Как найти связи в строительстве

В связи с изменениями производственной программы Саратовского резервуарного завода выпуск данного оборудования завершен.
Актуальный список товаров доступен в разделе “Продукция”.

Металлический каркас состоит из многих несущих элементов (ферма, рама, колонны, балки, ригели), которые необходимо «связывать» друг с другом для сохранения устойчивости сжатых элементов, жесткости и геометрической неизменяемости конструкции всего здания. Для соединения конструктивных элементов каркаса служат металлические связи. Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам.

Саратовский резервуарный завод производит связи из горячекатаных сортовых уголков, гнутых уголков, гнутых профильных труб, горячекатаных профильных труб, круглых труб, горячекатаные и гнутых швеллеров и двутавр. Общая масса используемого металла должна составлять приблизительно 10% от общей массы металлоконструкции здания.

Основными элементами, которые соединяют связи, являются фермы и колонны.

Металлические связи колонн

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков – крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.

Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.

Схема вертикальных связей между колоннами

Чертеж металлических связей между колоннами

Металлические связи ферм

Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.

Горизонтальные связи ферм по нижним и верхним поясам

Схема горизонтальных связей по верхним и нижним поясам

Горизонтальные связи ферм бывают также продольными и поперечными.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.

Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.

Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.

Вертикальные связи колонн и ферм

Схема вертикальных связей колонн и ферм

Конструкции металлических связей стального каркаса

По конструкции металлические связи также бывают:

  • перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине

  • угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов

  • портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности

Основным типом соединения металлических связей – это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.

Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.

Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.

Как заказать изготовление металлических связей на Саратовском резервуарном заводе?

Для расчета стоимости металлоконструкций нашего производства, Вы можете:

  • связаться с нами по телефону 8-800-555-9480
  • написать на электронную почту   технические требования к металлоконструкциям
  • воспользоваться формой “Запрос цены”, указать контактную информацию, и наш специалист свяжется с Вами

Специалисты Завода предлагают комплексные услуги:

  • инженерные изыскания на объекте эксплуатации
  • проектирование объектов нефтегазового комплекса
  • производство и монтаж различных металлоконструкций
Автор статьи

Ксения Калинина

Эксперт по предмету «Архитектура и строительство»

Задать вопрос автору статьи

Связи в каркасе

При проектировании каркаса важно обеспечить геометрическую неизменяемость системы. Достигается неизменяемость введением связей.

Работу каркасе легко можно проиллюстрировать даже на небольшом макете, собранном из спичек. Склеим поперечные рамы и установим их в пенопластовое основание, между спичечными рамами положим условные спичечные продольные подкрановые балки, которые свяжут наш каркас в единое целое. Перед нами модель каркаса будущего здания. Мы можем прилагать вертикальные усилия в узлах, точечно и в виде распределенной нагрузки, может применять продольные и поперечные усилия и наблюдать как будет реагировать система.

При приложении достаточно большой продольной нагрузки к одной из крайних рам, можно наблюдать, как каркас начнет терять заданные геометрические характеристики, расстояние между поперечными рамами сократится, и вся система может потерять устойчивость. Эта иллюстрация того, насколько важно учитывать системность работы всех элементов и направление работы. Поперечные рамы жесткие и прекрасно обеспечивают неизменяемость в поперечном направлении, но без диска покрытия и достаточного количества продольных связей система геометрически изменяема. На нашем примере небольшое усилие сместило поперечные рамы друг к другу, в реальной жизни такое смещение может вызвать даже ветер.

Но все элементы системы находятся на своих местах, нам не требуются дополнительные колонны, фермы или балки, каждый элемент выполняет свою работу. Чтобы обеспечить неизменяемость мы вводим систему дополнительные элементы, которые называются связи.

Связи нужны для того чтобы:

  • обеспечить геометрическую неизменяемость каркаса;
  • обеспечить необходимую несущую способность каркаса в продольном направлении;
  • воспринимать нагрузки, приходящиеся в торец здания и от торможения моста крана;
  • повысить устойчивость колонн.

