Как найти t критическую по стьюденту

Предположим, что надо сравнить между собой результаты выполнения тестов на внимание в двух группах. Чтобы узнать различаются ли группы между собой необходимо вычислить t-критерий Стьюдента для независимых выборок.

1. Внесем данные по группам в таблицу:

Результаты группы №1 (сек.) Результаты группы №2 (сек.)
1 30 46
2 45 49
3 41 52
4 38 55
5 34 56
6 36 40
7 31 47
8 30 51
9 49 58
10 50 46
11 51 46
12 46 56
13 41 53
14 37 57
15 36 44
16 34 42
17 33 40
18 49 58
19 32 54
20 46 53
21 41 51
22 44 57
23 38 56
24 50 44
25 37 42
26 39 49
27 40 50
28 46 55
29 42 43

Шаг 2. Проверить распределения на нормальность.

Шаг 3. Рассчитать среднее арифметическое, стандартное отклонение и количество человек в каждой группе.

Шаг 4. Вычисляем эмпирическое значения по формуле t-критерия Стьюдента для независимых выборок

t_e=frac{|40,2 - 50|}{sqrt{frac{6,4_2}{29} + frac{5,8_2}{29}}}=frac{9,8}{sqrt{1,4 + 1,1}}=6,09

Шаг 5. Вычисляем степени свободы.

df=29+29-2=56

Шаг 6. Определяем по таблице критических значений t-Стьюдента уровень значимости.

Значение 6,09 больше чем значение 3,473 следовательно уровень значимости меньше 0,001

Шаг 7. Если уровень значимости меньше 0,05 делается вывод о наличи различий между группами. Таким образом между двумя группами есть различия в скорости выполнения тестов на внимание.

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Распределение Стьюдента

Общий подход в проверке гипотез описан здесь, поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ2. Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь нормальное распределение с математическим ожиданием μ и дисперсией

Генеральная дисперсия средней

Тогда случайная величина

Нормированное отклонение выборочное средней

имеет стандартное нормальное распределение со всеми вытекающими отсюда последствиями. Например, с вероятностью 95% ее значение не выйдет за пределы ±1,96.

Однако такой подход будет корректным, если известна генеральная дисперсия. В реальности, как правило, она не известна. Вместо нее берут оценку – несмещенную выборочную дисперсию:

Оценка дисперсии средней

где

Выборочная несмещенная дисперсия

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s. Другими словами, являются ли распределения случайных величин

Нормированное отклонение выборочное средней

и

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннесса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Гиннесс строго-настрого запретил выдавать секреты пивоварения, и Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение Хи-квадрат, все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента. Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента. Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию:

Нормирование средней с использование генеральной дисперсии

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Распределение средней арифметической

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию.

Нормирование средней с использование выборочной дисперсии

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t.

Отличие распределения средних от нормального закона

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ2(хи-квадрат) с таким же количеством степеней свободы, т.е.

Теорема Фишера

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

на σ. Получим

Вывод t-критерия

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Вывод t-критерия 2

Тогда исходное выражение примет вид

t-критерий Стьюдента

Это и есть t-критерий Стьюдента в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Вероятности и квантили t-критерия приведены в специальных таблицах распределения Стьюдента и забиты в функции разных ПО вроде Excel.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

t-критерий Стьюдента

где ξ распределена по стандартному нормальному закону, а χ2k подчиняется распределению χ2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

есть частный случай стьюдентова отношения

t-критерий Стьюдента

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

Зависимость t-распределения Стьюдента от количества степеней свободы

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двусторонним. Обычно пользуются двусторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность критерия.

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Распределение хи-квадрат

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Относительная устойчивость t-распределения к ненормальности исходных данных

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Влияние аномальных выбросов на распределение средней

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия, т.е. левосторонний p-value.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H0: μ = 50 кг

Ha: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двусторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Фактический t-критерий при 9-ти наблюдениях

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей для критерия Стьюдента (есть в любом учебнике по статистике).

Таблица t-распределения Стьюдента

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двусторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Расчет t-критерия Стьюдента в Excel

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двусторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Сравнение расчетного и табличного значения t-критерия Стьюдента

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

Расчет p-value для t-критерия

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.

