1) и F_2(p)=-ln p не являются.

Примеры 5.4-5.5

Пример 5.4. Найти изображение функции f(t)=3+2e^{-t}.

Решение. Из примера 5.2 имеем L[boldsymbol{1}(t)]= frac{1}{p}, а из примера 5.3 при a=-1 имеем L[e^{-t}]= frac{1}{p+1}. Тогда согласно свойству линейности для оригинала f(t)=3cdotboldsymbol{1}(t)+2cdot e^{-t} получаем F(p)= 3cdot frac{1}{p}+2cdot frac{1}{p+1}.

Пример 5.5. Найти изображение функции f(t)=cos t.

Решение. Используя формулу Эйлера (2.11), получаем f(t)=cos t=frac{e^{it}+e^{-it}}{2}= frac{1}{2},e^{it}+frac{1}{2},e^{-it}.

Из примера 5.3 при a=i и a=-i следует: L[e^{it}]= frac{1}{p-i},,~ L[e^{-it}]=frac{1}{p+i}. Тогда по свойству линейности

L[cos t]= frac{1}{2}L[e^{it}]+frac{1}{2}L[e^{-it}]= frac{1}{2}cdot frac{1}{p-i}+ frac{1}{2}cdot frac{1}{p+i}= frac{p+i+p-i}{2(p^2+1)}= frac{p}{p^2+1},.

2. Подобие (теорема подобия). Для любого a>0 из F(p)=L[f(t)] следует

L bigl[f(at)bigr]= frac{1}{a},F! left(frac{p}{a}right)!,quad operatorname{Re}p>asigma_0,

(5.7)

и обратно: L^{-1} bigl[F(ap)bigr]= frac{1}{a},f! left(frac{t}{a}right).

Пример 5.6

Найти изображение функции f(t)=cos at.

Решение. Из примера 5.5 следует, что L[cos t]= frac{p}{p^2+1}. Тогда по теореме подобия

L[cos at]= frac{1}{a}cdot frac{p!!not{phantom{|}},a}{(p!!not{phantom{|}}, a)^2+1}= frac{p}{p^2+a^2},.

3. Смещение (теорема смещения). При любом комплексном a из F(p)= L[f(t)] следует

L bigl[e^{at}f(t)bigr]= F(p-a),quad operatorname{Re}(p-a)>sigma_0,

(5.8)

то есть умножению оригинала на e^{at} соответствует смещение изображения на a.

Пример 5.7

Найти изображение функции f(t)=e^{at}cos bt.

Решение. Из примера 5.6 следует L[cos bt]=frac{p}{p^2+a^2}. Тогда по теореме смещения L[e^{at}cos bt]= frac{p-a}{(p-a)^2+b^2}.


Рис. 5.3.

Запаздывание оригинала

4. Запаздывание (теорема запаздывания). Для любого tau>0 из F(p)=L[f(t)] следует

Lbigl[f(t-tau)bigr]= e^{-ptau}cdot F(p),quad operatorname{Re}p>sigma_0,

(5.9)

где f(t-tau)=f(t-tau)cdot boldsymbol{1}(t-tau) (рис. 5.3), т.е. запаздыванию оригинала на tau>0 соответствует умножение изображения на e^{-ptau}.

Примеры 5.8-5.10

Пример 5.8. Найти изображение функции f(t)=cos(t-3)cdot boldsymbol{1}(t-3)= cos(t-3).

Решение. В примере 5.5 получено L[cos t]=frac{p}{p^2+1}. По теореме запаздывания при tau=3 имеем L[cos(t-3)]= frac{e^{-3p}cdot p}{p^2+1}.

Пример 5.9. Найти оригиналы по изображениям: a) F(p)=frac{(p-1)e^{-4p}}{(p-1)^2+4}; б) F(p)=frac{e^{-p}}{p^2}.

а) Из примера 5.7 следует, что при a=1,~b=2 изображению frac{p-1}{(p-1)^2+4} соответствует оригинал e^tcos2t. Тогда по теореме запаздывания при tau=4 имеем

f(t)= L^{-1}[F(p)]= e^{t-4}cos(t-4)cdot boldsymbol{1}(t-4).

б) По формуле 3 из табл. 5.1 L^{-1}!left[frac{1}{p^2}right]=t.По теореме запаздывания при tau=1 получаем f(t)=L^{-1}[F(p)]= (t-1)cdot boldsymbol{1} (t-1). Заметим, что для похожего, но отличного от полученного, оригинала f(t)=t-1 (его можно записать в виде (t-1)cdot boldsymbol{1}(t)) изображение имеет вид F(p)=frac{1}{p^2}-frac{1}{p}ne frac{e^{-p}}{p^2}.

рис. 5.4.

Пример 5.10. Найти изображение функции delta_h(t)= begin{cases}frac{1}{h},& 0<tleqslant h,\ 0,& t<0,,t>h,end{cases}, график которой представлен на рис. 5.4.

С учетом (5.4) представим функцию delta_h(t) в виде delta_h(t)= frac{boldsymbol{1}(t)-boldsymbol{1}(t-h)}{h}.

Из примера 5.2 имеем L[boldsymbol{1}(t)]=frac{1}{p}. Применяя свойства линейности и запаздывания, получаем

Lbigl[delta_h(t)bigr]= frac{1}{h}Lbigl[boldsymbol{1}(t)bigr]-frac{1}{h}Lbigl[boldsymbol{1}(t-h)bigr]= frac{1}{h}cdot frac{1}{p}-frac{1}{h}cdot frac{1}{p},e^{-ph}= frac{1-e^{-ph}}{ph},.

Заметим, что, находя предел при hto0 в последнем выражении, можно получить изображение δ-функции delta(t)= limlimits_{hto0} delta_h(t)colon

Lbigl[delta(t)bigr]= limlimits_{hto0} frac{1-e^{-ph}}{ph}= limlimits_{hto0} frac{p,e^{-ph}}{p}=1.

Замечание 5.4. Дельта-функция часто встречается в инженерных приложениях как идеализация импульса конечной длительности. В теории автоматического регулирования и управления δ-функция вместе с единичной ступенчатой являются типовыми входными воздействиями.

Очевидно, изображение дельта-функции не удовлетворяет необходимому условию (п.2 замечаний 5.3). Этот факт свидетельствует о практическом требовании расширения понятия оригинала. Дельта-функция относится к обобщенным функциям и задается соотношением

intlimits_{a}^{b} f(t)delta(t-tau),dt= begin{cases}f(tau+0),& a leqslant tau<b,\ 0,& tau<a,, taugeqslant b.end{cases}

(5.10)


Дифференцирование оригинала

5. Если функции f(t),f'(t),ldots,f^{(n)}(t) являются оригиналами и F(p)=L[f(t)], то

begin{aligned}& L[f'(t)]= pF(p)-f(+0),\ & L[f''(t)]= p^2F(p)-pf(+0)-f'(+0),\ & quadvdots\ & L[f^{(n)}(t)]= p^nF(p)-p^{n-1}f(+0)-ldots-f^{(n-1)}(+0), end{aligned}

(5.11)

где f^{i}(+0)= limlimits_{tto+0} f^{(i)}(t),~ i=0,1,2,ldots,n-1.

Примеры 5.11-5.12

Пример 5.11. Найти изображение f'(t), если f(t)=e^{-t}cos3t.

Решение. Из примера 5.7 следует, что при a=-1,~b=3 имеем L[e^{-t}cos3t]= frac{p+1}{(p+1)^2+9}.

Найдем f(+0)=limlimits_{tto+0}e^{-t}cos3t=1. Согласно (5.11) L[f'(t)]= pcdot frac{p+1}{(p+1)^2+9}-1.

Пример 5.12. Найти изображение выражения x''+3x'+2x+1 с начальными условиями x(+0)=1,~x'(+0)=4.

Решение. Пусть X(p)=L[x(t)], тогда L[x'(t)]= pX(p)-1;~ L[x''(t)]= p^2X(p)-pcdot1-4. В примере 5.2 получено L[boldsymbol{1}(t)]=1!!not{phantom{|}},p. Используя свойство линейности, имеем

begin{aligned}L[x''+3x'+2x+1]&= L[x'']+3L[x']+2L[x]+L[1]=\ &=p^2X(p)-p-4+3pX(p)-3+2X(p)+frac{1}{p}=\ &=(p^2+3p+2)X(p)-p-7+frac{1}{p},.end{aligned}

Интегрирование оригинала

Если функция f(t) является оригиналом и F(p)=L[f(t)], то

textstyle{L! left[intlimits_{0}^{t} f(tau),dtauright]= dfrac{F(p)}{p},quad operatorname{Re}p>sigma_0,}

(5.12)

т.е. интегрированию оригинала соответствует деление изображения на p.

Пример 5.13

Найти изображение интеграла textstyle{intlimits_{0}^{t} f(tau),dtau} от функции f(t)=cos t.

Решение. Из примера 5.6 следует, что L[cos t]=frac{p}{p^2+1}=F(p). Тогда

LBiggl[intlimits_{0}^{t} costau,dtauBiggr]= L[sin t]= frac{p}{p(p^2+1)}= frac{1}{p^2+1}, то есть L[sin t]= frac{1}{p^2+1}.


Дифференцирование изображения

Если функция f(t) является оригиналом и F(p)=L[f(t)]. то

Lbigl[(-1)^nt^nf(t)bigr]= F^{(n)}(p).

(5.13)

Примеры 5.14-5.15


Интегрирование изображения

Если функция frac{f(t)}{t} является оригиналом, то из F(p)=L[f(t)] следует

L! left[frac{f(t)}{t}right]= intlimits_{p}^{infty} F(z),dz,.

(5.14)

Пример 5.16

Найти изображение функции frac{sin t}{t}.

Решение. Функция frac{sin t}{t} является оригиналом, так как left|frac{sin t}{t}right|<1 (условие “в”) и точка t=0 является точкой разрыва первого рода (условие “б”). Из примера 5.13 следует L[sin t]=frac{1}{p^2+1}=F(p).

Отсюда L! left[frac{sin t}{t}right]= intlimits_{p}^{+infty} frac{dz}{z^2+1}= Bigl.{operatorname{arctg}z}Bigr|_{p}^{+infty}=frac{pi}{2}-operatorname{arctg}p..


Умножение изображений (теорема Бореля)

Из F_1(p)=L[f_1(t)] и F_2(p)=L[f_2(t)] следует

Lbigl[f_1(t)ast f_2(t)bigr]= F_1(p)cdot F_2(p),

(5.15)

т.е. свертке оригиналов соответствует произведение изображений. Функция f_1(t)ast f_2(t) определяется формулой

f_1(t)ast f_2(t)= intlimits_{0}^{t} f_1(tau)f_2(t-tau),dtau= intlimits_{0}^{t} f_1(t-tau)f_2(tau),dtau

(5.16)

и называется сверткой оригиналов f_1(t) и f_2(t).

Пример 5.17

Найти оригинал, соответствующий изображению F(p)= frac{p}{(p^2+1)^2}.

Решение. Представим F(p) в виде произведения изображений: F(p)= F_1(p)cdot F_2(p)= frac{1}{p^2+2}cdot frac{p}{p^2+1}.

Из примеров 5.6 и 5.13 следует f_1(t)=L^{-1}! left[frac{1}{p^2+2}right]=sin t,~ f_2(t)=L^{-1}! left[frac{p}{p^2+2}right]=cos t.

Согласно (5.15),(5.16) получаем искомый оригинал:

begin{aligned}L^{-1}! left[frac{p}{(p^2+1)^2}right]&= f_1(t)ast f_2(t)= intlimits_{0}^{t} sintaucos(t-tau),tau= frac{1}{2} intlimits_{0}^{t} bigl[sin t+sin(2tau-t)bigr]dtau=\ &=left.{frac{1}{2}! left(sin tcdottau-frac{1}{2}cos(2tau-t)right) }right|_{0}^{t}= frac{1}{2}! left(tsin t-frac{1}{2}cos t+frac{1}{2}cos(-t)right)= frac{t}{2}sin t.end{aligned}


Дифференцирование свертки (интеграл Дюамеля)

10. Согласно свойствам 9 и 5 найдем преобразование Лапласа от производной свертки двух функций:

Lleft{bigl[f_1(t)ast f_2(t)bigr]'right}= pF_1(p)cdot F_2(p).

С другой стороны,

bigl[f_1(t)ast f_2(t)bigr]'= frac{d}{dt} intlimits_{0}^{t} f_1(tau) f_2(t-tau),dtau= f_2(0)f_1(t)+ intlimits_{0}^{t} f'_2(tau) f_1(t-tau),dtau

или, применяя правило дифференцирования интеграла, зависящего от параметра, имеем

bigl[f_1(t)ast f_2(t)bigr]'= frac{d}{dt} intlimits_{0}^{t} f_1(t-tau)f_2(tau),dtau= f_1(0)f_2(t)+intlimits_{0}^{t} f'_1(tau)f_2(t-tau),dtau,.

Здесь при дифференцировании интеграла, зависящего от параметра, применялась формула Лейбница, которая для общего случая имеет вид

frac{d}{dlambda} intlimits_{u(lambda)}^{v(lambda)}f(x,lambda),dx= f bigl(v(lambda),lambdabigr)frac{dv}{dlambda}-f bigl(u(lambda),lambdabigr)frac{du}{dlambda}+ intlimits_{u(lambda)}^{v(lambda)} frac{partial}{partiallambda}f(x,lambda),dx,.

Объединяя полученные результаты, можно записать:

begin{aligned}L^{-1} bigl[pF_1(p)F_2(p)bigr]&= f_1(0)f_2(0)+ f'_1ast f_2= f_2(0)f_1(t)+ f'_2ast f_1=\ &=f_1(0)f_2(0)+ intlimits_{0}^{t}f'_1(tau)f_2(t-tau),dtau= f_2(0)f_1(t)+ intlimits_{0}^{t} f'_2(tau) f_1(t-tau),dtau,.end{aligned}

(5.17)

Формула (5.17) называется интегралом Дюамеля. Интеграл Дюамеля применяется для решения дифференциальных уравнений.

Пример 5.18

Найти оригиналы, соответствующие изображениям: a) F(p)= frac{p}{(p-1)(p-2)}; б) F(p)= frac{p^3}{(p^2+1)(p^2+4)}.

Решение. а) Заметим, что здесь нельзя непосредственно воспользоваться теоре мой Бореля, так как в произведении F(p)=frac{p}{p-1}cdot frac{1}{p-2} множитель F_1(p)= frac{p}{p-1} не является изображением (не выполняется необходимое условие).