Схема несущих элементов каркаса. Между колоннами выполнена связь. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Схема несущих элементов каркаса. Между колоннами выполнена связь. Автор24 — интернет-биржа студенческих работ

Связи располагают между колоннами, но не в каждом шаге. Как правило, размещают до трех связей, обеспечивающих жесткость и неизменяемость во всех направлениях.

«Поперечные и продольные горизонтальные связи» 👇

Определение 1

Портальная связь – это связь, которая имеет решетку в форме портала, что с одной стороны не препятствует ее задачам, а с другой оставляет возможность для перемещения между блоками.

Продольные и поперечные связи

Связи располагаются по всему температурному отсеку здания так, чтобы достичь неизменяемости. Связи представляют собой горизонтальные распорки и решетку, которые крепятся к колоннам. Решетка как правило выполняется в форме креста. Гибкие элементы решетки крепятся шарнирно, оставляя возможность для работы на растяжение. Решетка подбирается такой, чтобы обеспечить удобство монтажа к запроектированным колоннам. Если между колоннами большой шаг, то в нижней части выполняют диск в виде решетчатой рамы, в верхней часты выполняют подстропильную ферму.
При выборе места расположения колонн учитывают следующие факторы:

  • связи в торцах зданий приводят к возникновению значительных температурных усилий;
  • в одном температурном блоке связь ставится в одной панели;
  • в двух температурных отсеках расстояние между связами определяется согласно нормативам в зависимости от наличия отопления;
  • чтобы обеспечить удобство прохода в среднем ряду колонн связи как правило выполняют портальными.

Предельное расстояние между торцом блока и вертикальной связью в отпяливаемом здании составляет 90 метров, а между осями в одном блоке должно быть не менее 50 метров. В неотапливаемых зданиях и горячих цехах связь устанавливается на расстоянии в 75 метров от торца и на расстоянии 50 метров от другой связи в блоке.

Пример размещения связей между колоннами. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Пример размещения связей между колоннами. Автор24 — интернет-биржа студенческих работ

По форме связи бывают трех типов, а именно, треугольные, крестовые, портальные. Как правило, крестовые используются при шаге в 6 метров, а портальные при шаге в 12 метров.

Связевым блоком называется система из двух колонн, соединенная связями. Верхний ярус связевого блока находится выше подкрановых балок, а нижний после них.
В диске покрытия также выполняется система связей. Она работает на общую пространственную жесткость каркаса. Связи по покрытию состоят из горизонтальных продольных и поперечных поясов ферм, связей по нижним и верхним поясам ферм, распорок, вертикальных связей по оси колонны и в местах крепления горизонтальных связей. Вертикальные и горизонтальные связи размещают в одних осях.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Правительство Шпидлы

Правительство Владимира Шпидлы (чеш. Vláda Vladimíra Špidly) — 5-ое коалиционное правительство Чешской Республики

Селета

Селета (каз. Сілетi) — бывшее село в Аккольском районе Акмолинской области Казахстана. Входило в состав Минского

Арника

Арника, или Баранец (лат. Árnica) — род многолетних трав семейства Астровые, или Сложноцветные (Asteraceae).

Свакопмунд

Свакопмунд (англ. Swakopmund, нем. Swakopmund, африк. Swakopmund, гереро: Otjozondjii, нама: Tsoakhaub) — город в

Produce 101 (1 сезон)

Produce 101 (кор. 프로듀스 101) — южнокорейское реалити-шоу на выживание 2016 года от телеканала Mnet. Это был

Госвияни, Николь Романовна

Николь Романовна Госвияни (род. 9 сентября 1996 года в Санкт-Петербурге, Россия) — итальянская, ранее российская

История и особенности эля

Эль отличается своим сладким вкусом и пользуется популярностью у любителей пенных напитков. Продукт не проходит

» Каркасы зданий » Связи для обеспечения общей устойчивости и неизменяемости каркаса