Расчет t-критерия для выборки из 25 наблюдений
Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Отклонения гипотезы

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала для математического ожидания с помощью t-распределения Стьюдента в Excel

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Проверка гипотезы через доверительные интервалы

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю видеоролик о том, как рассчитать критерий Стьюдента и проверить гипотезу о генеральной средней в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

Скачать файл с примером.

Всего доброго, будьте здоровы.

Поделиться в социальных сетях:

  1. Определить
    расчетное значение t-критерия
    по формуле

где
f
– степень свободы, которая определяется
как

  1. Определить
    критическое значение t-критерия
    с использованием таблицы 1 приложения,
    при заданном уровне значимости и
    степени свободы.

  2. Сравнить
    расчетное и критическое значение t
    – критерия. Если расчетное значение
    больше или равно критическому, то
    гипотеза равенства средних значений
    в двух выборках изменений отвергается
    (Но). Во всех других случаях она
    принимается на заданном уровне
    значимости.

Пример.
Две
группы студентов обучались по двум
различным методикам. В конце обучения
с ними был проведен тест по всему курсу.
Необходимо оценить, насколько существенны
различия в полученных знаниях. Результаты
тестирования представлены в таблице
4.

Таблица
4

25

18

9

13

8

20

25

18

6

12

19

13

12

12

18

9

7

10

18

20

Рассчитаем
выборочное среднее, дисперсию и
стандартное отклонение:

Определим
значение tp
по
формуле tp
= 0,45

По
таблице 1 (см. приложение) находим
критическое значение tk
для уровня значимости р = 0,01

tk
= 2,88

Вывод:
так как расчетное значение критерия
меньше критического 0,45<2,88 гипотеза
Но подтверждается и существенных
различий в методиках обучения нет на
уровне значимости 0,01.

Алгоритм расчета t-критерия Стьюдента для зависимых выборок измерений

1.
Определить расчетное значение t-критерия
по формуле

,
где

2.
Рассчитать степень свободы f

3.
Определить критическое значение
t-критерия
по таблице 1 приложения.

4.
Сравнить расчетное и критическое
значение t-критерия.
Если расчетное значение больше или
равно критическому, то гипотеза равенства
средних значений в двух выборках
изменений отвергается (Но). Во всех
других случаях она принимается на
заданном уровне значимости.

Uкритерий
МаннаУитни

Назначение
критерия

Критерий
предназначен для оценки различий между
двумя
непараметрическими
выборками по уровню
какого-либо
признака, количественно измеренного.
Он позволяет выявлять различия между
малыми
выборками,
когда n
< 30.

Описание критерия

Этот
метод определяет, достаточно ли мала
зона пересекающихся значений между
двумя рядами. Чем меньше эта область,
тем более вероятно, что различия
достоверны. Эмпирическое значение
критерия U
отражает то, насколько велика зона
совпадения между рядами. Поэтому чем
меньше U,
тем
более вероятно,
что различия достоверны.

Гипотезы

НО:
Уровень признака в группе 2 не ниже
уровня признака в
группе
1.

HI:
Уровень признака в группе 2 ниже уровня
признака в группе 1.

Алгоритм расчета критерия Манна-Уитни (u)

  1. Перенести
    все данные испытуемых на индивидуальные
    карточки.

  2. Пометить
    карточки испытуемых выборки 1 одним
    цветом, скажем красным, а все карточки
    из выборки 2 – другим, например, синим.

  1. Разложить
    все карточки в единый ряд по степени
    нарастания признака, не считаясь с
    тем, к какой выборке они относятся, как
    если бы мы работали с одной большой
    выборкой.

  1. Проранжировать
    значения на карточках, приписывая
    меньшему значению меньший ранг.

  2. Вновь
    разложить карточки на две группы,
    ориентируясь на цветные обозначения:
    красные карточки в один ряд, синие –
    в другой.

  3. Подсчитать
    сумму рангов отдельно на красных
    карточках (выборка 1) и на синих карточках
    (выборка 2). Проверить, совпадает ли
    общая сумма рангов с расчетной.

  4. Определить
    большую из двух ранговых сумм.

  5. Определить
    значение U
    по формуле:

где
n1
– количество
испытуемых в выборке 1;

n2
– количество
испытуемых в выборке 2,

Тх
– большая из двух рантовых сумм;

nх
– количество испытуемых в группе с
большей суммой рангов.

9.
Определить критические значения U
по таблице 2 (см. приложение).