Представим изображение в виде произведения F(p)=pcdotfrac{1}{p-1}cdot frac{1}{p-2}. Из примера 5.3 вытекает

f_1(t)=L^{-1}bigl[F_1(p)bigr]= L^{-1}!left[frac{1}{p-1}right]= e^t;qquad f_2(t)= L^{-1} bigl[F_2(p)bigr]= L^{-1}! left[frac{1}{p-2}right]=e^{2t}.

Тогда по формуле (5.17) имеем

L^{-1} bigl[F(p)bigr]= f_1(0)f_2(t)+ f'_1ast f_2= 1cdot e^{2t}+ intlimits_{0}^{t} e^{tau}cdot e^{2(t-tau)},dtau= e^{2t}+ e^{2t} intlimits_{0}^{t} e^{-tau},dtau=-e^{t}+2e^{2t}.

Можно решить этот пример с помощью теоремы Бореля, представив изображение в виде

F(p)= frac{p}{(p-1)(p-2)}= frac{p-1+1}{(p-1)(p-2)}= frac{1}{p-2}+ frac{1}{p-1}cdot frac{1}{p-2},.

Тогда, используя свойство линейности и теорему Бореля, получаем

L^{-1}bigl[F(p)bigr]= e^{2t}+e^{t}ast e^{2t}= e^{2t}+ intlimits_{0}^{t} e^{2tau}cdot e^{t-tau},dtau= e^{2t}+ e^{t} intlimits_{0}^{t} e^{tau},dtau= e^{2t}+e^{t}(e^{t}-1)= 2e^{2t}-e^{t}.

б) Представим изображение в виде произведения:

F(p)= frac{p^3}{(p^2+1)(p^2+4)}= pcdot frac{p}{p^2+1}cdot frac{p}{p^2+1}= pcdot F_1(p)cdot F_2(p).

Из примера 5.6 при a=1 и a=2 следует

L^{-1}! left[frac{p}{p^2+1}right]=cos t=f_1(t),qquad L^{-1}! left[frac{p}{p^2+ 4}right]= cos2t= f_2(t).

Тогда по формуле (5.17) получаем

begin{aligned}f(t)&= L^{-1} bigl[F(p)bigr]= f_1(0)f_2(t)+ f'_1ast f_2= cos2t-intlimits_{0}^{t} sintaucos[2(t-tau)],dtau=\ &=cos2t-frac{1}{2} intlimits_{0}^{t} bigl[sin(3tau-2t)+sin(2t-tau)bigr]dtau=\ &=cos2t+ left.{frac{1}{6}cos(3tau-2t)}right|_{0}^{t}-left.{frac{1}{2} cos(2t-tau)}right|_{0}^{t}= frac{4}{3}cos2t-frac{1}{3}cos t,.end{aligned}


Теорема о связи “начальных” и “конечных” значений оригинала и изображения

Начальное значение оригинала находится по формуле

f(+0)= limlimits_{ptoinfty} pF(p).

(5.18)

Если существует конечный предел limlimits_{tto+infty} f(t)= f(+infty), то

f(+infty)= limlimits_{pto0} pF(p).

(5.19)

Из соотношений (5.18),(5.19) следует, что для нахождения начальных и конечных значений оригинала не требуется знания оригинала, а достаточно иметь соответствующее изображение. На практике соотношение (5.19) применяется, например, для нахождения установившегося значения выходного сигнала в системах автоматического регулирования.

Пример 5.19

Найти начальное и конечное значения оригинала, которому соответствует изображение F(p)= frac{p+1}{(p+1)^2+9}.

Решение. Согласно (5.18) и (5.19) имеем

f(+0)= limlimits_{ptoinfty} frac{p(p+1)}{(p+1)^2+9}=1;qquad f(+infty)= limlimits_{pto0} frac{p(p+1)}{(p+1)^2+9}=0.

С другой стороны, из примера 5.7 следует, что

f(t)= L^{-1}! left[frac{p+1}{(p+1)^2+9}right]=e^{-t}cos3t,,

поэтому легко убедиться в правильности полученного результата.

Полученные решения примеров 5.2–5.17 позволяют сформировать таблицу преобразования Лапласа. Табл. 5.1 является фрагментом более полных таблиц, используемых далее при решении примеров и задач.


Нахождение изображения по оригиналу

Для нахождения изображения требуется применить свойства преобразования Лапласа Так, чтобы к функции или ее составляющим можно было применить результаты, содержащиеся в табл. 5.1.

Таблица 5.1. Таблица основных преобразований Лапласа

Посмотреть

Пример 5.21

Найти изображения функций:

a) f(t)=t,e^{2t}sin3t; б) f(t)=frac{2}{t}(1-cos t);

в) f(t)=begin{cases}cos[4(t-2)],&t>3,\ 0,&t leqslant 2;end{cases}; г) f(t)= begin{cases}e^{-3t}cos[4(t-2)],& t>2,\ 0,& t leqslant 2;end{cases};

д) f(t)= frac{1}{2}(t-2)^2e^{-(t-2)}boldsymbol{1}(t-2); е) f(t)= e^{2t}+ boldsymbol{1}(t-1)+ boldsymbol{1}(t-4)sin[3(t-4)];

ж) intlimits_{0}^{t} frac{operatorname{sh}tau}{tau},dtau; з) f(t)= cos(4t-8).

Решение

а) Согласно формуле 12 из табл. 5.1 L bigl[e^{2t}sin3tbigr]= frac{3}{(p-2)^2+9}. По свойству дифференцирования изображения (формула (5.13) при n=1):

L bigl[(-1)tf(t)bigr]=F'(p) или L bigl[tf(t)bigr]=-F'(p).

Поэтому Lbigl[t,e^{2t}sin3tbigr]=-left[frac{3}{(p-2)^2+9}right]'=-frac{-2(p-2)cdot3}{bigl[(p-2)^2+9bigr]^2}= frac{6(p-2)}{bigl[(p-2)^2+9bigr]^2}.

Можно решать иначе, используя формулу 10 из табл. 5.1 при а = 3 и свойство смещения при a=2colon

L bigl[tsin3tbigr]= frac{6p}{(p^2+9)^2} и L bigl[t,e^{2t}sin3tbigr]= frac{6(p-2)}{bigl[(p-2)^2+9bigr]^2}.

б) Применим свойства линейности и интегрирования изображения. Так как L[1-cos t]=frac{1}{p}-frac{p}{p^2+1} в силу формул 1 и 9 из табл. 5.1 , то согласно (5.14)

L! left[frac{2}{t}(1-cos t)right]= 2 intlimits_{p}^{+infty}! left(frac{1}{z}-frac{z}{z^2+1}right)!dz= ldots= lnfrac{p^2+1}{p^2},.

в) По формуле 9 из табл. 5.1 L[cos4t]= frac{p}{p^2+16}. Функцию fit) можно записать, используя единичную ступенчатую функцию: f(t)= cos[4(t-2)]cdot boldsymbol{1}(t-2). Поэтому для нахождения изображения следует применить теорему запаздывания (5.9) к оригиналу cos4t при tau=2colon

L bigl[cos[4(t-2)]bigr]= e^{-2p}cdot frac{p}{p^2+16},.

г) Согласно теореме смещения (5.8) и с учетом результата п. “в” имеем

L bigl[e^{-3t}cos[4(t-2)]bigr]= e^{-2(p+3)}cdot frac{p+3}{(p+3)^2+16}, так как a=-3.

д) По теореме запаздывания (5.9) при tau=2 и по формуле 7 из табл. 5.1 при a=2,~ b=-1 получаем

L! left[frac{1}{2}(t-2)^2e^{-(t-2)} boldsymbol{1}(t-2)right]= e^{-2p}cdot L! left[frac{1}{2},t^2e^{-t}right]= e^{-2p}cdot frac{1}{2}cdot frac{2!}{(p+1)^3}= frac{e^{-2p}}{(p+1)^3},.

е) Используя свойства линейности, запаздывания и формулы 6,1,8 из табл. 5.1, получаем

F(p)= frac{1}{p-2}+ frac{1}{p},e^{-p}+ e^{-4p}cdot frac{3}{p^2+9},.

ж) По формуле 19 из табл. 5.1 находим L[operatorname{sh}t]=frac{1}{p^2-1}. По свойству интегрирования изображения (формула (5.14)):

L! left[frac{operatorname{sh}t}{t}right]= intlimits_{p}^{+infty} frac{dz}{z^2-1}= left.{frac{1}{2}ln frac{z-1}{z+1}}right|_{p}^{+infty}= ldots=-frac{1}{2} ln frac{p-1}{p+1}= frac{1}{2}ln frac{p+1}{p-1},.

По свойству интегрирования оригинала (5.12): L Biggl[intlimits_{0}^{t} frac{operatorname{sh}tau}{tau},dtauBiggr]= frac{1}{2p}ln frac{p+1}{p-1}.

з) Используем формулу косинуса разности и запишем оригинал в виде суммы:

f(t)= cos(4t-8)= cos4tcos8+sin4tsin8

По свойству линейности получаем:

L bigl[cos(4t-8)bigr]= cos8cdot frac{p}{p^2+16}+ sin8cdot frac{4}{p^2+16}= frac{pcos8+4sin8}{p^2+16},.

Заметим, что здесь f(t)=f(t)cdot boldsymbol{1}(t) и результаты пп. “в” и “з” различны так как оригиналами являются разные функции.


Нахождение изображений функций, заданных графиком

При решении прикладных задач оригинал часто задан графиком. Это может быть, например, входной сигнал, действующий на систему автоматической регулирования. В этом случае рекомендуется сначала записать аналитическое выражение оригинала с помощью единичной ступенчатой функции (5.4), привести полученное выражение к виду, удобному для применения табл. 5.1 и свойстве преобразования Лапласа.

Пример 5.22

Найти изображения функций, заданных графиками на рис. 5.5.

Решение.

рис. 5.5.

а) Представим функцию в виде f(t)=(1-t)cdot boldsymbol{1}(t-1)=-(t-1)cdot boldsymbol{1}(t-1).

По формуле 3 из табл.5.1 и теореме запаздывания (формула (5.9) при tau=1)

F(p)=-frac{1}{p^2}cdot e^{-p}.

б) Запишем функцию в виде f(t)=(1-t) bigl[boldsymbol{1}(t)+boldsymbol{1}(t-1)bigr]=(1-t)cdot boldsymbol{1}(t)+ (t-1)cdot boldsymbol{1}(t-1).

По формулам 1,3 из табл. 5.1 и (5.6), (5.9) имеем F(p)=frac{1}{p}-frac{1}{p^2}+frac{e^{-p}}{p^2}.

в) Запишем изображенную функцию в виде f(t)=-tcdot boldsymbol{1}(t-1)= (-t+1-1)cdot boldsymbol{1}(t-1)=-(t-1)cdot boldsymbol{1}(t-1)-boldsymbol{1}(t-1).

По формулам 1,3 из табл. 5.1 и (5.6), (5.9) имеем F(p)=-frac{e^{-p}}{p^2}-frac{e^{-p}}{p}.

г) Представим функцию в виде

begin{aligned}f(t)&= (t-1)cdot bigl[boldsymbol{1}(t-1)-boldsymbol{1}(t-2)bigr]+ (3-t)cdot bigl[boldsymbol{1}(t-2)-boldsymbol{1}(t-3)bigr]=\ &=(t-1)cdot boldsymbol{1}(t-1)-2(t-2)cdot boldsymbol{1}(t-2)+ (t-3)cdot boldsymbol{1}(t-3). end{aligned}

По формулам 3 из табл. 5.1 и (5.6), (5.9) имеем F(p)= frac{e^{-p}}{p^2}-frac{2e^{-2p}}{p^2}+frac{e^{-3p}}{p^2}.

д) Запишем функцию в форме

begin{aligned}f(t)&= t bigl[boldsymbol{1}(t)-boldsymbol{1}(t-1)bigr]+ bigl[boldsymbol{1}(t-1)-boldsymbol{1}(t-2)bigr]+ (3-t)cdot bigl[boldsymbol{1}(t-2)-boldsymbol{1}(t-3)bigr]=\[2pt] &=tcdotboldsymbol{1}(t)-(t-1)cdot boldsymbol{1}(t-1)-boldsymbol{1}(t-1)+boldsymbol{1}(t-1)-boldsymbol{1}(t-2),+\ &quad+(2-t)cdot boldsymbol{1}(t-2)+ boldsymbol{1}(t-2)-(3-t)cdot boldsymbol{1}(t-3)=\[2pt] &=tcdot boldsymbol{1}(t)-(t-1)cdot boldsymbol{1}(t-1)-(t-2)cdot boldsymbol{1}(t-2)+ (t-3)cdot boldsymbol{1}(t-3). end{aligned}

По формулам З из табл. 5.1 и (5.6), (5.9) F(p)=frac{1}{p^2}-frac{e^{-p}}{p^2}-frac{e^{-2p}}{p^2}+frac{e^{-3p}}{p^2}.

е) Представим изображенную функцию в виде

begin{aligned}f(t)&= (1-t) bigl[boldsymbol{1}(t)-boldsymbol{1}(t-1)bigr]-1cdot bigl[boldsymbol{1}(t-1)-boldsymbol{1}(t-2)bigr]+ (t-3)cdot boldsymbol{1}(t-2)=\[2pt] &=(1-t)cdotboldsymbol{1}(t)+ (t-1)cdotboldsymbol{1}(t-1)-boldsymbol{1}(t-1)+ boldsymbol{1}(t-2)+ (t-2)cdot boldsymbol{1}(t-2)-boldsymbol{1}(t-2)=\[2pt] &=(1-t)cdotboldsymbol{1}(t)+ (t-1)cdotboldsymbol{1}(t-1)-boldsymbol{1}(t-1)+ (t-2)cdot boldsymbol{1}(t-2).end{aligned}

По формулам 1,3 из табл. 5.1 и (5.6), (5.9) F(p)=frac{1}{p}-frac{1}{p^2}+frac{1}{p^2},e^{-p}-frac{1}{p},e^{-p}+frac{1}{p^2},e^{-2p}.

ж) Запишем функцию в форме f(t)= sin tcdot bigl[boldsymbol{1}(t)-boldsymbol{1}(t-pi)bigr]= sin tcdotboldsymbol{1}(t)+ sin(t-pi)cdot boldsymbol{1}(t-pi).

По формуле 8 из табл. 5.1 и по теореме запаздывания F(p)= frac{1}{p^2+1}+ frac{e^{pi p}}{p^2+1}.

з) Представим функцию в виде f(t)= e^{-t} bigl[boldsymbol{1}(t)-boldsymbol{1}(t-1)bigr]= e^{-t}cdotboldsymbol{1}(t)-frac{e^{-(t-1)}}{e}cdot boldsymbol{1}(t-1)..