Связи для обеспечения общей устойчивости и неизменяемости каркаса


Связи этого типа включают горизонтальные связи по покрытию (продольные и поперечные) и вертикальные связи по крайним и средним стойкам рам (рис. 1 а).
В большинстве случаев, местоположение горизонтальных и вертикальных связей и общие принципы их конструирования назначаются в соответствии с действующими нормами и зависят от длины здания, исполнения ограждающих конструкций (теплое или холодное здание), климатического района и т.д. В зданиях с рамами полигонального очертания нет четкого разделения связей на горизонтальные и вертикальные, но общие принципы их проектирования сохраняются такими же.
Вместе с тем, проектирование связей для обеспечения общей устойчивости и неизменяемости зданий с рамными конструкциями переменного сечения имеет некоторые особенности.
В отличие от связевых систем, применяемых в каркасах с решетчатыми ригелями, связи в зданиях с рамными сплошностенчатыми конструкциями устраивают обычно только в уровне верхнего пояса ригеля и наружного пояса крайних стоек (рис. 1 б). Это связано с относительно небольшой высотой сечения элементов рам, составляющей от1/20 до 1/60 от величины пролета, в отличие от 1/8-1/12 для решетчатых ферм; удобством монтажа и совмещением функций прогонов кровли и связей. Раскрепление нижней полки ригеля рамы и внутренней полки крайних стоек от закручивания и потери устойчивости при этом осуществляется специальными связями.

Связи для обеспечения общей устойчивости и неизменяемости каркаса

Основными элементами связей для обеспечения общей устойчивости и неизменяемости каркаса являются гибкие предварительно напряженные крестовые связи, распорки и диафрагмы (рис. 2 а). Наиболее часто применяются связи из круглой углеродистой или низколегированной стали диаметром 16-30 мм. Применение связей большего диаметра связано со сложностями их монтажа и значительным провисанием под собственным весом. Расчетное сопротивление связей принимается согласно как для растянутых болтовых соединений с коэффициентом условия работы для затяжек, подвесок γс = 0,9.

Связи для обеспечения общей устойчивости и неизменяемости каркаса

Предварительное натяжение гибких связей сопоставимо с усилиями в них от внешней нагрузки, и приводит к появлению дополнительных усилий в конструкциях рам и связевых блоков (распорок, диафрагм и т.д.), которые должны быть учтены при расчете.
Для распорок обычно используются элементы замкнутого сечения из круглых или прямоугольных труб с монтажными болтовыми соединениями (рис. 2 б). Некоторые конструктивные решения узлов распорок приведены на рис. 2 в. Несущая способность узлов крепления определяется согласно работе. При конструировании узлов тонкостенных распорок (толщина стенок 2,5-4 мм) рекомендуется избегать сложных в производстве прорезных ребер. Для повышения несущей способности узлов таких распорок, более эффективным является применение опорных фасонок в виде гнутых швеллера, уголка или Z-профиля (см. рис. 2 в).

Связи для обеспечения общей устойчивости и неизменяемости каркаса

В узлах жесткого сопряжения ригеля с крайними стойками, а также в местах опирания ригеля на средние колонны распорки связевого блока обычно объединяются со связями, предотвращающими закручивание узла и потерю устойчивости рамных конструкций по изгибно—крутильной форме (рис. 3 а). При этом образуются диафрагмы, соединяющие пояса соседних рам и препятствующие их повороту. Таким образом, на диафрагмы одновременно действуют нагрузки, передающиеся со связевого блока и поперечные нагрузки с раскрепляемых рам. Эти нагрузки могут действовать в одном или различных направлениях, поэтому при расчетах диафрагм следует использовать две расчетных схемы (рис. 3 б). При расчете поясов диафрагм принимается, что узлы рам поворачиваются в разные стороны, а при расчете решетки — в одну сторону.
Обычно диафрагмы выполняются в виде решетчатых конструкций. При малых расстояниях между поясами вместо решетки может использоваться сплошной гладкий или гофрированный лист. При большой высоте раскрепляемых ригелей применяются диафрагмы с раздельными элементами поясов и решетки. В ряде случаев диафрагмы выполняются в виде жестких рам. Различные схемы диафрагм представлены на рис. 3 в.
Для сокращения расхода стали, сечение связей может меняться в пределах связевого блока в зависимости от величины действующих усилий. При больших усилиях, для вертикальных связей возможно применение спаренных ветвей из круглой стали или их замена на обычные жесткие связи (рис. 4 б, в, г). Жесткие связи применяются и при повышенных требованиях к деформативности здания. При необходимости устройства проходов или проездов в зоне связевых блоков, устанавливаются портальные решетчатые или рамные связи (рис. 4 д, е). Проектирование рамных связей должно производится с учетом обеспечения их несущей способности по прочности и деформативности.