Если
Uэмп.>
Uкр0,05,
то гипотеза Но
принимается.
Если Uэмп.≤
Uкр,
то отвергается. Чем меньше значения U,
тем достоверность различий выше.

Пример.
Сравнить
эффективность двух методов обучения
в двух группах. Результаты испытаний
представлены в таблице 5.

Таблица 5

18

10

7

15

14

11

13

15

20

10

8

16

10

19

7

15

14

29

Перенесем
все данные в другую таблицу, выделив
данные второй группы подчеркиванием
и сделаем ранжирование общей выборки
(см. алгоритм ранжирования в методических
указаниях к заданию 3).

Значения

7

7

8

10

10

10

11

13

14

14

15

15

15

16

18

19

20

29

Ранги

1,5

1,5

3

5

5

5

7

8

9,5

9,5

12

12

12

14

15

16

17

18

Номер

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Найдем
сумму рангов двух выборок и выберем
большую из них: Тх
= 113

Рассчитаем
эмпирическое значение критерия по
формуле 2: Up
= 30.

Определим
по таблице 2 приложения критическое
значение критерия при уровне значимости
р = 0.05 : Uk
= 19.

Вывод:
так
как расчетное значение критерия
U
больше критического при уровне значимости
р = 0.05 и 30 > 19, то гипотеза о равенстве
средних принимается и различия в
методиках обучения несущественны
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

t-статистика строится обычно по следующему общему принципу: в числителе — случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе — выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмещённой оценки дисперсии.

История[править | править код]

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Требования к данным[править | править код]

Для применения данного критерия необходимо, чтобы выборочные средние имели нормальное распределение. При маленьких выборках это означает требование нормальности исходных значений. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий. Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.

Также не вполне корректно применять t-критерий Стьюдента при наличии в данных значительного числа выбросов. При несоблюдении этих условий при сравнении выборочных средних должны использоваться аналогичные методы непараметрической статистики, среди которых наиболее известными являются U-критерий Манна — Уитни (в качестве двухвыборочного критерия для независимых выборок), а также критерий знаков и критерий Уилкоксона (используются в случаях зависимых выборок).

Одновыборочный t-критерий[править | править код]

Применяется для проверки нулевой гипотезы H_{0}:E(X)=m о равенстве математического ожидания E(X) некоторому известному значению m.

Очевидно, при выполнении нулевой гипотезы E(overline X)=m. С учётом предполагаемой независимости наблюдений V(overline X)=sigma ^{2}/n. Используя несмещённую оценку дисперсии s_{X}^{2}=sum _{{t=1}}^{n}(X_{t}-overline X)^{2}/(n-1) получаем следующую t-статистику:

{displaystyle t={frac {{overline {X}}-m}{s_{X}/{sqrt {n}}}}.}

При нулевой гипотезе распределение этой статистики t(n-1). Следовательно, при превышении (в абсолютном измерении) значения статистики критического значения данного распределения (при заданном уровне значимости), нулевая гипотеза отвергается.

Двухвыборочный t-критерий для независимых выборок[править | править код]

Пусть имеются две независимые выборки объёмами n_{1}~,~n_{2} нормально распределённых случайных величин X_{1},~X_{2}. Необходимо проверить по выборочным данным нулевую гипотезу равенства математических ожиданий этих случайных величин H_{0}:~M_{1}=M_{2}.

Рассмотрим разность выборочных средних Delta =overline X_{1}-overline X_{2}. Очевидно, если нулевая гипотеза выполнена, E(Delta )=M_{1}-M_{2}=0. Исходя из независимости выборок дисперсия этой разности равна: V(Delta )={frac  {sigma _{1}^{2}}{n_{1}}}+{frac  {sigma _{2}^{2}}{n_{2}}}. Тогда, используя несмещённую оценку дисперсии s^{2}={frac  {sum _{{t=1}}^{n}(X_{t}-overline X)^{2}}{n-1}}, получаем несмещённую оценку дисперсии разности выборочных средних: s_{{Delta }}^{2}={frac  {s_{1}^{2}}{n_{1}}}+{frac  {s_{2}^{2}}{n_{2}}}. Следовательно, t-статистика для проверки нулевой гипотезы равна

{displaystyle t={frac {{overline {X}}_{1}-{overline {X}}_{2}}{sqrt {{frac {s_{1}^{2}}{n_{1}}}+{frac {s_{2}^{2}}{n_{2}}}}}}.}

Эта статистика при справедливости нулевой гипотезы имеет распределение t(df), где df={frac  {(s_{1}^{2}/n_{1}+s_{2}^{2}/n_{2})^{2}}{(s_{1}^{2}/n_{1})^{2}/(n_{1}-1)+(s_{2}^{2}/n_{2})^{2}/(n_{2}-1)}}.