По формуле 6 из табл. 5.1 при a=-1 и (5.9) при tau=1 имеем

F(p)= frac{1}{p+1}-frac{1}{e}cdot frac{e^{-p}}{p+1}= frac{1}{p+1}bigl(1-e^{-p-1}bigr).

и) Представим функцию в виде f(t)=1cdot bigl[boldsymbol{1}(t)-boldsymbol{1}(t-1)bigr]-1cdot bigl[boldsymbol{1}(t-1)-boldsymbol{1}(t-2)bigr]= boldsymbol{1}(t)-2cdot boldsymbol{1}(t-1)+boldsymbol{1}(t-2)..

Используя формулы 2 из табл. 5.1 и (5.6), (5.9), получаем F(p)=frac{1}{p}-frac{2}{p}e^{-p}+ frac{1}{p},e^{-2p}.


Нахождение изображений периодических функций

Во многих приложениях используются оригиналы, являющиеся периодическими функциями.

Пусть f(t) — оригинал с периодом T (рис. 5.6,в), образованный повторением функции f_0(t) (рис. 5.6,б):

f_0(t)= begin{cases}0,& tleqslant 0,\ f(t),& 0<tleqslant T,\ 0,& t>T.end{cases}рис. 5.6,

Для нахождения изображения F(p) периодической функции f(t) следует:
1. Найти изображение функции f_0(t)colon, F_0(p)=Lbigl[f_0(t)bigr].
2. Найти изображение F(p) по формуле

F(p)= frac{F_0(p)}{1-e^{-Tp}}

(5.20)

Пример 5.23.

Найти изображения функций, представленных на рис. 5.7.
Решение

рис. 5.7.

а) По графику (рис. 5.7,в) получаем

f_0(t)= tcdot bigl[boldsymbol{1}(t)-boldsymbol{1}(t-1)bigr]= 1cdot boldsymbol{1}(t)-(t-1)cdot boldsymbol{1}(t-1)-boldsymbol{1}(t-1).

Поэтому F_0(p)= frac{1}{p^2}-frac{1}{p^2},e^{-p}-frac{1}{p},e^{-p}.

Поскольку T=1, по формуле (5.20) находим

F(p)= frac{dfrac{1}{p^2}(1-e^{-p}-pe^{-p})}{1-e^{-p}}= frac{e^p(1-e^{-p}-pe^{-p})}{p^2(e^p-1)}= frac{e^p-1-p}{p^2(e^p-1)},.

б) По графику (рис. 5.7,б) имеем f_0(t)= boldsymbol{1}(t)-boldsymbol{1}(t-tau), тогда F_0(p)=frac{1}{p}-frac{1}{p},e^{-ptau}. По формуле (5.20) при T=2tau имеем

F(p)= frac{1}{p}(1-e^{-ptau})frac{1}{1-e^{-2tau p}}= frac{1}{p(1+e^{-ptau})},.

в) Функция, изображенная на рис. 5.7,в , имеет период T=2c. Запишем аналитическое выражение для f_0(t) и соответствующее изображение F_0(p)colon

begin{aligned}&f_0(t)= h bigl[boldsymbol{1}(t)-boldsymbol{1}(t-c)bigr]-h bigl[boldsymbol{1}(t-c)-boldsymbol{1}(t-2c)bigr]= hcdotboldsymbol{1}(t)-2hcdot boldsymbol{1}(t-c)+hcdot boldsymbol{1}(t-2c),\ &F_0(p)= frac{h}{p}-frac{2h}{p},e^{-pc}+frac{h}{p},e^{-2pc}.end{aligned}

По формуле (5.20) получаем F(p)=frac{h(1+e^{-2pc}-2e^{-pc})}{p(1-e^{2pc})}.

г) Для функции, изображенной на рис. 5.7,г, изображением для f_0(t) является F_0(p)= frac{1}{p^2+1}(1+e^{-pi p}) (см. пример 5.22 п.”ж”). Тогда по формуле (5.20) при T=pi получаем F(p)= frac{1+e^{-pi p}}{(p^2+1)(1-e^{-pi p})}.


Нахождение оригинала по изображению

Непосредственное применение формулы обращения (5.3) затруднительно, поэтому для нахождения оригинала применяются теоремы разложения и правила преобразования изображения к виду, представленному в табл. 5.1.

Применение теорем разложения

Теорема 5.1 (первая теорема разложения). Если функция F(p) аналитична в некоторой окрестности бесконечно удаленной точки и ее разложение в ряд по степеням frac{1}{p} имеет вид textstyle{F(p)= sumlimits_{n=0}^{infty} dfrac{a_n}{p^{n+1}}}, то функция (5.21) является оригиналом, соответствующим изображению F(p).

f(t)= sumlimits_{n=0}^{infty} a_n frac{t^n}{n!},quad tgeqslant0

(5.21)

Теорема 5.2 (вторая теорема разложения). Если изображение F(p) является однозначной функцией и имеет лишь конечное число особых точек p_1,p_2,ldots,p_n лежащих в конечной части плоскости, то

f(t)= sumlimits_{k=1}^{n} mathop{operatorname{res}}limits_{p=p_k} bigl[e^{pt}F(p)bigr].

(5.22)

Замечания 5.5

1. Формула (5.21) может быть записана в виде textstyle{L^{-1}! left[sumlimits_{n=0}^{infty} dfrac{a_n}{p^{n+1}}right]= sumlimits_{n=0}^{infty}a_nL^{-1}! left[dfrac{1}{p^{n+1}}right]}. Задача нахождения оригинала при выполнении условий теоремы сводится к нахождению коэффициентов разложения функции в ряд Лорана в окрестности бесконечно удаленной точки.

2. Формула (5.22) принимает наиболее простой вид в случае F(p)=R(p) — рационального изображения, т.е. F(p)= R(p)= frac{P_m(p)}{Q_n(p)}, где P_m(p),,Q_n(p) — многочлены степеней /пил соответственно, не имеющие общих корней. Если все полюсы p_1,p_2,ldots,p_n функции F(p) простые, то по формуле (4.24) получаем mathop{operatorname{res}}limits_{p=p_k} frac{P_m(p)}{Q_n(p)},e^{pt}= frac{P_m(p_k)}{Q'_n(p_k)},e^{p_kt}, а формула (5.22) принимает вид

f(t)= sumlimits_{k=1}^{n} frac{P_m(p_k)}{Q'_n(p_k)},e^{p_kt}.

(5.23)

3. Если при выполнении условий п.2 коэффициенты многочлена Q_n(p) — лействительные числа, то его комплексные корни, как известно, являются по парно сопряженными. Нахождение суммы вычетов в таких точках можно заме нить нахождением действительной части вычета в одной из них. Действительио, вычет в точке overline{p}_k, используя свойства сопряженных чисел, можно записать следующим образом:

mathop{operatorname{res}}limits_{p=overline{p}_k} frac{P_m(p)}{Q_n(p)},e^{pt}= frac{P_m(overline{p}_k)}{Q'_n(overline{p}_k)},e^{overline{p}_kt}= frac{overline{P_m(p_k)}}{overline{Q'_n(p_k)}},e^{overline{p_kt}}= overline{frac{P_m(p_k)}{Q'_n(p_k)},e^{p_kt}}.

Это означает, что вычет в точке overline{p}_k есть число, сопряженное вычету в точке p_k, а сумма таких чисел равна их удвоенной действительной части:

mathop{operatorname{res}}limits_{p=p_k} frac{P_m(p)}{Q_n(p)},e^{pt}+ mathop{operatorname{res}}limits_{p=overline{p}_k} frac{P_m(p)}{Q_n(p)},e^{pt}= 2 operatorname{Re} mathop{operatorname{res}}limits_{p=p_k} frac{P_m(p)}{Q_n(p)},e^{pt}.

Пример 5.24

Найти оригиналы для функций:

a) F_1(p)=frac{1}{p}exp frac{1}{p^2},quad F_2(p)=frac{1}{p}cos frac{1}{p},quad F_2(p)= frac{1}{sqrt{p}}sin frac{1}{sqrt{p}};

б) F_1(p)=frac{p}{p^2+4p+5},quad F_2(p)=frac{p+2}{(p+1)(p-2)(p^2+4)},quad F_3(p)=frac{p^2+p+1}{(p-1)(p+1)^2}.

Решение. В случае “а” для решения задачи используем теорему 5.1, а в случае “б” — теорему 5.2.

а) Используем типовые разложения

e^z=sumlimits_{n=0}^{infty} frac{z^n}{n!},qquad cos z=sumlimits_{n=0}^{infty} frac{(-1)^nz^{2n}}{(2n)!},qquad sin z=sumlimits_{n=1}^{infty} frac{(-1)^{n+1}z^{2n-1}}{(2n-1)!},.

Для заданных изображений получаем:

begin{aligned}F_1(p)&= frac{1}{p} sumlimits_{n=0}^{infty} frac{1}{p^{2n}n!}= sumlimits_{n=0}^{infty} frac{1}{p^{2n+1}n!},quad a_{2n}=frac{1}{n!},;\[2pt] F_2(p)&= frac{1}{p} sumlimits_{n=0}^{infty} frac{(-1)^n}{p^{2n}(2n)!}= sumlimits_{n=0}^{infty} frac{(-1)^n}{p^{2n+1}(2n)!},quad a_{2n}= frac{(-1)^n}{(2n)!},;\[2pt] F_3(p)&= frac{1}{sqrt{p}} sumlimits_{n=1}^{infty} frac{(-1)^n}{sqrt{p^{2n+1}}(2n+1)!}= sumlimits_{n=1}^{infty} frac{(-1)^n}{(2n+1)!p^{n+1}},quad a_n= frac{(-1)^n}{(2n+1)!},.end{aligned}

Согласно первой теореме разложения

f_1(t)= sumlimits_{n=0}^{infty} frac{1}{n!}frac{t^{2n}}{(2n)!},,qquad f_2(t)= sumlimits_{n=0}^{infty} frac{(-1)^nt^{2n}}{[(2n)!]^2},,qquad f_3(t)= sumlimits_{n=0}^{infty} frac{(-1)^nt^n}{(2n+1)!n!},.

б) Представим F_1(p) в виде

F_1(p)= frac{p}{p^2+4p+5}= frac{P_1(p)}{Q_2(p)}= frac{p}{bigl[p-(-2+i)bigr] bigl[p-(-2-i)bigr]},.

где p_1=-2+i,~ p_2=-2-i — простые полюсы функции F(p). По второй теореме разложения

begin{aligned}f_1(t)&= sumlimits_{k=1}^{2}frac{P_1(p_k)}{Q'_2(p_k)},e^{p_kt}= sumlimits_{k=1}^{2} frac{p_k}{2p_k+4},e^{p_kt}= frac{-2+i}{-4+2i+4},e^{(-2+i)t}+ frac{-2-i}{-4-2i+4},e^{(-2-i)t}=\ &=e^{-2t}! left(frac{-2+i}{2i},e^{it}+frac{2+i}{2i},e^{-it}right)= e^{-2t}! left(frac{e^{it}+e^{-it}}{2}-2cdotfrac{e^{it}-e^{-it}}{2i}right)= e^{-2t} bigl[cos t-2sin tbigr]. end{aligned}

Тот же результат можно получить, пользуясь пп. 2 и 3 замечаний 5.5:

begin{aligned}f_1(t)&= 2 operatorname{Re} mathop{operatorname{res}}limits_{p=-2+i} frac{p,e^{pt}}{p^2+4p+5}= left.{2 operatorname{Re} frac{p,e^{pt}}{2p+4}}right|_{-2+i}= 2 operatorname{Re} frac{-2+i}{2i},e^{(-2+i)t}=\ &=2 operatorname{Re}! left[e^{-2t}, frac{1+2i}{2},e^{it}right]= operatorname{Re} bigl[e^{-2t}(1+2i)(cos t+isin t)bigr]= e^{-2t}(cos t-2sin t). end{aligned}

Функция F_2(p) имеет четыре простых полюса: p_1=-1,~ p_2=2,~ p_3=2i.

Так как вычет в простом полюсе находится по формуле mathop{operatorname{res}}limits_{p=p_k} F(p)= limlimits_{pto p_k} F(p)(p-p_k), то по второй теореме разложения

begin{aligned}f_2(t)&= sumlimits_{k=1}^{4} mathop{operatorname{res}}limits_{p_k} bigl[F(p)e^{pt}bigr]= limlimits_{pto-1} frac{(p+2)e^{pt}}{(p-2)(p^2+4)}+ limlimits_{pto2} frac{(p+2)e^{pt}}{(p+1)(p^2+4)},+\ &qquad + limlimits_{pto2i} frac{(p+2)e^{pt}}{(p-1)(p+1)(p+2i)}+ limlimits_{pto-2i} frac{(p+2)e^{pt}}{(p-1)(p+1)(p-2i)}=\[2pt] &=-frac{1}{15},e^{-t}+ frac{1}{6},e^{2t}+frac{2+2i}{8-24i},e^{2it}+ frac{2-2i}{8+24i},e^{-t}=\[2pt] &=-frac{1}{15},e^{-t}+ frac{1}{6},e^{2t}+frac{-32+64i}{640},e^{2it}+ frac{-32-64i}{640},e^{-t}=\[2pt] &=-frac{1}{15},e^{-t}+ frac{1}{6},e^{2t}-frac{64}{640}cdot frac{e^{2it}+e^{-2it}}{2}-frac{128}{640}cdot frac{e^{2it}-e^{-2it}}{2i}=\[2pt] &=-frac{1}{15},e^{-t}+ frac{1}{6},e^{2t}-frac{1}{10}cos2t-frac{1}{5}sin2t,.end{aligned}

Функция F_3(p) имеет два полюса: простой p_1=1 и полюс второго порядка p_2=-1.

По второй теореме разложения f_3(t)= mathop{operatorname{res}}limits_{p_1=1} frac{(p^2+p+1)e^{pt}}{(p-1)(p+1)^2}+ mathop{operatorname{res}}limits_{p_2=-1} frac{(p^2+p+1)e^{pt}}{(p-1)(p+1)^2}. Находим вычеты

begin{aligned}mathop{operatorname{res}}limits_{p_1=1} frac{(p^2+p+1)e^{pt}}{(p-1)(p+1)^2}&= limlimits_{pto1} frac{(p^2+p+1)(p-1)e^{pt}}{(p-1)(p+1)^2}= limlimits_{pto1} frac{(p^2+p+1)e^{pt}}{(p+1)^2}= frac{3}{4},e^{t},\[2pt] mathop{operatorname{res}}limits_{p_2=-1} frac{(p^2+p+1)e^{pt}}{(p-1)(p+1)^2}&= limlimits_{pto-1} frac{d}{dp}! left[frac{(p^2+p+1)e^{pt}(p+1)^2}{(p-1)(p+1)^2}right]= ldots= frac{1}{4},e^{-t}-frac{t}{2},e^{-t}, end{aligned}

получаем окончательный ответ f_3(t)= frac{3}{4},e^{t}+frac{1}{4},e^{-t}-frac{t}{2},e^{-t}.