Связи для обеспечения общей устойчивости и неизменяемости каркаса

Сосредоточение горизонтальных и вертикальных связей в пределах малого числа связевых блоков в протяженных зданиях приводит к значительному дополнительному нагружению ригелей и стоек усилиями, передающимися со связей и, следовательно, к увеличению сечения этих рам или к необходимости применения специальных усиленных рам, входящих в состав связевых блоков. Также, для передачи горизонтальных нагрузок от торцов здания к связевому блоку требуются дополнительные конструкции большой протяженности (распорки, растяжки и т.д.) или усиление прогонов покрытия или стен. В этих случаях бывает рациональным установка дополнительных блоков горизонтальных и вертикальных связей, что позволяет избежать перечисленных выше проблем. Особенно эффективны связевые блоки, устраиваемые в уровне покрытия по торцам здания. Торцевые связевые блоки могут устраиваться как для обычных зданий в первом шаге каркаса, либо во втором (см. рис. 1 в и 1 г). Последний вариант установки торцевых горизонтальных связей часто применяется в каркасах с несущим торцевым фахверком (без торцевой рамы). В этом случае связи крепятся к рамам так же, как и в средней части здания, что позволяет унифицировать элементы и узлы конструкций, входящие в связевой блок. Размещении связевого блока в первом шаге приводит к усложнению узлов крепления связей к конструкциям торцевого фахверка и изменению размеров связей и распорок.
Горизонтальные связевые блоки, расположенные в торцах, позволяют сразу воспринять ветровые нагрузки и передать их через систему распорок и диафрагм, проходящих вдоль карниза рамы по всему зданию на вертикальные связи и фундаменты. Карнизные распорки и диафрагмы служат для предотвращения закручивания узла сопряжения ригеля и стойки рамы и присутствуют практически во всех каркасах и поэтому их использование для передачи ветровых нагрузок не приводит к дополнительным расходам.

Связи для обеспечения общей устойчивости и неизменяемости каркаса

При больших ветровых нагрузках, дополнительные усилия от ветра могут привести к чрезмерному увеличению сечения карнизных распорок. Для предотвращения этого, фирмой УНИКОН на одном из объектов была использована схема вертикальных связей, позволяющая одновременно уменьшить нагрузки на вертикальные связи основного связевого блока и, практически до нуля уменьшить дополнительные нагрузки от ветра на карнизные распорки. Система вертикальных связей была дополнена диагональными предварительно напряженными связями, расположенными в крайних шагах здания (рис. 5 а). Эти диагональные связи воспринимают ветровые нагрузки с наветренного торца и передают их непосредственно на фундаменты, разгружая карнизные распорки, расположенные между торцом и вертикальными связями основного связевого блока.
При действии на торец пассивной ветровой нагрузки (отcoca), гибкая подветренная связь выключается из работы и усилия от ветра передаются в виде растягивающей нагрузки через распорки и прогоны на основной блок связей (рис. 5 б). Установка гибких диагональных предварительно напряженных связей в крайних шагах каркаса не противоречит нормативным правилам расстановки вертикальных связей по длине здания. Действительно, при температурном расширении продольных конструкций каркаса (карнизных распорок, подкрановых балок и т.д.) гибкие связи не препятствуют деформациям каркаса, как это показано на рис. 5 в. При температурном сжатии продольных конструкций каркаса, эти связи оказывают малое влияние на величину дополнительных усилий в конструкциях каркаса из-за небольшой продольной жесткости.
Наличие торцевых блоков горизонтальных связей покрытия позволяет решить и еще одну важную задачу — раскрепление промежуточных рам при помощи прогонов покрытия без применения дополнительных связевых элементов.