Случай одинаковой дисперсии[править | править код]

В случае, если дисперсии выборок предполагаются одинаковыми, то

{displaystyle V(Delta )=sigma ^{2}left({frac {1}{n_{1}}}+{frac {1}{n_{2}}}right).}

Тогда t-статистика равна:

{displaystyle t={frac {{overline {X}}_{1}-{overline {X}}_{2}}{s_{X}{sqrt {{frac {1}{n_{1}}}+{frac {1}{n_{2}}}}}}}~,~~s_{X}={sqrt {frac {(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}}}.}

Эта статистика имеет распределение t(n_{1}+n_{2}-2).

Двухвыборочный t-критерий для зависимых выборок[править | править код]

Для вычисления эмпирического значения t-критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

{displaystyle t={frac {M_{d}}{s_{d}/{sqrt {n}}}},}

где M_{d} — средняя разность значений, s_{d} — стандартное отклонение разностей, а n — количество наблюдений.

Эта статистика имеет распределение t(n-1).

Проверка линейного ограничения на параметры линейной регрессии[править | править код]

С помощью t-теста можно также проверить произвольное (одно) линейное ограничение на параметры линейной регрессии, оценённой обычным методом наименьших квадратов. Пусть необходимо проверить гипотезу H_{0}:c^{T}b=a. Очевидно, при выполнении нулевой гипотезы E(c^{T}{hat  b}-a)=c^{T}E({hat  b})-a=0. Здесь использовано свойство несмещённости МНК-оценок параметров модели E({hat  b})=b. Кроме того, V(c^{T}{hat  b}-a)=c^{T}V({hat  b})c=sigma ^{2}c^{T}(X^{T}X)^{{-1}}c. Используя вместо неизвестной дисперсии её несмещённую оценку s^{2}=ESS/(n-k), получаем следующую t-статистику:

{displaystyle t={frac {c^{T}{hat {b}}-a}{s{sqrt {c^{T}(X^{T}X)^{-1}c}}}}.}

Эта статистика при выполнении нулевой гипотезы имеет распределение t(n-k), поэтому если значение статистики выше критического, то нулевая гипотеза о линейном ограничении отклоняется.

Проверка гипотез о коэффициенте линейной регрессии[править | править код]

Частным случаем линейного ограничения является проверка гипотезы о равенстве коэффициента b_{j} регрессии некоторому значению a. В этом случае соответствующая t-статистика равна:

{displaystyle t={frac {{hat {b}}_{j}-a}{s_{{hat {b}}_{j}}}},}

где s_{{{hat  {b}}_{j}}} — стандартная ошибка оценки коэффициента — квадратный корень из соответствующего диагонального элемента ковариационной матрицы оценок коэффициентов.

При справедливости нулевой гипотезы распределение этой статистики — t(n-k). Если значение статистики по абсолютной величине выше критического значения, то отличие коэффициента от a является статистически значимым (неслучайным), в противном случае — незначимым (случайным, то есть истинный коэффициент вероятно равен или очень близок к предполагаемому значению a).

Замечание[править | править код]

Одновыборочный тест для математических ожиданий можно свести к проверке линейного ограничения на параметры линейной регрессии. В одновыборочном тесте это «регрессия» на константу. Поэтому s^{2} регрессии и есть выборочная оценка дисперсии изучаемой случайной величины, матрица X^{T}X равна n, а оценка «коэффициента» модели равна выборочному среднему. Отсюда и получаем выражение для t-статистики, приведённое выше для общего случая.

Аналогично можно показать, что двухвыборочный тест при равенстве дисперсий выборок также сводится к проверке линейных ограничений. В двухвыборочном тесте это «регрессия» на константу и фиктивную переменную, идентифицирующую подвыборку в зависимости от значения (0 или 1): y=a+bD. Гипотеза о равенстве математических ожиданий выборок может быть сформулирована как гипотеза о равенстве коэффициента b этой модели нулю. Можно показать, что соответствующая t-статистика для проверки этой гипотезы равна t-статистике, приведённой для двухвыборочного теста.