Применение таблицы и свойств преобразования Лапласа

Приведем ряд известных приемов нахождения оригинала.

1. Если изображение отличается от табличного на постоянный множитель, то его следует умножить и одновременно поделить на этот множитель, а затем воспользоваться свойством линейности.

Пример 5.25

2. Изображение, заданное в виде дроби frac{apm b}{c}, разлагается на сумму дробей.

Пример 5.26

Найти оригинал для функций: а) F(p)= frac{3p}{(p+5)^2}; б) F(p)= frac{3p-2}{(p+5)^2}; в) F(p)= frac{p^3+2p+2}{p^3(p+1)}.

Решение. Представим дроби в виде суммы двух слагаемых, а затем воспользуемся свойством линейности и формулами из табл. 5.1:

а) F(p)= frac{3(p+5)-15}{(p+5)^2}= 3cdotfrac{1}{p+5}-15cdot frac{1}{(p+5)^2}quad Rightarrowquad f(t)=3e^{-5t}-15te^{-5t};

б) F(p)= 3cdot frac{p}{(p+5)^2}-frac{2}{1!}cdot frac{1!}{(p+5)^2}quad Rightarrowquad f(t)= 3(1-5t)e^{-5t}-2te^{-5t}= e^{-5t}(3-17t).

в) представим F(p) в виде F(p)= frac{p^3+2p+2}{p^3(p+1)}= frac{p^3+2(p+ 1)}{p^3(p+1)}= frac{2}{p^3}+ frac{1}{p+1}. По формулам 4,6 из табл. 5.1 находим f(t)= t^2+e^{-t}.

3. Если знаменатель дроби содержит квадратный трехчлен, то в нем выде ляется полный квадрат: ap^2+bp+c= a(ppmalpha)^2pmomega^2. При этом числитель дроби представляется в виде многочлена от (ppmalpha).

Пример 5.27

Найти оригиналы для функций: a) F(p)=frac{3}{p^2+4p+7}; б) F(p)= frac{3p+2}{2p^2-8p+6}.

Решение. а) Выделим полный квадрат в знаменателе дроби и воспользуемся табл. 5.1 (по формуле 12 из табл. 5.1 при a=-2,~ b=sqrt{3}):

F(p)= frac{3}{(p+2)^2-4+7}= frac{3}{(p+2)^2+3}= sqrt{3}cdot frac{sqrt{3}}{(p+2)^2+(sqrt{3})^2}quad Rightarrowquad f(t)=sqrt{3},e^{-2t}sin(t sqrt{3}).

б) Используем представление

F(p)= frac{3p+2}{2(p^2-4p+3)}= frac{1,!5p+1}{(p-2)^2-1}= frac{1,!5(p-2)+3}{(p-2)^2-1}+ frac{1}{(p-2)^2-1}= 1,!5cdotfrac{p-2}{(p-2)^2-1}+4cdot frac{1}{(p-2)^2-1},.

По формулам 19,20 из табл. 5.1 и по теореме смещения (формула (5.8))

f(t)=frac{3}{2},e^{2t}operatorname{ch}t+ 4e^{2t}operatorname{sh}t= frac{3}{2},e^{2t},frac{e^t+e^{-t}}{2}+ 4e^{2t},frac{e^t-e^{-t}}{2}= frac{11}{4},e^{3t}-frac{5}{4},e^{t}.

Можно решить эту задачу иначе, используя вторую теорему разложения (см. п. “б” примера 5.24):

begin{gathered}F(p)= frac{3p+2}{2(p^2-4p+3)}= frac{3p+2}{2(p-1)(p-3)}\ Downarrow\ f(t)= mathop{operatorname{res}}limits_{p=1} F(p)e^{pt}+ mathop{operatorname{res}}limits_{p=3} F(p)e^{pt}= frac{5e^t}{2cdot(-2)}+ frac{11e^{3t}}{2cdot2}= frac{11}{4},e^{3t}-frac{5}{4},e^{t}.end{gathered}

4. Если оригинал представляет собой правильную рациональную дробь, то следует разложить ее на простейшие дроби и для каждой из полученных дробей найти оригинал.

Примеры 5.28-5.29

Пример 5.28. Найти оригиналы для функций:

а) F(p)=frac{3p^2+3p-13}{p(p^4+4p+13)}; б) F(p)=frac{p}{(p+2)^2(p-1)}; в) F(p)=frac{p^2+4}{(p-1)(p+2)(p-3)}; г) F(p)=frac{3p}{2p^2-2p-4}.

Решение. а) Представим F(p) в виде F(p)=frac{3p^2+3p-13}{p(p^4+4p+13)} = frac{A}{p}+ frac{Bp+C}{p^2+4p+13}, где A,,B,,C — неопределенные коэффициенты.

Отсюда следует равенство 3p^2+3p-13= Ap^2+4Ap+13A+Bp^2+Cp.

Приравнивая коэффициенты при одинаковых степенях p, получаем систему уравнений для нахождения неопределенных коэффициентов:

begin{cases}A+B=3,\ 4A+C=3,\ 13A=-13.end{cases} Решая ее, получаем A=-1,~B=4,~C=7 и

F(p)=-frac{1}{p}+frac{4p+7}{p^2+4p+13}=-frac{1}{p}+ frac{4(p+2)-1}{(p+2)^2+9}=-frac{1}{p}+4cdot frac{p+2}{(p+2)^2+3^2}-frac{1}{3}cdot frac{3}{(p+2)^2+3^2},.

По формулам 1,12,13 из табл. 5.1 f(t)=-1+4e^{-2t}cos3t-frac{1}{3},e^{-2t}sin3t.

б) Представим F(p) в виде F(p)= frac{p}{(p+2)^2(p-1)}= frac{A}{p-1}+ frac{B}{p+2}+ frac{C}{(p+2)^2}, где A,,B,,C — неопределенные коэффициенты.

Отсюда A(p+2)^2+ B(p-1)(p+2)+ C(p-1)=p.

Подставляя последовательно p=1,~p=-2,~ p=0, получаем A=frac{1}{9},~ B=frac{2}{3},~ C=-frac{1}{9} и поэтому

F(p)=frac{1}{9}cdot frac{1}{p-1}-frac{1}{9}cdot frac{1}{p+2}+ frac{2}{3}cdot frac{1}{(p+2)^2},.

По формулам 6,7 из табл. 5.1 находим frac{1}{9},e^{t}-frac{1}{9},e^{-2t}+ frac{2}{3},t,e^{-2t}..

в) Представим изображение в виде F(p)=frac{p^2+4}{(p-1)(p+2)(p-3)}= frac{A}{p-1}+ frac{B}{p+2}+ frac{C}{p-3}. Отсюда

A(p+2)(p-3)+ B(p-1)(p-3)+ C(p-1)(p+2)= p^2+4.

При p=1,~p=-2,~p=3 получаем A=-frac{5}{6},~ B=frac{8}{15},~ C=frac{13}{10}, поэтому

F(p)=-frac{5}{6}cdot frac{1}{p-1}+ frac{8}{15}cdot frac{1}{p+2}+ frac{13}{10}cdot frac{1}{p-3},.

По свойству линейности и по формуле 6 из табл. 5.1 получаем

f(t)=-frac{5}{6},e^{t}+ frac{8}{15},e^{-2t}+ frac{13}{10},e^{3t}.

Можно решить эту задачу иначе, используя вторую теорему разложения (см. п. “б” примера 5.24):

begin{gathered}F(p)= frac{p^2+4}{(p-1)(p+2)(p-3)}\ Downarrow\ begin{aligned}f(t)&= mathop{operatorname{res}}limits_{p=1} F(p)e^{pt}+ mathop{operatorname{res}}limits_{p=-2} F(p)e^{pt}+ mathop{operatorname{res}}limits_{p=3} F(p)e^{pt}=\ &= frac{5e^t}{3cdot(-2)}+ frac{8e^{-2t}}{(-3)cdot(-5)}+ frac{13e^{3t}}{2cdot5}=-frac{5}{6},e^t+ frac{8}{15},e^{-2t}+ frac{13}{10},e^{3t}.end{aligned}end{gathered}

г) Представим F(p) в виде F(p)= frac{3p}{2p^2-2p-4}= frac{3p}{2(p-2)(p+1)}= frac{A}{p-2}+ frac{B}{p+1}, где A,,B — неопределенные коэффициенты.

Из равенства A(p+1)+B(p-2)=frac{3p}{2} при p=-1,~p=2 получаем A=1,~ B=frac{1}{2}, поэтому F(p)=frac{1}{p-2}+ frac{1}{2}cdot frac{1}{p+1}.

По формуле 6 из табл. 5.1 имеем f(t)=e^{2t}+frac{1}{2},e^{-t}.

Можно также решить эту задачу иначе, используя вторую теорему разложения (см. п. “б” примера 5.24 и п. “в” данного примера):

begin{gathered}F(p)= frac{3p}{2(p^2-p-2)}= frac{3p}{2(p+1)(p-2)}\ Downarrow\ f(t)= mathop{operatorname{res}}limits_{p=-1} F(p)e^{pt}+ mathop{operatorname{res}}limits_{p=2} F(p)e^{pt}= frac{-3e^{-t}}{2cdot(-3)}+ frac{6e^{2t}}{2cdot3}= e^{2t}+frac{1}{2},e^{-t}. end{gathered}

Пример 5.29. Найти оригиналы для функций: a) F(p)= frac{1}{p^2(p-1)^2}; б) F(p)= frac{p}{(p^2+1)(p^2+4)}.

Решение. а) Решим пример различными способами.

Первый способ. Воспользуемся разложением дроби на элементарные:

F(p)= frac{1}{p^2(p-1)^2}= frac{2}{p}+ frac{1}{p^2}-frac{2}{p-1}+ frac{1}{(p-1)^2},.

По формулам 2,3,6,7 из табл. 5.1 получаем f(t)=2+t-2e^t+te^t.

Второй способ. Применим вторую теорему разложения, учитывая, что p_1=0 и p_2=1 — полюсы второго порядка функции F(p)colon

begin{aligned} f(t)= mathop{operatorname{res}}limits_{p=0}F(p)e^{pt}+ mathop{operatorname{res}}limits_{p=1}F(p)e^{pt}= limlimits_{pto0} frac{d}{dp}! left[frac{p^2e^{pt}}{p^2(p-1)^2}right]+ limlimits_{pto1} frac{d}{dp}! left[frac{(p-1)^2e^{pt}}{p^2(p-1)^2}right]= ldots= t+2+te^t-2e^t.end{aligned}

Третий способ. Обозначим F_1(p)= frac{1}{(p-1)^2}. Тогда f_1(t)=t,e^t. Рассмотрим функцию F_2(p)= frac{1}{p}F_1(p). По свойству интегрирования оригинала (формула (5.12)) получаем

f_2(t)= intlimits_{0}^{t}tau,e^{tau},dtau= Bigl.{tau,e^{tau}}Bigr|_{0}^{t}-Bigl.{e^{tau}}Bigr|_{0}^{t}= t,e^t-e^t+1.

Заметим, что F(p)= frac{1}{p}F_2(p). Применяя еще раз свойство интегрирования оригинала, имеем

f(t)= intlimits_{0}^{t}(tau,e^{tau}-e^{tau}+1)dtau= ldots= t,e^t-2e^t+2+t.

Четвертый способ. Представим изображение в виде произведения

F(p)= frac{1}{p^2(p-1)^2}= frac{1}{p^2}cdot frac{1}{(p-1)^2}= F_1(p)cdot F_2(p), где F_1(p)=frac{1}{p^2},~~ F_2(p)=frac{1}{(p-1)^2}.

По формулам 3 и 7 из табл. 5.1 f_1(t)=t,~ f_2(t)=t,e^t. Далее по теореме Бореля (формула (5.15))

f(t)= f_1(t)ast f_2(t)= intlimits_{0}^{t}tau,e^{tau}(t-tau)dtau= ldots= t,e^t-2e^t+2+t.

б) Решим пример также несколькими способами.

Первый способ. Воспользуемся разложением дроби на элементарные:

F(p)= frac{p}{(p^2+1)(p^2+4)}= frac{p[p^2+4-(p^2+1)]}{3(p^2+1)(p^2+4)}= frac{1}{3}cdot frac{p}{p^2+1}-frac{1}{3}cdot frac{p}{p^2+4},.

По формуле 9 из табл. 5.1 получаем f(t)= frac{1}{3}cos t-frac{1}{3}cos2t.

Второй способ. Применим вторую теорему разложения с учетом пп. 2,3 замечаний 5.5:

f(t)= 2operatorname{Re} mathop{operatorname{res}}limits_{p=i} frac{p,e^{pt}}{(p^2+1)(p^2+4)}+ 2operatorname{Re} mathop{operatorname{res}}limits_{p=2i} frac{p,e^{pt}}{(p^2+1)(p^2+4)}= ldots= frac{1}{3}cos t-frac{1}{3}cos2t.

Третий способ. Представим изображение в виде произведения:

F(p)= frac{p}{(p^2+1)(p^2+4)}= frac{p}{p^2+4}cdot frac{1}{p^2+1}= F_1(p)cdot F_2(p).

Отсюда f_1(t)= L^{-1}! left[frac{p}{p^2+4}right]=cos2t,~ f_2(t)= L^{-1}! left[frac{1}{p^2+1}right]= sin t. По теореме Бореля

f(t)=f_1(t)ast f_2(t)= intlimits_{0}^{t} cos2tausin(t-tau)dtau= ldots= frac{1}{3}cos t-frac{1}{3}cos2t.

Четвертый способ. Используем формулу 37 из табл. 5.1. При a=1,~b=2 получаем

f(t)=frac{cos2t-cos t}{1-4}= frac{1}{3}cos t-frac{1}{3}cos2t.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Ранее мы рассмотрели интегральное преобразование Фурье

Преобразование Лапласа

с ядром K(t, ξ) = Преобразование Лапласа.

Преобразование Фурье неудобно тем, что должно быть выполнено условие абсолютной интегрируемости функции f(t) на всей оси t,

Преобразование Лапласа

Преобразование Лапласа позволяет освободиться от этого ограничения.