Связи для обеспечения общей устойчивости и неизменяемости каркаса

Если имеются только средние связевые блоки, то для раскрепления ригелей рам, расположенных по обеим сторонам этих блоков, обычно применяются специальные жесткие распорки, воспринимающие усилия растяжения или сжатия, возникающие в сжатых поясах рам от условных поперечных сил Qfic (рис. 6 а). Использование для этих целей прогонов кровли не всегда возможно, так как легкие прогоны из-за потери устойчивости практически не воспринимают дополнительные сжимающие усилия. Наличие дополнительных торцевых связевых блоков покрытия позволяет использовать эти прогоны как растяжки, раскрепляющие рамы и закрепленные в торцевых блоках связей покрытия. К этим же блокам можно крепить и растяжки, раскрепляющие нижние пояса рам. В зоне торцевых горизонтальных рам растяжки крепятся либо к специальным диафрагмам, расположенным между рамами (рис. 6 б) и выполняющим роль распорок в связевом блоке, либо непосредственно к распоркам этого блока (рис. 6 в). Последний вариант удобно применять при наличии несущего торцевого фахверка и размещении связевого блока в последнем шаге каркаса.
К специальным конструктивным решениям горизонтальных связей покрытия можно отнести такие, когда связи располагаются по всей поверхности покрытия, как это показано на рис. 7 а. Эти связи, из-за своей многочисленности, имеют весьма малые сечения и могут быть функционально совмещены со связями, раскрепляющими прогоны покрытия.

Связи для обеспечения общей устойчивости и неизменяемости каркаса

В некоторой степени это напоминает устройство жесткого связевого диска за счет профлиста покрытия, который здесь не рассматривается.
Противоположным решением является устройство горизонтальных связей в виде криволинейных поясов, пересекающих все покрытие (рис. 7 б).
Вопрос целесообразности и экономичности тех или иных решений горизонтальных связей решается отдельно в каждом конкретном случае.

Добавлено Serxio 8-02-2016, 03:13 Просмотров: 9 527

Для придания цеху пространственной жесткости, а также для обеспечения устойчивости элементов рам устраиваются связи, располагаемые между рамами.

Различают связи: горизонтальные — в плоскости верхних и нижних поясов ферм — и вертикальные — как между фермами, так и между колоннами.

Назначение горизонтальных связей по верхним поясам ферм было рассмотрено в разделе Подбор сечений элементов ферм. Эти связи обеспечивают устойчивость верхнего пояса ферм из их плоскости. На фигуре показан пример расположения связей по верхним поясам ферм в покрытии с прогонами.


Связи по верхним поясам ферм

Связи по верхним поясам ферм


В беспрогонных покрытиях, в которых крупнопанельные железобетонные плиты привариваются к верхним поясам ферм, жесткость кровли настолько велика, что, казалось бы, нет необходимости в постановке связей.

Учитывая, однако, необходимость обеспечения надлежащей жесткости конструкций на время монтажа плит, а также и то обстоятельство, что нагрузка от плит не приложена строго вертикально по оси ферм и потому может вызвать кручение, считают необходимым ставить связи по верхним поясам ферм по краям температурных отсеков. Столь же необходимы распорки у конька ферм, у опор и под фонарными стойками.

Эти распорки служат для завязки верхних поясов всех промежуточных ферм. Гибкость верхнего пояса между раскрепленными на время монтажа плит точками не должна превышать 200 — 220. Связи по верхним поясам стропильных ферм крепятся к поясам черными болтами.


Крепление связей к верхнему поясу фермы

Крепление связей к верхнему поясу фермы


При изготовлении связей важно точно приварить фасонку к уголку, обеспечив соответствующий угол наклона, так как при помощи связей частично контролируется правильность геометрической схемы смонтированного сооружения.

Поэтому приварку фасонок к элементам связей рекомендуется производить в кондукторах. На фигуре показан простейший тип кондуктора в виде швеллера, на котором точно пробиты отверстия под необходимым углом.


Связи по нижним поясам ферм и между колоннами

Связи по нижним поясам ферм и между колоннами


Горизонтальные связи по нижним поясам ферм располагаются как поперек цеха (поперечные связи), так и вдоль цеха (продольные связи). Поперечные связи, расположенные у торцов цеха, используются в качестве ветровых ферм.