Также к проверке линейного ограничения можно свести и в случае разных дисперсий. В этом случае дисперсия ошибок модели принимает два значения. Исходя из этого можно также получить t-статистику, аналогичную приведённой для двухвыборочного теста.

Непараметрические аналоги[править | править код]

Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна — Уитни. Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона.

Литература[править | править код]

Student. The probable error of a mean. // Biometrika. 1908. № 6 (1). P. 1-25.

Ссылки[править | править код]

О критериях проверки гипотез об однородности средних на сайте Новосибирского государственного технического университета

Т-критерий Стьюдента (t-тест) простым языком

Сегодня мы говорим о t-критерии. Т-критерий наиболее популярный статистический тест в биомедицинских исследованиях. Также его называют парный Т-критерий Стьюдента, t-test, two-sample unpaired t-test. Однако, при использовании этого статистического инструмента допускается достаточно много ошибок. Сегодня в этой статье мы постараемся разобраться, как избежать ошибок применения t-критерия Стьюдента, как интерпретировать его результаты и как рассчитывать t-критерий самостоятельно. Об этом обо всем читайте далее.

При описании любого статистического критерия, будь то t-критерий Стьюдента, либо какой-либо еще, нужно вспомнить о том, как же вообще используются статистические критерии. Для того, чтобы понять, как используется любой критерий, нужно перейти к нескольким достаточно логичным для понимания этапам:

Этапы статистического вывода (statistic inference)

  1. Первый из них – это вопрос, который мы хотим изучить с помощью статистических методов. То есть первый этап: что изучаем? И какие у нас есть предположения относительно результата? Этот этап называется этап статистических гипотез.
  2. Второй этап – нужно определиться с тем, какие у нас есть в реальности данные для того, чтобы ответить на первый вопрос. Этот этап – тип данных.
  3. Третий этап состоит в том, чтобы выбрать корректный для применения в данной ситуации статистический критерий.
  4. Четвертый этап это логичный этап применения интерпретации любой формулы, какие результаты мы получили.
  5. Пятый этап это создание, синтез выводов относительно первого, второго, третьего, четвертого, пятого этапа, то есть что же получили и что же это в реальности значит.

Предлагаю долго не ходить вокруг да около и посмотреть применение t-критерия Стьюдента на реальном примере.

Видео-версия статьи

Пример использования т-критерия Стьюдента

А пример будет достаточно простой: мне интересно, стали ли люди выше за последние 100 лет. Для этого нужно подобрать некоторые данные. Я обнаружил интересную информацию в достаточно известной статье The Guardian (Tall storys men and women have grown taller over last century, Study Shows (The Guardian, July 2016), которая сравнивает средний возраст человека в разных странах в 1914 году и в аналогичных странах в 2014 году.

Там приведены данные практически по всем государствам. Однако, я взял лишь 5 стран для простоты вычислений: это Россия, Германия, Китай, США и ЮАР, соответственно 1914 год и 2014 год.

Общее количество наблюдений – 5 в 1914 году в группе 1914 года и общее значение также 5 в 2014 году. Будем думать опять же для простоты, что эти данные сопоставимы, и с ними можно работать.

Дальше нужно выбрать критерии – критерии, по которым мы будем давать ответ. Равны ли средние по росту в 1914 году x̅1914 и в 2014 году x̅2014. Я считаю, что нет. Поэтому моя гипотеза это то, что они не равны (x̅1914≠x̅2014). Соответственно альтернативная гипотеза моему предположению, так называемая нулевая гипотеза (нулевая гипотеза консервативна, обратная вашей, часто говорит об отсутствии статистически значимых связей/зависимостей) будет говорить о том, что они между собой на самом деле равны (x̅1914=x̅2014), то есть о том, что все эти находки случайны, и я, по сути, не прав.