Определение:

Функцией-оригиналом будем называть всякую комплекснозначную функцию f(t) действительного аргумента t, удовлетворяющую следующим условиям:

  1. f(t) непрерывна на всей оси t, кроме отдельных точек, в которых f(t) имеет разрыв 1-го рода, причем на каждом конечном интервале оси t таких точек может быть лишь конечное число;
  2. функция f(t) равна нулю при отрицательных значениях t, f(t) = 0 при t < 0;
  3. при возрастании t модуль f(t) возрастает не быстрее показательной функции, т. е. существуют числа М > 0 и з такие, что для всех t
Преобразование Лапласа

Ясно, что если неравенство (1) выполняется при некотором s = s1, то оно будет выполнятся при всяком s2 > s1.

Точная нижняя грань sо всех чисел s, so = infs, для которых выполняется неравенство (1), называется показателем роста функции f(t).

Замечание:

В общем случае неравенство

Преобразование Лапласа

не имеет места, но справедлива оценка

Преобразование Лапласа

где ε > 0 — любое. Так, функция f(t) = t, t ≥ 0, имеет показатель роста so =0. Для нее неравенство |t| ≤ М ∀t ≥ 0 не выполняется, но ∀ε > О, ∀t > 0 верно неравенство Преобразование Лапласа

Условие (1) гораздо менее ограничительное, чем условие (*).

Пример:

Функция

Преобразование Лапласа

не удовлетворяет условию (*), но условие (1) выполнено при любом s ≥ 1 и М ≥ 1; показатель роста so = 1. Так что f(t) является функцией-оригиналом. С другой стороны, функция

Преобразование Лапласа

не является функцией-оригиналом: она имеет бесконечный порядок роста, sо = +∞. Простейшей функцией-оригиналом является
так называемая единичная функция

Преобразование Лапласа

Если некоторая функция φ(t) удовлетворяет условиям 1 и 3 определения 1, но не удовлетворяет условию 2, то произведение f(t) = φ(t) η(t) уже является функцией-оригиналом.

Преобразование Лапласа

Для простоты записи мы будем, как правило, множитель η(t) опускать, условившись, что все функции, которые мы будем рассматривать, равны нулю для отрицательных t, так что если речь идет о какой-то функции f(t) например, о sin t, cos t, et и т. д., то всегда подразумеваются следующие функции (рис. 2):

Преобразование Лапласа
Преобразование Лапласа

Определение:

Пусть f(t) есть функция-оригинал. Изображением функции f(t) по Лапласу называется функция F(p) комплексного переменного р = s + iσ, определяемая формулой

Преобразование Лапласа

где интеграл берется по положительной полуоси t. Функцию F(p) называют также преобразованием Лапласа функции f(t); ядро преобразования K(t, р) = e-pt.
Тот факт, что функция f(x) имеет своим изображением F(p), будем записывать так:

Преобразование Лапласа

Пример:

Найти изображение единичной функции η(t).

Функция Преобразование Лапласа является функцией-оригиналом с показателем роста s0 = 0. В силу формулы (2) изображением функции η(t) будет функция

Преобразование Лапласа

Если р = s + iσ, то при s > 0 интеграл в правой части последнего равенства будет сходящимся, и мы получим

Преобразование Лапласа

так что изображением функции η(t) будет функция 1/p. Как мы условились, будем писать, что η(t) = 1, и тогда полученный результат запишется так:

Преобразование Лапласа

Теорема:

Для всякой функции-оригинала f(t) с показателем роста sо изображение F(p) определено в полуплоскости Re p = s > So и является в этой полуплоскости аналитической функцией (рис. 3).

Преобразование Лапласа

Пусть

Преобразование Лапласа

Для доказательства существования изображения F(p) в указанной полуплоскости достаточно установить, что несобственный интеграл (2) абсолютно сходится при s > so. Используя (3), получаем

Преобразование Лапласа

что и доказывает абсолютную сходимость интеграла (2). Одновременно мы получили оценку преобразования Лапласа F(p) в полуплоскости сходимости Re р = s > so

Преобразование Лапласа

Дифференцируя выражение (2) формально под знаком интеграла по р, находим

Преобразование Лапласа

Существование интеграла (5) устанавливается так же, как было установлено существование интеграла (2).

Применяя для F'(p) интегрирование по частям, получаем оценку

Преобразование Лапласа

откуда следует абсолютная сходимость интеграла (5). (Внеинтегральное слагаемое Преобразование Лапласа — при t → + ∞ имеет предел, равный нулю). В любой полуплоскости Re р ≥ S1 > So интеграл (5) сходится равномерно относительно р, поскольку он мажорируется сходящимся интегралом

Преобразование Лапласа

не зависящим от р. Следовательно, дифференцированиепо р законно и равенство (5) справедливо.

Поскольку производная F'(p) существует, преобразование Лапласа F(p) всюду в полуплоскости Re p = s > sо является аналитической функцией.

Из неравенства (4) вытекает

Следствие:

Если точка р стремится к бесконечности так, что Re р = s неограниченно возрастает, то

Преобразование Лапласа

Пример:

Найдем еще изображение функции f(t) =Преобразование Лапласа, где а = а + iβ — любое комплексное число.

Показатель роста sо функции f(t) равен а.

Считая Rep = s> а, получим

Преобразование Лапласа

Таким образом,

Преобразование Лапласа

При а = 0 вновь получаем формулу

Преобразование Лапласа

Обратим внимание на то, что изображение функции Преобразование Лапласа является аналитической функцией аргумента р не только в полуплоскости Re p > а, но и во всех точках р, кроме точки р = а, где это изображение имеет простой полюс. В дальнейшем мы не раз встретимся с подобной ситуацией, когда изображение F(p) будет аналитической функцией во всей плоскости комплексного переменного р, за исключением изолированных особых точек. Противоречия с теоремой 1 нет. Последняя утверждает лишь, что в полуплоскости Re p > So функция F(p) не имеет особых точек: все они оказываются лежащими или левее прямой Re p = So, или на самой этой прямой.

Замечание:

В операционном исчислении иногда пользуются изображением функции f(t) по Хевисайду, определяемым равенством

Преобразование Лапласа

и отличаюикмся от шоСражения по Лапласу множителем р.

Свойства преобразования Лапласа

В дальнейшем через f(t), φ(t), … будем обозначать функции-оригиналы, а через F(p), Ф(р), … — их изображения по Лапласу,

Преобразование Лапласа

Из определения изображения следует, что если f(t) = 9 ∀t, то F(p) = 0.

Теорема единственности:

Если две непрерывные функции f(t) и φ{t) имеют одно и тоже изображение F(p), то они тождественно равны.

Теорема:

Линейность преобразования Лапласа. Если f{t) и φ{t) — функции-оригиналы, то для любых комплексных постоянных а и β

Преобразование Лапласа

Справедливость утверждения вытекает из свойства линейности интеграла, определяющего изображение:

Преобразование Лапласа

Преобразование Лапласа — показатели роста функций f(t) и φ(t) соответственно).

На основании этого свойства получаем

Преобразование Лапласа

т. е. (3)

Преобразование Лапласа

Аналогично находим, что
(4)

Преобразование Лапласа

и, далее,
(5) (6)

Преобразование Лапласа

Теорема подобия:

Если f(t) — функция-оригинал и F(p) — ее изображение по Лапласу, то для любого постоянного а > 0

Преобразование Лапласа

Полагая at = т, имеем

Преобразование Лапласа

Пользуясь этой теоремой, из формул (5) и (6) получаем

Преобразование Лапласа

Теорема:

О дифференцировании оригинала. Пусть f(t) является функцией-оригиналом с изображением F(p) и пусть Преобразование Лапласа— также функции-оригиналы, Преобразование Лапласапоказатель роста функции Преобразование Лапласа (k = 0, 1,…, п). Тогда

Преобразование Лапласа

Здесь под fk(0) (k = 0,1,… , п — 1) понимается правое предельное значение Преобразование Лапласа.

Преобразование Лапласа

Пусть f(t) = F(p). Найдем изображение f'(t). Имеем

Преобразование Лапласа

Интегрируя по частям, получаем

Преобразование Лапласа

Внеинтегральное слагаемое в правой части (10) обращается в нуль при t → + ∞, т. к. при Re р = s > Преобразование Лапласаимеем

Преобразование Лапласа

подстановка t = 0 дает -f(0).

Второе слагаемое справа в (10) равно pF(p). Таким образом, соотношение (10) принимаетвид

Преобразование Лапласа

и формула (8) доказана. В частности, если f(0) = 0, то f'(t) = pF(p). Для отыскания изображения Преобразование Лапласа запишем

Преобразование Лапласа

откуда, интегрируя п раз по частям, получим

Преобразование Лапласа

Пример:

Пользуясь теоремой о дифференцировании оригинала, найти изображение функции f(t) = sin2t.

Пусть f(t) = F(p). Тогда

Преобразование Лапласа

Но f(0) = О, а f'(0) = 2 sin t cos t = sin 2t = Преобразование Лапласа. Следовательно, Преобразование Лапласа = pF(p), откуда F(p) =Преобразование Лапласа

Теорема 5 устанавливает замечательное свойство интегрального преобразования Лапласа: оно (как и преобразование Фурье) переводит операцию дифференцирования в алгебраическую операцию умножения на р.

Формула включения. Если f(t) и f'(t) являются функциями-оригиналами, то (11)

Преобразование Лапласа

В самом деле, f'(<) = р F(p) — f(0). В силу следствия из теоремы 1, всякое изображение стремится к нулю при Rе р = s → + ∞. Значит, Преобразование Лапласа[pF(p) — f(0)] = 0, откуда вытекает формула включения (11).

Теорема:

О дифференцировании изображения. Дифференцирование изображения сводится к умножению на (—t) оригинала,

Преобразование Лапласа

Так как функция F(p) в полуплоскости Rep = s > so является аналитической, то ее можно дифференцировать по р. Имеем

Преобразование Лапласа

Последнее как раз и означает, что Преобразование Лапласа

Пример:

Пользуясь теоремой 6, найти изображение функции Преобразование Лапласа.

Как известно, 1 = 1/p. Здесь f(t) = 1, F(p) = 1/p. Отсюда (1/p)’= (-t) • 1, или Преобразование Лапласа= t. Вновь применяя теорему 6, найдем

Преобразование Лапласа

Теорема:

Интегрирование оригинала. Интегрирование оригинала сводится к делению изображения на р: если f(t) = F(p), то

Преобразование Лапласа

Положим

Преобразование Лапласа

Нетрудно проверить, что если f(t) есть функция-оригинал, то и φ(t) будет функцией-оригиналом, причем φ(0) = 0. Пусть φ(t) = Ф(р). В силу (14)

Преобразование Лапласа

С другой стороны, f(t) =’ F(p), откуда F(p) = рФ(р), т.е. Ф(р) =Преобразование Лапласа.

Последнее равносильно доказываемому соотношению (13).

Пример:

Найти изображение функции

Преобразование Лапласа

В данном случае f(t) = cos t, так что F(p) = Преобразование Лапласа. Поэтому

Преобразование Лапласа

Теорема:

Интегрирование изображения. Если f(t) = F(p) и интеграл Преобразование Лапласа сходится, то он служит изображением функции Преобразование Лапласа

Преобразование Лапласа

Действительно,

Преобразование Лапласа

Предполагая, что путь интегрирования (р, ∞) лежит в полуплоскости Re p ≥ а> so, мы можем изменить порядок интегрирования (t > 0):

Преобразование Лапласа

Последнее равенство означает, что Преобразование Лапласа является изображением функции Преобразование Лапласа.

Пример:

Найти изображение функции Преобразование Лапласа.

Как известно, sin t = Преобразование Лапласа.

Поэтому

Преобразование Лапласа

Теорема запаздывания:

Если f{t) = F(p), то для любого положительного τ («запаздывания»)

Преобразование Лапласа

Так как

Преобразование Лапласа

Преобразование Лапласа

Положим ξ = t- τ. Тогда dt = d ξ. При t = τ получаем ξ = 0, при t = + ∞ имеем ξ = + ∞.

Преобразование Лапласа

Поэтому соотношение (16) принимает вид

Преобразование Лапласа

Пример:

Найти изображение функции f(t), заданной графически (рис. 5).

Преобразование Лапласа

Запишем выражение для функции f(t) в следующем виде:

Преобразование Лапласа

Это выражение можно получить так. Рассмотрим функцию f1(t) = η(t) для t ≥ 0 (рис. 6 а) и вычтем из нее функцию

Преобразование Лапласа

Разность f(t) — h(t) будет равна единице для t ∈ [0,1) и -1 для t ≥ 1 (рис. 6 b). К полученной разности прибавим функцию

Преобразование Лапласа

В результате получим функцию f(t) (рис. 6 в), так что

Преобразование Лапласа

Отсюда, пользуясь теоремой запаздывания, найдем

Преобразование Лапласа
Преобразование Лапласа

Теорема смещения:

Если f{t) = F(p) для любого комплексного числа ро

Преобразование Лапласа

В самом деле,

Преобразование Лапласа

Теорема позволяет по известным изображениям функций находить изображения тех же функций, умноженных на показательную функцию Преобразование Лапласа, например,

Преобразование Лапласа

так что

Преобразование Лапласа

Свертка функций. Теорема умножения

Пусть функции f(t) и φ(t) определены и непрерывны для всех t. Сверткой (f *φ)(t) этих функций называется новая функция от t, определяемая равенством

Преобразование Лапласа

(если этот интеграл существует).

Для функций-оригиналов f(t) и φ(t) операция свертки всегда выполнима, причем
(17)

Преобразование Лапласа

В самом деле, произведение функций-оригиналов f( τ ) φ(t — τ), как функция от τ, является финитной функцией, т.е. обращается в нуль вне некоторого конечного промежутка (в данном случае вне отрезка 0 ≤ τ ≤ t). Для финитных непрерывных функций операция свертки выполнима, и мы получаем формулу (17).