На них опираются стойки каркаса торцовой стены цеха, воспринимающего давление ветра. Поясами ветровой фермы служат нижние пояса стропильных ферм. Такие же поперечные связи по нижним поясам ферм устраивают у температурных швов (в целях образования жесткого диска).

При большой длине температурного блока поперечные связи ставятся также в средней части блока с тем, чтобы расстояние между поперечными связями не превышало 50 — 60 м. Это приходится делать потому, что соединение связей часто производится на черных болтах, допускающих большие сдвиги, вследствие чего влияние связей ре распространяется на большие расстояния.


Поперечная деформация каркаса

Поперечная деформация каркаса

Поперечная деформация каркаса от местной (крановой) нагрузки: а — при
отсутствии продольных связей; б — при наличии продольных связей.


Горизонтальные продольные связи по нижним поясам ферм имеют своим главным назначением вовлечение в пространственную работу соседних рам при действии местных, например крановых, нагрузок; тем самым уменьшаются деформации рамы и увеличивается поперечная жесткость цеха.

Особо важное значение приобретают продольные связи при тяжелых кранах и в цехах с тяжелым режимом работы, а также при легких и нежестких кровлях (из волнистой стали, асбестоцементных листов и т. п.). В зданиях с тяжелым режимом работы связи следует приваривать к нижнему поясу.


Крепление связей к нижнему поясу ферм

Крепление связей к нижнему поясу ферм


Для связевых ферм, как правило, принимают крестовую решетку, считая, что при воздействии нагрузок с какой-либо одной стороны работает только система вытянутых раскосов, а другая часть раскосов (сжатых) выключается из работы. Такое предположение справедливо, если раскосы гибкие (λ > 200).

Поэтому элементы крестовых связей, как правило, проектируют из одиночных уголков. При проверке гибкости перекрестных растянутых раскосов связей из одиночных уголков радиус инерции уголка принимается относительно оси, параллельной полке.

При треугольной решетке связевых ферм во всех раскосах могут возникнуть сжимающие усилия, а потому их необходимо проектировать с гибкостью λ < 200, что менее экономично.

В пролетах более 18 м из-за ограничения боковой гибкости нижних поясов ферм во многих случаях приходится ставить дополнительные распорки по середине пролета. Этим устраняется дрожание ферм при работе кранов.

Вертикальные связи между фермами обычно устанавливают у опор ферм (между колоннами) и в середине пролета (либо под стойками фонаря), располагая их по длине цеха в жестких панелях, т. е. там, где расположены поперечные связи по поясам ферм.

Основное назначение вертикальных связей заключается в приведении в жесткое неизменяемое состояние пространственной конструкции, состоящей из двух стропильных ферм и поперечных связей по верхнему и нижнему поясам ферм.

В цехах с кранами легкого, а иногда и среднего, режима работы при наличии жесткой кровли из крупнопанельных железобетонных плит, приваренных к стропильным фермам, система вертикальных связей может заменить систему поперечных связей по поясам ферм (кроме торцовых ветровых ферм).

При этом промежуточные фермы должны быть связаны распорками.

Конструкция вертикальных связей принимается в виде креста из одиночных уголков с обязательным горизонтальным замыкающим элементом или в виде фермочки с треугольной решеткой. Крепление вертикальной связи к стропильной ферме осуществляется на черных болтах.


Крепление вертикальных связей к стропильной ферме

Крепление вертикальных связей к стропильной ферме


Вследствие незначительности усилий, действующих в элементах связей покрытия, при конструировании их креплений может быть допущено незначительное отступление от центрирования.

Вертикальные связи между колоннами устанавливают вдоль цеха для обеспечения устойчивости цеха в продольном направлении, а также для восприятия сил продольного торможения и давления ветра на торец здания.

Если в поперечном направлении рамы, защемленные в фундаментах, являются неизменяемой конструкцией, то в продольном направлении ряд установленных рам, шарнирно связанных подкрановыми балками, представляет собой изменяемую систему, которая при отсутствии вертикальных связей между колоннами может сложиться (опоры колонн в продольном направлении надо считать шарнирными).