Теперь нужно дать какой-то аргументированный ответ. Даем его с помощью статистического критерия. Соответственно теперь наступает самое важное: как выбрать статистический критерий? Я думаю, это будет темой отдельной статьи. Для корректности использования t-критерия Стьюдента лишь скажу, что нужно, чтобы:

Условия применения статистического критерия т-теста (критерия Стьюдента)

— данные распределялись по закону нормального распределения;

— данные были количественными;

— и это две независимые между собой выборки (независимые это значит, что в этих группах разные люди, а никак, например, до и после применения препарата у одной группы, люди должны быть разными, тогда группы являются несвязанными, либо независимыми), этот аспект стоит учитывать для выбора вида т-критерия Стьюдента, так как для парных выборок существует свой парный т-критерий (paired t-test).

В итоге Мы определились с тем, что это будет t-критерий Стьюдента.

Формула t-критерия Стьюдента достаточно простая. Она гласит о том, что в числителе у нас разница средних, в знаменателе у нас корень квадратный суммы ошибок репрезентативности по этим группам:

Ошибки репрезентативности были подробно объяснены мною в статье по доверительным интервалам. Поэтому я рекомендую вам ознакомиться с ней, чтобы лучше разобраться, что такое ошибки репрезентативности, что такое выборка, как она соотносится с генеральной совокупностью.

Для того, чтобы не тратить время, я в принципе все уже рассчитал по каждой из групп: средняя (x̅) ,стандартное отклонение (SD) и ошибка репрезентативности (mr).

Давайте остановимся на том, что же значат эти значения:

— средняя (x̅) это среднеарифметическое по 5 наблюдениям в каждой группе;

— если совсем упрощать значение стандартного отклонения (SD), то можно сказать, что оно представляет собой обобщенную среднюю отклонения каждого значения от среднего (стандартное отклонение показывает, насколько широко значения рассеяны (разбросаны) относительно средней). И дальше мы находим нечто среднее отклонений каждого варианта в группе от среднего;

— и ошибка репрезентативности она тоже находится достаточно просто: это как раз наше отклонение от средней некоторое стандартизованное, поэтому стандартное отклонение на размер выборки (mr=).

Итак, продолжаем. В ходе подстановки каждого значения в нашу формулу, мы находим, что t-критерий Стьюдента равен 3,78. Однако, я думаю, пока тем, кто не знаком со статистическими критериями, это мало о чем говорит.

Итак, теперь настает четвертый этап вопрос интерпретации. Ранее мы получили значение t-критерия в 3,78. Однако, что же это значит? Стоит отметить, что результаты статистических критериев и вообще их интерпретация не говорит о точном «да», либо «нет» в выводе, то есть рост отличается, либо рост не отличается. Всегда это вопрос определенной доли вероятности – доли вероятности ошибиться при констатации положительного результата (речь об ошибке первого рода (I type error, Alpha)). То есть, например, если мы скажем, что средний рост в начале ХХ и в начале XXI века отличаются с долей ошибкой меньше 5 %. Как раз эта величина в 5 % и фиксируется как достаточная для большинства биомедицинских исследований, помните, р больше, либо меньше 0,05.

Итак, как нам перейти от нашей t к р вероятности? Это сделать достаточно просто, стоит лишь воспользоваться табличными значениями t для определенных степеней свободы. Теперь вопрос: как найти эти степени свободы? Но это сделать достаточно просто. Для того, чтобы обнаружить степени свободы для наших групп, нужно лишь сложить количество наблюдений 5 и 5 в нашем случае и вычесть 2. В нашем случае степень свободы равна 8.

Итак, t=3,78, степень свободы равна 8. Переходим в табличное значение и получаем р вероятность – вероятность равна 0,005. То есть вероятность того, что мы ошибаемся при констатации факта различия роста ранее и сейчас, крайне мала – это 0,005 %, не 5 %, а 0,005 %. То есть мы можем говорить с высокой долей достоверности того, что наш рост сейчас в XXI веке и 100 лет назад отличаются.

Вот то, что касается расчета t-критерия Стьюдента и его интерпретации.

На этом наш разговор о t-критерии Стьюдента закончен. Спасибо, что ознакомились с этой статьей. Я очень надеюсь на вашу обратную связь. Пожалуйста, подписывайтесь на наш сайте, ставьте лайки, предлагайте свои темы для следующих выпусков. Спасибо большое за поддержку. С вами был Кирилл Мильчаков. Пока, до новых встреч!

Если Вам понравилась статья и оказалась полезной, Вы можете поделиться ею с коллегами и друзьями в социальных сетях:

Добавить комментарий