Нетрудно проверить, что операциясвертки коммутативна,

Преобразование Лапласа

Теорема умножения:

Если f(t) = F(p), <p(t) =’Ф(р), то свертка (f * φ)(t) имеет изображение F(p) • Ф(р),

Преобразование Лапласа

или

Преобразование Лапласа

Нетрудно проверить, что свертка (f * φ)(t) функций-оригиналов есть функция-оригинал с показателем роста s* = mах{s1, s2}, где s1, s2 ~ показатели роста функций f(t) и φ(t) соответственно. Найдем изображение свертки,

Преобразование Лапласа

Воспользовавшись тем, что

Преобразование Лапласа

Меняя порядок интегрирования в интеграле справа (при Re р = s > s* такая операция законна) и применяя теорему запаздывания, получим

Преобразование Лапласа

Таким образом, из (18) и (19) находим

Преобразование Лапласа

— умножению изображений отвечает свертывание оригиналов,

Преобразование Лапласа

Пример:

Найти изображение функции

Преобразование Лапласа

Функция ψ(t) есть свертка функций f(y) = t и φ(t) = sin t. В силу теоремы умножения

Преобразование Лапласа

Задача:

Пусть функция f(t), периодическая с периодом Т, есть функция-оригинал. Показать, что ее изображение по Лапласу F[p) дается формулой

Преобразование Лапласа

Отыскание оригинала по изображению

Задача ставится так: дана функция F(p), надо найти функцию f(t). изображением которой является F(p).

Сформулируем условия, достаточные для того, чтобы функция F(p) комплексного переменного р служила изображением.

Теорема:

Если аналитическая в полуплоскости Rep = s > so функция F(p)

1) стремится к нулю при |р| —» +в любой полуплоскости Re р = а > So равномерно относительно arg р;

2) интеграл

Преобразование Лапласа

сходится абсолютно, то F(p) является изображением некоторой функции-оригинала f{t).

Задача:

Может ли функция F(p) = Преобразование Лапласа служить изображением некоторой функции-оригинала? Укажем некоторые способы отыскания оригинала по изображению.

Отыскание оригинала с помощью таблиц изображений

Прежде всего стоит привести функцию F(p) к более простому, «табличному» виду. Например, в случае, когда F(p) — дробно-рациональная функция аргумента р,ее разлагают на элементарные дроби и пользуются подходящими свойствами преобразования Лапласа.

Пример:

Найти оригинал для

Преобразование Лапласа

Запишем функцию F(p) в виде:

Преобразование Лапласа

Пользуясь теоремой смещения и свойством линейности преобразования Лапласа, получаем

Преобразование Лапласа

Пример:

Найти оригинал для функции

Преобразование Лапласа

Запишем F(p) в виде

Преобразование Лапласа

Отсюда f(t) = t — sin t.

Использование теоремы обращения и следствий из нее

Теорема обращения:

Если функция f(t) есть функция-оригинал с показателем роста so и F{p) — ее изображение, то в любой точке непрерывности функции f(t) выполняется соотношение

Преобразование Лапласа

где интеграл берется вдоль любой прямой Re p = s > So и понимается в смысле главного значения, т. е. как

Преобразование Лапласа

Формула (1) называется формулой обращения преобразования Лапласа, или формулой Меллина. В самом деле, пусть, например, f(t) — кусочно-гладкая на каждом конечном отрезке [0, а] функция-оригинал-с показателем роста so. Рассмотрим функцию φ(t) = Преобразование Лапласа, где s>so — любое.

Функция φ(t) удовлетворяет условиям применимости интегральной формулы Фурье, и, следовательно, справедлива формула обращения преобразования Фурье,

Преобразование Лапласа

(φ(t) ≡ 0 при t < 0). Подставляя в (3) выражение φ(t) = f(t)Преобразование Лапласа, найдем

Преобразование Лапласа

где F{p) — преобразование Лапласа функции f(t) при р = s + iξ. Формулу (2) можно переписать в виде

Преобразование Лапласа

откуда получаем формулу обращения преобразования Лапласа

Преобразование Лапласа

Как следствие из теоремы обращения получаем теорему единственности.

Теорема:

Две непрерывные функции f(t) и φ(t), имеющие одно и то же изображение F(p), тождественны.
Непосредственное вычисление интеграла обращения (1) обычно затруднительно. Отыскание оригинала по изображению упрощается при некоторых дополнительных ограничениях на F(p).

Теорема:

Пусть изображение F(p) — дробно-рациональная функция с полюсами р1, p2….pп. Тогда оригиналом для F(p) будет функция f(t) η(t), где

Преобразование Лапласа

Пусть изображение F(p) — дробно-рациональная функция, F(p) = Преобразование Лапласа, где А(р), В(р) — многочлены относительно р (взаимно простые), причем степень числителя А(р) меньше степени знаменателя В(р), т. к. для всякого изображения должно выполняться предельное соотношение

Преобразование Лапласа

Пусть корни знаменателя В(р), являющиеся полюсами изображения F(p), суть р1, р2, …, рп, а их кратности равны r1, r2, …, rп соответственно.

Если число s, фигурирующее в формуле (1), взять большим всех Re pk (k = 1,2,…, п), то по формуле обращения, которая в этих условиях применима, получим

Преобразование Лапласа

Рассмотрим замкнутый контур ГR (рис.7), состоящий из дуги CR окружности радиуса R с центром в начале координат и стягивающей ее хорды АВ (отрезка прямой Re р = s), и проходимый в положительном направлении, причем радиус R настолько велик, что все полюсы F(p) лежат внутри ГR.

Преобразование Лапласа

По теореме Коши о вычетах при любом R, удовлетворяющем указанному условию, будем иметь

Преобразование Лапласа

Второе слагаемое слева в равенстве (5) стремится к нулю при R → ∞. Это следует из леммы Жордана, если в ней заменить р на iz и учесть, что F(p) → 0 при Re p → + ∞. Переходя в равенстве (5) к пределу при R → ∞, мы получим слева

Преобразование Лапласа

а справа — сумму вычетов по всем полюсам функции F(p)

Преобразование Лапласа

Замечание:

Воспользовавшись формулой для вычисления вычетов, найдем, что

Преобразование Лапласа

Если все полюсы p1, р2,…, рn — простые, то

Преобразование Лапласа

и формула (6) принимает вид

Преобразование Лапласа

Пример:

Найти оригинал для функции

Преобразование Лапласа

Функция F(p) имеет простые полюсы р1 = i. p2 = -i. Пользуясь формулой (7), находим

Преобразование Лапласа

Теорема:

Пусть изображение F(p) является аналитической функцией в бесконечно удаленной точке р =, причем ее разложение в окрестности |р| > R бесконечно удаленной точки имеет вид

Преобразование Лапласа

Тогда оригиналом для F(p) будет функция f(t) η{t), где

Преобразование Лапласа

Пример:

Преобразование Лапласа

Приложения преобразования Лапласа (операционного исчисления)

Решение линейных дифференциальных уравнений с постоянными коэффициентами

Дано линейное дифференциальное уравнение второго порядка с постоянными коэффициентами
(1)

Преобразование Лапласа

(ао, а1, а2 — действительные числа) и требуется найти решение уравнения (1) для t > 0, удовлетворяющее начальным условиям

Преобразование Лапласа

Будем считать, что f(t) есть функция-оригинал. Тогда x(t) — также функция-оригинал. Пусть

f(t) = F(p), x(t) = X(p).

По теореме о дифференцировании оригинала имеем

Преобразование Лапласа

Перейдем в уравнении (1) от оригиналов к изображениям. Имеем

Преобразование Лапласа

Это уже не дифференциальное, а алгебраическое уравнение относительно изображения Х(р) искомой функции. Его называют операторным уравнением. Решая его, найдем операторное решение задачи (1)-(2) —

Преобразование Лапласа

Оригинал для Х(р) будет искомым решением х(t) задачи (1)-(2).

Общий случай линейного дифференциального уравнения n-го порядка (n ≥ 1) с постоянными коэффициентами от случая п = 2 принципиально ничем не отличается.

Приведем общую схему решения задачи Коши

Преобразование Лапласа

Здесь Преобразование Лапласаозначает применение к 1 преобразование Лапласа, Преобразование Лапласа — применение к III обратного преобразования Лапласа.

Пример:

Решить задачу Коши

Преобразование Лапласа

Здесь

Преобразование Лапласа

Операторное уравнение

Преобразование Лапласа

Откуда

Преобразование Лапласа

По теореме о дифференцировании изображения

Преобразование Лапласа

Поэтому

Преобразование Лапласа

Формула Дюамеля

В приложениях операционного исчисления к решению дифференциальных уравнений часто пользуются следствием из теоремы умножения, известным под названием формулы Дюамеля.

Пусть f(t) и φt) — функции-оригиналы, причем функция f(t) непрерывна на [0, + ∞), a φ(t) — непрерывно дифференцируема на [0,+ ∞). Тогда если f(t) = F(p), φ{t) = Ф(р),то по теореме умножения получаем, что

Преобразование Лапласа

Нетрудно проверить, что функция ψ(t) непрерывно дифференцируема на [0, + ∞), причем

Преобразование Лапласа

Отсюда, в силу правила дифференцирования оригиналов, учитывая, что ψ(0) = 0, получаем формулу Дюамеля
(4)

Преобразование Лапласа

Покажем применение этой формулы.

Пусть требуется решить линейное дифференциальное уравнение n-го порядка (n ≥ 1) с постоянными коэффициентами

Преобразование Лапласа

при нулевых начальных условиях

Преобразование Лапласа

(последнее ограничение несущественно: задачу с ненулевыми начальными условиями можно свести к задаче с нулевыми условиями заменой искомой функции).

Если известно решение x(t) дифференциального уравнения с той же левой частью и правой частью, равной единице,

L[x(t)] = l (7)

при нулевых начальных условиях

Преобразование Лапласа

то формула Дюамеля (4) позволяет сразу получить решение исходной задачи (5)-(6).

В самом деле, операторные уравнения, отвечающие задачам (5)-(6) и (7)-(8), имеют соответственно вид

Преобразование Лапласа

где F(p) — изображение функции f(t). Из (9) и (10) легко находи

Преобразование Лапласа

Отсюда по формуле Дюамеля

Преобразование Лапласа

или, поскольку x1(0) = 0, (11)

Преобразование Лапласа

Пример:

Решить задачу Коши

Преобразование Лапласа

Рассмотрим вспомогательную задачу

Преобразование Лапласа

Применяя операционный метод, находим

Преобразование Лапласа

По формуле (11) получаем решение x(t) исходной задачи:

Преобразование Лапласа

Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами

Интегрирование систем осуществляется так же, как и решение одного линейного дифференциального уравнения — путем перехода от системы дифференциальных уравнений к системе операторных уравнений. Решая последнюю как систему линейных алгебраических уравнений относительно изображений искомых функций, получаем операторное решение системы. Оригинал для негобудетрешением исходной системы дифференциальных уравнений.

Пример:

Найти решение линейной системы

Преобразование Лапласа

удовлетворяющее начальным условиям х(0) = у(0) = I.

Пусть х(<) = Х(р), y(t) = Y(p). Пользуясь свойством линейности преобразования Лапласа и теоремой о дифференцировании оригиналов, сводим исходную задачу Коши к операторной системе

Преобразование Лапласа

Решая последнюю относительно Х(р) и У(р), получаем

Преобразование Лапласа

Решение исходной задачи Коши

Преобразование Лапласа

Решение интегральных уравнений

Напомним, что интегральным уравнением называют уравнение, в котором неизвестная функция входит под знак интеграла. Мы рассмотрим лишь уравнение вида (12)

Преобразование Лапласа

называемое линейным интегральным уравнением Вольтерра второго рода с ядром K(t — т), зависящим от разности аргументов (уравнение типа свертки). Здесь φ(t) — искомая функция, f(t) и K(t) — заданные функции.

Пусть f(t) и K(t) есть функции-оригиналы, f(t) =’ F(p), K(t) =’ K(p).

Применяя к обеим частям (12) преобразование Лапласа и, пользуясь теоремой умножения, получим
(13)

Преобразование Лапласа

где Ф(р) = φ(t). Из (13)

Преобразование Лапласа

Оригинал для Ф(р) будет решением интегрального уравнения (12).

Пример:

Решить интегральное уравнение

Преобразование Лапласа

Применяя преобразование Лапласа к обеим частям (14), получим

Преобразование Лапласа

откуда

Преобразование Лапласа

Функция Преобразование Лапласа является решением уравнения (14) (подстановка Преобразование Лапласа в уравнение (14) обращает последнее в тождество по t).

Замечание:

Преобразование Лапласа может быть использовано также при решении некоторых задач для уравнений математической физики.

Таблица преобразования Лапласа

Преобразование Лапласа

Дополнение к преобразованию Лапласа

Преобразование Лапласа

Преобразование Лапласа

Преобразование Лапласа

Смотрите также:

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные и евклидовы пространства
  142. Линейные отображения
  143. Дифференциальные теоремы о среднем
  144. Теория устойчивости дифференциальных уравнений
  145. Функции комплексного переменного
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Примеры решений задач по операционному исчислению (преобразованию Лапласа)

Операционное (символическое) исчисление – это один из методов математического анализа, позволяющий в некоторых случаях свести исследование и решение дифференциальных, псевдодифференциальных, интегральных уравнений, к более простым алгебраическим задачам.

Изучая преобразование Лапласа, мы вводим оригинал функции $f(t)$ и ее изображение $F(p)$, находимое по формуле:

$$F(p) = int_0^infty f(t) e^<-pt>dt$$

Для быстроты и удобства решения задач составлена таблица изображений и оригиналов, которая, наряду с теоремами (линейности, подобия, смещения, запаздывания), свойствами и правилами дифференцирования и интегрирования изображения/оригинала, постоянно используется в решении примеров.

В этом разделе вы найдете готовые задания разного типа: восстановление оригинала или изображения функции, нахождение свертки функций, решение ДУ, систем ДУ или интегральных уравнений с помощью преобразования Лапласа и т.д.

Как найти изображение функции

Задача 1. Найти изображение данного оригинала, или оригинала, удовлетворяющего данному уравнению

Задача 2. Пользуясь определением, найти изображение функции $f(t)=3^t$.

Задача 3. Найти изображение функции: $int_0^t cos tau cdot e^<-3tau>dtau. $

Задача 4. Найти изображение оригинала $f(x)$ двумя способами:
1) Вычислив интеграл $F(p) = int_0^infty f(x) e^<-px>dx$;
2) Воспользовавшись таблице изображений и свойствами преобразования Лапласа.
Оригинал задается формулой (курсочно-линейная функция, см. файл).

Как найти оригинал функции

Задача 5. Найти оригинал изображения $F(p)$, где

Задача 6. Найти оригинал изображения

Задача 7. Найти оригинал для функции с помощью вычетов

Как решить ДУ (систему ДУ) операционным методом

Задача 8. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом

Задача 9. Найти решение задачи Коши методами операционного исчисления

Задача 10. Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

Задача 11. Методом операционного исчисления найти решение задачи Коши для ДУ 3-го порядка

Задача 12. Решите задачу Коши для системы дифференциальных уравнений с помощью преобразования Лапласа.