Поэтому сжатые элементы связей между колоннами (ниже подкрановых балок), а в зданиях с тяжелым режимом работы и растянутые элементы этих связей, имеющих существенное значение для устойчивости всего сооружения в целом, делают достаточно жесткими, чтобы избежать их дрожания. С этой целью ограничивают предельную гибкость таких элементов значением λ = 150.

Для прочих растянутых элементов связей между колоннами гибкость не должна превышать λ = 300, а сжатых λ = 200. Элементы крестовых связей между колоннами обычно делают из уголков. Особо мощные крестовые связи делают из парных швеллеров, соединенных решеткой или планками.


Конструкция крепления вертикальных связей к колонне

Конструкция крепления вертикальных связей к колонне


При определении гибкости пересекающихся стержней (в крестовой решетке) расчетная длина их в плоскости решетки принимается от центра узла до точки их пересечения. Расчетная длина стержней из плоскости фермы принимается по таблице.

Расчетная длина из плоскости фермы стержней перекрестной решетки

Характеристика узла пересечения стержней решетки При растяжении в поддерживающем стержне При неработающем поддерживающем стержне При сжатии в поддерживающем стержне
Оба стержня не прерываются 0,5 l 0,7 l l
Поддерживающий стержень прерывается и перекрывается фасонкой 0,7 l l l

Расчет крестовых связей обычно производится в предположении, что работают только растянутые элементы (на полную нагрузку). В случае, если учитывается работа элементов крестовой решетки также и на сжатие, нагрузка распределяется между раскосами поровну.

Для обеспечения свободы температурных продольных деформаций каркаса вертикальные связи между колоннами лучше всего располагать в середине температурного блока или вблизи от нее.

Но так как монтаж сооружения обычно начинается с краев, то желательно первые две колонны связать в раму так, чтобы они были устойчивы. Это заставляет конструировать связи так, как показано на фигуре Связи по нижним поясам ферм и между колоннами б, т. е. в крайних панелях устанавливать связи только в пределах верхней части колонн.

Такие связи допускают деформацию изгиба нижних частей колонн при изменениях температуры. В то же время один из раскосов, работая от ветровой нагрузки на растяжение, передает эти усилия на подкрановую балку.

Дальнейший путь ветровых усилий показан на фигуре Связи по нижним поясам ферм и между колоннами б; они передаются по жестким подкрановым балкам до средних связей и по ним спускаются в землю. Желательно выбирать такую схему связей, чтобы они примыкали к колоннам под углом, близким к 4 — 5°. В противном случае получаются слишком вытянутые тяжелые фасонки.


Рамные вертикальные связи

Рамные вертикальные связи

Рамные вертикальные связи: а — при шаге колонн 6 м;
б — при шаге колонн не меньше 12 м.


В случае, если по технологическим условиям нельзя полностью занять под связи ни одного пролета, а также при больших шагах колонн устраивают рамные связи; при этом считают, что от односторонней нагрузки работают на растяжение связи одного угла, а элементы другого угла из-за большой гибкости (λ = 200 / 250) выключаются из работы. При такой схеме работы конструкции мы получаем «трехшарнирную арку».

Вертикальные связи устанавливаются ниже подкрановой балки в плоскости подкрановой ветви колонны, а выше подкрановой балки — по оси сечения колонны. В цехах с тяжелым режимом работы связи ниже подкрановых балок прикрепляются к колоннам на заклепках (преимущественно) или на сварке.

«Проектирование стальных конструкций»,
К.К.Муханов

Связи в расчетных схемах инженерных конструкций строительной механики, которые соединяют друг с другом отдельные ее части (стержни, пластины и т.д.) называются внутренними.

Виды внутренних связей:

– шарнирные (лишают двух степеней свободы) (рис. 1, а);

– шарнирно-подвижные (лишают одной степени свободы) (рис. 1, б).

Внутренние связи

Рисунок 1. Внутренние связи

Взаимодействие между рассматриваемым сооружением и другими инженерными конструкциями или фундаментом в расчетных схемах учитывается с помощью внешних связей – опор.

  Виды внешних связей (опор):

– шарнирно-подвижная;

– шарнирно-неподвижная;

– жесткое защемление (заделка).

Подробнее: Внутренние и внешние (опоры) связи

Добавить комментарий