Задача 13. C помощью формулы Дюамеля найти решение уравнения

Задача 14. Решить систему ДУ с помощью преобразования Лапласа

Как решить интегральное уравнение

Задача 15. Методом операционного исчисления найти решение интегрального уравнения

$$ y(t)=cos t +int_0^t (t-tau)^2 y(tau)d tau. $$

Задача 16. Решить интегральное уравнение

$$ int_0^t ch (tau) x(t-tau)d tau = t. $$

Как найти свертку функций

Задача 17. Найти свертку функций $f(t)=1$ и $phi(t)=sin 5t$.

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Преобразование Лапласа с примерами решения и образцами выполнения

Ранее мы рассмотрели интегральное преобразование Фурье

с ядром K(t, ξ) = .

Преобразование Фурье неудобно тем, что должно быть выполнено условие абсолютной интегрируемости функции f(t) на всей оси t,

Преобразование Лапласа позволяет освободиться от этого ограничения.

Определение:

Функцией-оригиналом будем называть всякую комплекснозначную функцию f(t) действительного аргумента t, удовлетворяющую следующим условиям:

  1. f(t) непрерывна на всей оси t, кроме отдельных точек, в которых f(t) имеет разрыв 1-го рода, причем на каждом конечном интервале оси t таких точек может быть лишь конечное число;
  2. функция f(t) равна нулю при отрицательных значениях t, f(t) = 0 при t 0 и з такие, что для всех t

Ясно, что если неравенство (1) выполняется при некотором s = s1, то оно будет выполнятся при всяком s2 > s1.

Точная нижняя грань sо всех чисел s, so = infs, для которых выполняется неравенство (1), называется показателем роста функции f(t).

Замечание:

В общем случае неравенство

не имеет места, но справедлива оценка

где ε > 0 — любое. Так, функция f(t) = t, t ≥ 0, имеет показатель роста so =0. Для нее неравенство |t| ≤ М ∀t ≥ 0 не выполняется, но ∀ε > О, ∀t > 0 верно неравенство

Условие (1) гораздо менее ограничительное, чем условие (*).

Пример:

не удовлетворяет условию (*), но условие (1) выполнено при любом s ≥ 1 и М ≥ 1; показатель роста so = 1. Так что f(t) является функцией-оригиналом. С другой стороны, функция

не является функцией-оригиналом: она имеет бесконечный порядок роста, sо = +∞. Простейшей функцией-оригиналом является
так называемая единичная функция

Если некоторая функция φ(t) удовлетворяет условиям 1 и 3 определения 1, но не удовлетворяет условию 2, то произведение f(t) = φ(t) η(t) уже является функцией-оригиналом.

Для простоты записи мы будем, как правило, множитель η(t) опускать, условившись, что все функции, которые мы будем рассматривать, равны нулю для отрицательных t, так что если речь идет о какой-то функции f(t) например, о sin t, cos t, e t и т. д., то всегда подразумеваются следующие функции (рис. 2):

Определение:

Пусть f(t) есть функция-оригинал. Изображением функции f(t) по Лапласу называется функция F(p) комплексного переменного р = s + iσ, определяемая формулой

где интеграл берется по положительной полуоси t. Функцию F(p) называют также преобразованием Лапласа функции f(t); ядро преобразования K(t, р) = e -pt .
Тот факт, что функция f(x) имеет своим изображением F(p), будем записывать так:

Пример:

Найти изображение единичной функции η(t).

Функция является функцией-оригиналом с показателем роста s0 = 0. В силу формулы (2) изображением функции η(t) будет функция

Если р = s + iσ, то при s > 0 интеграл в правой части последнего равенства будет сходящимся, и мы получим

так что изображением функции η(t) будет функция 1/p. Как мы условились, будем писать, что η(t) = 1, и тогда полученный результат запишется так:

Теорема:

Для всякой функции-оригинала f(t) с показателем роста sо изображение F(p) определено в полуплоскости Re p = s > So и является в этой полуплоскости аналитической функцией (рис. 3).

Для доказательства существования изображения F(p) в указанной полуплоскости достаточно установить, что несобственный интеграл (2) абсолютно сходится при s > so. Используя (3), получаем

что и доказывает абсолютную сходимость интеграла (2). Одновременно мы получили оценку преобразования Лапласа F(p) в полуплоскости сходимости Re р = s > so

Дифференцируя выражение (2) формально под знаком интеграла по р, находим

Существование интеграла (5) устанавливается так же, как было установлено существование интеграла (2).

Применяя для F'(p) интегрирование по частям, получаем оценку

откуда следует абсолютная сходимость интеграла (5). (Внеинтегральное слагаемое — при t → + ∞ имеет предел, равный нулю). В любой полуплоскости Re р ≥ S1 > So интеграл (5) сходится равномерно относительно р, поскольку он мажорируется сходящимся интегралом

не зависящим от р. Следовательно, дифференцированиепо р законно и равенство (5) справедливо.

Поскольку производная F'(p) существует, преобразование Лапласа F(p) всюду в полуплоскости Re p = s > sо является аналитической функцией.

Из неравенства (4) вытекает

Следствие:

Если точка р стремится к бесконечности так, что Re р = s неограниченно возрастает, то

Пример:

Найдем еще изображение функции f(t) =, где а = а + iβ — любое комплексное число.

Показатель роста sо функции f(t) равен а.

Считая Rep = s> а, получим

При а = 0 вновь получаем формулу

Обратим внимание на то, что изображение функции является аналитической функцией аргумента р не только в полуплоскости Re p > а, но и во всех точках р, кроме точки р = а, где это изображение имеет простой полюс. В дальнейшем мы не раз встретимся с подобной ситуацией, когда изображение F(p) будет аналитической функцией во всей плоскости комплексного переменного р, за исключением изолированных особых точек. Противоречия с теоремой 1 нет. Последняя утверждает лишь, что в полуплоскости Re p > So функция F(p) не имеет особых точек: все они оказываются лежащими или левее прямой Re p = So, или на самой этой прямой.

Замечание:

В операционном исчислении иногда пользуются изображением функции f(t) по Хевисайду, определяемым равенством

и отличаюикмся от шоСражения по Лапласу множителем р.

Свойства преобразования Лапласа

В дальнейшем через f(t), φ(t), … будем обозначать функции-оригиналы, а через F(p), Ф(р), … — их изображения по Лапласу,

Из определения изображения следует, что если f(t) = 9 ∀t, то F(p) = 0.

Теорема единственности:

Теорема:

Справедливость утверждения вытекает из свойства линейности интеграла, определяющего изображение:

— показатели роста функций f(t) и φ(t) соответственно).

На основании этого свойства получаем

Аналогично находим, что
(4)

Теорема подобия:

Если f(t) — функция-оригинал и F(p) — ее изображение по Лапласу, то для любого постоянного а > 0

Полагая at = т, имеем

Пользуясь этой теоремой, из формул (5) и (6) получаем

Теорема:

О дифференцировании оригинала. Пусть f(t) является функцией-оригиналом с изображением F(p) и пусть — также функции-оригиналы, показатель роста функции (k = 0, 1,…, п). Тогда

Здесь под fk(0) (k = 0,1,… , п — 1) понимается правое предельное значение .

Пусть f(t) = F(p). Найдем изображение f'(t). Имеем

Интегрируя по частям, получаем

Внеинтегральное слагаемое в правой части (10) обращается в нуль при t → + ∞, т. к. при Re р = s > имеем

подстановка t = 0 дает -f(0).

Второе слагаемое справа в (10) равно pF(p). Таким образом, соотношение (10) принимаетвид

и формула (8) доказана. В частности, если f(0) = 0, то f'(t) = pF(p). Для отыскания изображения запишем

откуда, интегрируя п раз по частям, получим

Пример:

Пользуясь теоремой о дифференцировании оригинала, найти изображение функции f(t) = sin 2 t.

Пусть f(t) = F(p). Тогда

Но f(0) = О, а f'(0) = 2 sin t cos t = sin 2t = . Следовательно, = pF(p), откуда F(p) =

Теорема 5 устанавливает замечательное свойство интегрального преобразования Лапласа: оно (как и преобразование Фурье) переводит операцию дифференцирования в алгебраическую операцию умножения на р.

Формула включения. Если f(t) и f'(t) являются функциями-оригиналами, то (11)

В самом деле, f'(

Так как функция F(p) в полуплоскости Rep = s > so является аналитической, то ее можно дифференцировать по р. Имеем

Последнее как раз и означает, что

Пример:

Пользуясь теоремой 6, найти изображение функции .

Как известно, 1 = 1/p. Здесь f(t) = 1, F(p) = 1/p. Отсюда (1/p)’= (-t) • 1, или = t. Вновь применяя теорему 6, найдем

Теорема:

Интегрирование оригинала. Интегрирование оригинала сводится к делению изображения на р: если f(t) = F(p), то

Нетрудно проверить, что если f(t) есть функция-оригинал, то и φ(t) будет функцией-оригиналом, причем φ(0) = 0. Пусть φ(t) = Ф(р). В силу (14)

С другой стороны, f(t) =’ F(p), откуда F(p) = рФ(р), т.е. Ф(р) =.

Последнее равносильно доказываемому соотношению (13).

Пример:

Найти изображение функции

В данном случае f(t) = cos t, так что F(p) = . Поэтому

Теорема:

Интегрирование изображения. Если f(t) = F(p) и интеграл сходится, то он служит изображением функции

Предполагая, что путь интегрирования (р, ∞) лежит в полуплоскости Re p ≥ а> so, мы можем изменить порядок интегрирования (t > 0):

Последнее равенство означает, что является изображением функции .

Пример:

Найти изображение функции .

Как известно, sin t = .

Теорема запаздывания:

Положим ξ = t- τ. Тогда dt = d ξ. При t = τ получаем ξ = 0, при t = + ∞ имеем ξ = + ∞.

Поэтому соотношение (16) принимает вид

Пример:

Найти изображение функции f(t), заданной графически (рис. 5).

Запишем выражение для функции f(t) в следующем виде:

Это выражение можно получить так. Рассмотрим функцию f1(t) = η(t) для t ≥ 0 (рис. 6 а) и вычтем из нее функцию

Разность f(t) — h(t) будет равна единице для t ∈ [0,1) и -1 для t ≥ 1 (рис. 6 b). К полученной разности прибавим функцию

В результате получим функцию f(t) (рис. 6 в), так что

Отсюда, пользуясь теоремой запаздывания, найдем

Теорема смещения:

Теорема позволяет по известным изображениям функций находить изображения тех же функций, умноженных на показательную функцию , например,

Свертка функций. Теорема умножения

Пусть функции f(t) и φ(t) определены и непрерывны для всех t. Сверткой (f *φ)(t) этих функций называется новая функция от t, определяемая равенством

(если этот интеграл существует).

Для функций-оригиналов f(t) и φ(t) операция свертки всегда выполнима, причем
(17)

В самом деле, произведение функций-оригиналов f( τ ) φ(t — τ), как функция от τ, является финитной функцией, т.е. обращается в нуль вне некоторого конечного промежутка (в данном случае вне отрезка 0 ≤ τ ≤ t). Для финитных непрерывных функций операция свертки выполнима, и мы получаем формулу (17).

Нетрудно проверить, что операциясвертки коммутативна,

Теорема умножения:

Нетрудно проверить, что свертка (f * φ)(t) функций-оригиналов есть функция-оригинал с показателем роста s* = mах, где s1, s2

показатели роста функций f(t) и φ(t) соответственно. Найдем изображение свертки,

Воспользовавшись тем, что

Меняя порядок интегрирования в интеграле справа (при Re р = s > s* такая операция законна) и применяя теорему запаздывания, получим

Таким образом, из (18) и (19) находим

— умножению изображений отвечает свертывание оригиналов,

Пример:

Найти изображение функции

Функция ψ(t) есть свертка функций f(y) = t и φ(t) = sin t. В силу теоремы умножения

Задача:

Пусть функция f(t), периодическая с периодом Т, есть функция-оригинал. Показать, что ее изображение по Лапласу F[p) дается формулой

Отыскание оригинала по изображению

Задача ставится так: дана функция F(p), надо найти функцию f(t). изображением которой является F(p).

Сформулируем условия, достаточные для того, чтобы функция F(p) комплексного переменного р служила изображением.

Теорема:

Если аналитическая в полуплоскости Rep = s > so функция F(p)

1) стремится к нулю при |р| —» +в любой полуплоскости Re р = а > So равномерно относительно arg р;

сходится абсолютно, то F(p) является изображением некоторой функции-оригинала f

Задача:

Может ли функция F(p) = служить изображением некоторой функции-оригинала? Укажем некоторые способы отыскания оригинала по изображению.

Отыскание оригинала с помощью таблиц изображений

Прежде всего стоит привести функцию F(p) к более простому, «табличному» виду. Например, в случае, когда F(p) — дробно-рациональная функция аргумента р,ее разлагают на элементарные дроби и пользуются подходящими свойствами преобразования Лапласа.

Пример:

Найти оригинал для

Запишем функцию F(p) в виде:

Пользуясь теоремой смещения и свойством линейности преобразования Лапласа, получаем

Пример:

Найти оригинал для функции

Запишем F(p) в виде

Отсюда f(t) = t — sin t.

Использование теоремы обращения и следствий из нее

Теорема обращения:

где интеграл берется вдоль любой прямой Re p = s > So и понимается в смысле главного значения, т. е. как

Формула (1) называется формулой обращения преобразования Лапласа, или формулой Меллина. В самом деле, пусть, например, f(t) — кусочно-гладкая на каждом конечном отрезке [0, а] функция-оригинал-с показателем роста so. Рассмотрим функцию φ(t) = , где s>so — любое.

Функция φ(t) удовлетворяет условиям применимости интегральной формулы Фурье, и, следовательно, справедлива формула обращения преобразования Фурье,

(φ(t) ≡ 0 при t

откуда получаем формулу обращения преобразования Лапласа

Как следствие из теоремы обращения получаем теорему единственности.

Теорема:

Две непрерывные функции f(t) и φ(t), имеющие одно и то же изображение F(p), тождественны.
Непосредственное вычисление интеграла обращения (1) обычно затруднительно. Отыскание оригинала по изображению упрощается при некоторых дополнительных ограничениях на F(p).

Теорема:

Пусть изображение F(p) — дробно-рациональная функция с полюсами р1, p2….pп. Тогда оригиналом для F(p) будет функция f(t) η(t), где

Пусть изображение F(p) — дробно-рациональная функция, F(p) = , где А(р), В(р) — многочлены относительно р (взаимно простые), причем степень числителя А(р) меньше степени знаменателя В(р), т. к. для всякого изображения должно выполняться предельное соотношение

Пусть корни знаменателя В(р), являющиеся полюсами изображения F(p), суть р1, р2, …, рп, а их кратности равны r1, r2, …, rп соответственно.

Если число s, фигурирующее в формуле (1), взять большим всех Re pk (k = 1,2,…, п), то по формуле обращения, которая в этих условиях применима, получим

Рассмотрим замкнутый контур ГR (рис.7), состоящий из дуги CR окружности радиуса R с центром в начале координат и стягивающей ее хорды АВ (отрезка прямой Re р = s), и проходимый в положительном направлении, причем радиус R настолько велик, что все полюсы F(p) лежат внутри ГR.

По теореме Коши о вычетах при любом R, удовлетворяющем указанному условию, будем иметь

Второе слагаемое слева в равенстве (5) стремится к нулю при R → ∞. Это следует из леммы Жордана, если в ней заменить р на iz и учесть, что F(p) → 0 при Re p → + ∞. Переходя в равенстве (5) к пределу при R → ∞, мы получим слева

а справа — сумму вычетов по всем полюсам функции F(p)

Замечание:

Воспользовавшись формулой для вычисления вычетов, найдем, что

Если все полюсы p1, р2,…, рn — простые, то

и формула (6) принимает вид

Пример:

Найти оригинал для функции

Функция F(p) имеет простые полюсы р1 = i. p2 = -i. Пользуясь формулой (7), находим

Теорема:

Пусть изображение F(p) является аналитической функцией в бесконечно удаленной точке р =, причем ее разложение в окрестности |р| > R бесконечно удаленной точки имеет вид

Тогда оригиналом для F(p) будет функция f(t) η

Пример:

Приложения преобразования Лапласа (операционного исчисления)

Решение линейных дифференциальных уравнений с постоянными коэффициентами

Дано линейное дифференциальное уравнение второго порядка с постоянными коэффициентами
(1)

(ао, а1, а2 — действительные числа) и требуется найти решение уравнения (1) для t > 0, удовлетворяющее начальным условиям

Будем считать, что f(t) есть функция-оригинал. Тогда x(t) — также функция-оригинал. Пусть

f(t) = F(p), x(t) = X(p).

По теореме о дифференцировании оригинала имеем

Перейдем в уравнении (1) от оригиналов к изображениям. Имеем

Это уже не дифференциальное, а алгебраическое уравнение относительно изображения Х(р) искомой функции. Его называют операторным уравнением. Решая его, найдем операторное решение задачи (1)-(2) —

Оригинал для Х(р) будет искомым решением х(t) задачи (1)-(2).

Общий случай линейного дифференциального уравнения n-го порядка (n ≥ 1) с постоянными коэффициентами от случая п = 2 принципиально ничем не отличается.

Приведем общую схему решения задачи Коши

Здесь означает применение к 1 преобразование Лапласа, — применение к III обратного преобразования Лапласа.

Пример:

Решить задачу Коши

По теореме о дифференцировании изображения

Формула Дюамеля

В приложениях операционного исчисления к решению дифференциальных уравнений часто пользуются следствием из теоремы умножения, известным под названием формулы Дюамеля.

Пусть f(t) и φt) — функции-оригиналы, причем функция f(t) непрерывна на [0, + ∞), a φ(t) — непрерывно дифференцируема на [0,+ ∞). Тогда если f(t) = F(p), φ

Нетрудно проверить, что функция ψ(t) непрерывно дифференцируема на [0, + ∞), причем

Отсюда, в силу правила дифференцирования оригиналов, учитывая, что ψ(0) = 0, получаем формулу Дюамеля
(4)

Покажем применение этой формулы.

Пусть требуется решить линейное дифференциальное уравнение n-го порядка (n ≥ 1) с постоянными коэффициентами

при нулевых начальных условиях

(последнее ограничение несущественно: задачу с ненулевыми начальными условиями можно свести к задаче с нулевыми условиями заменой искомой функции).

Если известно решение x(t) дифференциального уравнения с той же левой частью и правой частью, равной единице,

L[x(t)] = l (7)

при нулевых начальных условиях

то формула Дюамеля (4) позволяет сразу получить решение исходной задачи (5)-(6).

В самом деле, операторные уравнения, отвечающие задачам (5)-(6) и (7)-(8), имеют соответственно вид

где F(p) — изображение функции f(t). Из (9) и (10) легко находи

Отсюда по формуле Дюамеля

или, поскольку x1(0) = 0, (11)

Пример:

Решить задачу Коши

Рассмотрим вспомогательную задачу

Применяя операционный метод, находим

По формуле (11) получаем решение x(t) исходной задачи:

Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами

Интегрирование систем осуществляется так же, как и решение одного линейного дифференциального уравнения — путем перехода от системы дифференциальных уравнений к системе операторных уравнений. Решая последнюю как систему линейных алгебраических уравнений относительно изображений искомых функций, получаем операторное решение системы. Оригинал для негобудетрешением исходной системы дифференциальных уравнений.

Пример:

Найти решение линейной системы

удовлетворяющее начальным условиям х(0) = у(0) = I.

Пусть х(

Решая последнюю относительно Х(р) и У(р), получаем

Решение исходной задачи Коши

Решение интегральных уравнений

Напомним, что интегральным уравнением называют уравнение, в котором неизвестная функция входит под знак интеграла. Мы рассмотрим лишь уравнение вида (12)

называемое линейным интегральным уравнением Вольтерра второго рода с ядром K(t — т), зависящим от разности аргументов (уравнение типа свертки). Здесь φ(t) — искомая функция, f(t) и K(t) — заданные функции.

Пусть f(t) и K(t) есть функции-оригиналы, f(t) =’ F(p), K(t) =’ K(p).

Применяя к обеим частям (12) преобразование Лапласа и, пользуясь теоремой умножения, получим
(13)

где Ф(р) = φ(t). Из (13)

Оригинал для Ф(р) будет решением интегрального уравнения (12).

Пример:

Решить интегральное уравнение

Применяя преобразование Лапласа к обеим частям (14), получим

Функция является решением уравнения (14) (подстановка в уравнение (14) обращает последнее в тождество по t).

Замечание:

Преобразование Лапласа может быть использовано также при решении некоторых задач для уравнений математической физики.

Таблица преобразования Лапласа

Дополнение к преобразованию Лапласа

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Применение преобразования Лапласа к решению
линейных дифференциальных уравнений и систем

1°. Общие сведения о преобразовании Лапласа: оригинал и изображение

Функцией-оригиналом называется комплекснозначная функция действительного переменного , удовлетворяющая следующим условиям:

2) функция интегрируема на любом конечном интервале оси ;

3) с возрастанием модуль функции растет не быстрее некоторой показательной функции, т. е. существуют числа 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAQBAMAAAC1onFLAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAgUHAYqEh5RGR0VIxELEI83NdAAABBklEQVQY02NgIAAcBRWA5EVBMVRhDjUwdfq/AZCc/kUBVXa6sC2IYjNfwMDANN8AVZKxguExiGYR/sDAwOcvAGK7XIDJsgcw7D8ApFlVfzAwCM0HG8yysAEqe16AQR+kgZ3xEwNbwHqIIMvKBAgDaJY+yLJklt8MfB2foXpYTCHS8gIM+SBZR6aPDFu4P8IsZDI9AJXtB8kGsX3leMD5Ce5aJuMDEFmwyQUMnzkTuD4gZIORZNkMGJYrQkyBmgx2PdDB+hOAzhBgsDdg2C8AleSGuqp9AsP+DQwMXQIMQL/GQ8ORZSnUR5y1DOFA3/7/zyDJsB5IooYG7yvXGoz4aoAzeYQYGADRdjuTYajQpgAAAABJRU5ErkJggg==” /> и такие, что для всех имеем

Изображением функции-оригинала по Лапласу называется функция комплексного переменного , определяемая равенством

при s_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAFIAAAATBAMAAADxBkdhAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAQcCBEFor0KCR6LBxSK9m8wAAAVlJREFUKM9jYCAaJBsbGx8jSqVj71LRWVuIUiqrwMB6iViVDHcT0AQNcaoUQBN0LsVh+3UGBlYlVSAnqUVaFarUASrPuKkFprJQ8JQKA0NUQmwAA0vBpZZciPnOxVClUQmzYSoXW1xyYGC7ycBewMB65DYD7waIOCtUaTHDDQY2EajtQMR8WVD6AgNj6lUGXgWoEawVYKWrpiYw9AglQFSyX2PgvGFsbMDAwHmFQXYDTKUGWOXZuwVsC1gVICqZ7jAw3wHLAl1gGwBVWAkOOja38IvMCowXoCpvMrDdYGAAKvGdwLAKotAV6szYCYzXgCovglQWMHBcZ1OYlcDWABRX4FmG6vVTCcwKTGCVsnfvKrDUWgQwX9oElJvb0ZSAGvJOmzUcOCFmgkP3IBCDDClngxjVipSEGBig7kQGLDexJg2g3zegCfFcxZ6KZoSjJ6FJShOwGwqMIwCRZlRL/vuSSQAAAABJRU5ErkJggg==” style=”vertical-align: middle;” />. Условие 3 обеспечивает существование интеграла (2).

Преобразование (2), ставящее в соответствие оригиналу его изображение , называется преобразованием Лапласа. При этом пишут .

Свойства преобразования Лапласа

Всюду в дальнейшем считаем, что

I. Свойство линейности. Для любых комплексных постоянных и

II. Теорема подобия. Для любого постоянного 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAAQBAMAAABNQoq8AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAcGe2BFbQSGBMfCxcU2qjNsAAADDSURBVBjTY2AgDYgvxCHB5WyyALtM9wW2HUhcDgs4006A8TGyyprjAlCWiwCjCpDNekkzACLQrA6RYnwkwKgHZK42DVFghkq5CcBlAhi4NjOwPSuGGtMJlmJ/xMCgV8DA9JSB6yXc8kg3IMEKkelTAOo2gMv4Iuypm8DA+DoArgVkGiPQbdpgGdY3DDAXQP3DAPKPiAFjkRMbiqsZ1iWwPweGkY+RafYxEL8IJsHA5jklAeSShQysIHtYEaHD2JbKwAAA/gYrl5lLD9QAAAAASUVORK5CYII=” />

III. Дифференцирование оригинала. Если есть оригинал, то

Обобщение: если раз непрерывно дифференцируема на и если есть оригинал, то

IV. Дифференцирование изображения равносильно умножению оригинала на “минус аргумент”, т.е.

V. Интегрирование оригинала сводится к делению изображения на

VI. Интегрирование изображения равносильно делению на оригинала:

(предполагаем, что интеграл сходится).

VII. Теорема запаздывания. Для любого положительного числа

VIII. Теорема смещения (умножение оригинала на показательную функцию). Для любого комплексного числа

IX. Теорема умножения (Э. Борель). Произведение двух изображений и также является изображением, причем

Интеграл в правой части (14) называется сверткой функций и и обозначается символом

Теорема XI утверждает, что умножение изображений равносильно свертыванию оригиналов , т.е.

Отыскание оригиналов дробно-рациональных изображений

Для нахождения оригинала по известному изображению , где есть правильная рациональная дробь, применяют следующие приемы.

1) Эту дробь разлагают на сумму простейших дробей и находят для каждой из них оригинал, пользуясь свойствами I–IX преобразования Лапласа.

2) Находят полюсы этой дроби и их кратности . Тогда оригиналом для будет функция

где сумма берется по всем полюсам функции .

В случае, если все полюсы функции простые, т.е. , последняя формула упрощается и принимает вид

Пример 1. Найти оригинал функции , если

Решение. Первый способ. Представим в виде суммы простейших дробей

и найдем неопределенные коэффициенты . Имеем

Полагая в последнем равенстве последовательно , получаем

Находя оригиналы для каждой из простейших дробей и пользуясь свойствам линейности, получаем

Второй способ. Найдем полюсы функции . Они совпадают с нулями знаменателя . Таким образом, изображение имеет четыре простых полюса . Пользуясь формулой (17), получаем оригинал

Пример 2. Найти оригинал , если .

Решение. Данная дробь имеет полюс кратности и полюс кратности . Пользуясь формулой (16), получаем оригинал

2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение дифференциального уравнения второго порядка с постоянными коэффициентами

Будем считать, что функция и решение вместе с его производньь ми до второго порядка включительно являются функциями-оригиналами. Пусть . По правилу дифференцирования оригиналов с учетом (2) имеем

Применяя к обеим частям (1) преобразование Лапласа и пользуясь свойством линейности преобразования, получаем операторное уравнение

Решая уравнение (20), найдем операторное решение

Находя оригинал для , получаем решение уравнения (18), удовлетворяющее начальным условиям (19).

Аналогично можно решить любое уравнение n-го порядка с постоянными коэффициентами и с начальными условиями при .

Пример 3. Решить дифференциальное уравнение операторным методом

Решение. Пусть , тогда по правилу дифференцирования оригинала имеем

Известно, что поэтому, переходя отданной задачи (21)–(22) к операторному уравнению, будем иметь

Легко видеть, что функция удовлетворяет данному уравнению и начальному условию задачи.

Пример 4. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

Отсюда находим операторное решение

Разлагаем правую часть на элементарные дроби:

Переходя к оригиналам, получаем искомое решение .

Пример 5. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

и, следовательно, операторное решение

Разложим правую часть на элементарные дроби:

Переходя к оригиналам, получим решение поставленной задачи

3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение системы двух уравнений с постоянными коэффициентами

удовлетворяющее начальным условиям

Будем предполагать, что функции , а также и являются функциями-оригиналами.

По правилу дифференцирования оригиналов с учетом (24) имеем

Применяя к обеим частям каждого из уравнений системы (23) преобразование Лапласа, получим операторную систему

Эта система является линейной алгебраической системой двух уравнений с двумя неизвестными и . Решая ее, мы найдем и , а затем, переходя к оригиналам, получим решение системы (23), удовлетворяющее начальным условиям (24). Аналогично решаются линейные системы вида

Пример 6. Найти решение системы дифференциальных уравнений операторным методом

удовлетворяющее начальному условию .

Решение. Так как и , то операторная система будет иметь вид

Решая систему, получаем

Разлагаем дроби, стоящие в правых частях, на элементарные:

Переходя к оригиналам, получим искомое решение

[spoiler title=”источники:”]

http://lfirmal.com/preobrazovanie-laplasa/

http://mathhelpplanet.com/static.php?p=reshenie-du-i-sistem-operatornym-metodom

[/spoiler]

Добавить комментарий