Как найти тангенциальную составляющую ускорения

Разложение ускорения {displaystyle mathbf {a} (t)} на тангенциальное {displaystyle mathbf {a} _{tau }} и нормальное {mathbf  a}_{n} ({mathbf  tau } — единичный касательный вектор)

Тангенциа́льное ускоре́ние — компонента ускорения, направленная по касательной к траектории движения. Характеризует изменение модуля скорости, в отличие от нормальной компоненты, характеризующей изменение направления скорости.

Определяется как производная модуля скорости по времени, умноженная на единичный вектор tau вдоль скорости. Обозначается символом, выбранным для ускорения, с добавлением индекса тангенциальной компоненты: {displaystyle mathbf {a} _{tau }} или {displaystyle mathbf {a} _{t}}, {displaystyle mathbf {w} _{tau }}, {displaystyle mathbf {u} _{tau }}. Измеряется в м/с2 (в системе СИ).

Величина {displaystyle a_{tau }} равна проекции полного ускорения mathbf {a} на касательную в данной точке кривой, что соответствует коэффициенту разложения по сопутствующему базису.

Общая формула[править | править код]

Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

{displaystyle a_{tau }={frac {dv}{dt}}={frac {dvert {vec {v}}vert }{dt}}},

где v =dl/dt — путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

Если использовать для единичного касательного вектора обозначение {mathbf  tau }, то можно записать тангенциальное ускорение в векторном виде:

{displaystyle mathbf {a} _{tau }={frac {dv}{dt}},mathbf {tau } }.

Тангенциальное ускорение {displaystyle mathbf {a} _{tau }} параллельно вектору скорости {mathbf  v} при ускоренном движении (положительная производная) и антипараллельно при замедленном (отрицательная производная).

Происхождение формулы[править | править код]

Разложение полного ускорения на тангенциальную и нормальную компоненты осуществляется посредством дифференцирования по времени вектора скорости, представленного в виде {displaystyle mathbf {v} =v,mathbf {tau } } через единичный вектор касательной {mathbf  tau }:

{displaystyle mathbf {a} ={frac {dmathbf {v} }{dt}}={frac {d(vmathbf {tau } )}{dt}}={frac {dv}{dt}},mathbf {tau } +v{frac {dmathbf {tau } }{dt}}={frac {dv}{dt}},mathbf {tau } +{frac {v^{2}}{R}}mathbf {n} }.

Первое слагаемое — тангенциальное ускорение {displaystyle mathbf {a_{tau }} }, а второе — нормальное ускорение {displaystyle mathbf {a_{n}} } (R и mathbf n — радиус кривизны и единичный вектор нормали к траектории в рассматриваемой точке).

Некоторые примеры[править | править код]

Пример 1

Скорость камня, сброшенного с высоты с начальной скоростью v_{0}, направленной горизонтально, до падения на землю будет изменяться как {displaystyle {vec {v}}=v_{0},{vec {i}}-gt,{vec {j}}}, где g — ускорение свободного падения. Модуль скорости составит {displaystyle v={sqrt {v_{0}^{2}+g^{2}t^{2}}}}, а значит, тангенциальное ускорение по величине равняется {displaystyle a_{tau }=dv/dt=g^{2}t/{sqrt {v_{0}^{2}+g^{2}t^{2}}}}. В начальный момент оно равно нулю, а при больших t стремится к g. Можно записать тангенциальное ускорение и как вектор:

{displaystyle {vec {a}}_{tau }=a_{tau },{vec {tau }}=a_{tau }cdot {frac {vec {v}}{v}}=a_{tau }cdot {frac {v_{0},{vec {i}}-gt,{vec {j}}}{sqrt {v_{0}^{2}+g^{2}t^{2}}}}={frac {v_{0}g^{2}t}{v_{0}^{2}+g^{2}t^{2}}},{vec {i}}-{frac {g^{3}t^{2}}{v_{0}^{2}+g^{2}t^{2}}},{vec {j}}}.

В этих выражениях vec{i}, vec{j} — единичные векторы в декартовых координатах.

Пример 2

Пусть радиус-вектор тела зависит от времени по закону {displaystyle {vec {r}}=r_{0}sin(omega t){vec {i}}+r_{0}cos(omega t){vec {j}}}.

В таком случае скорость тела найдётся как {displaystyle {vec {v}}=d{vec {r}}/dt=r_{0}omega cos(omega t){vec {i}}-r_{0}omega sin(omega t){vec {j}}}. Соответственно, её модуль равен {displaystyle v={sqrt {r_{0}^{2}omega ^{2}cos ^{2}(omega t)+r_{0}^{2}omega ^{2}sin ^{2}(omega t)}}=r_{0}omega } и является постоянной величиной. В результате получается, что тангенциальное ускорение — ноль:

{displaystyle a_{tau }={frac {dv}{dt}}={frac {d(r_{0}omega )}{dt}}=0}.

Рассмотренная зависимость {displaystyle {vec {r}}(t)} описывает равномерное движение по окружности радиусом r_{0}.

Равнопеременность[править | править код]

Движение тела с постоянным по величине тангенциальным ускорением называется равнопеременным. Слова «равнопеременное» ({displaystyle a_{tau }=,}const) и «равноускоренное» ({displaystyle {vec {a}}=,}const) не синонимичны. Взаимозаменяемыми данные термины становятся только применительно к прямолинейному движению. Тем не менее возможны определённые аналогии при рассмотрении обоих названных типов движения.

Ускорение и его составляющие

В случае неравномерного движения важно
знать, как быстро изменяется скорость
с течением времени. Физической величиной,
характеризующей быстроту изменения
скорости по модулю и направлению,
является ускорение.

Рассмотрим плоское движение, т.е.
движение, при котором все участки
траектории точки лежат в одной плоскости.
Пусть вектор v задает скорость точки А
в момент времени t.
За время t
движущаяся точка перешла в положение
В и приобрела скорость, отличную от
v как по модулю, так и
направлению и равную v1
= v + v.
Перенесем вектор v1
в точку А и найдем v
(рис. 4).

Средним ускорением неравномерного
движения в интервале от t
до t + t
называется векторная величина, равная
отношению изменения скорости v
к интервалу вре­мени t

Мгновенным ускорением а (ускорением)
материальной точки в момент време­ни
t будет предел среднего
ускорения:

Таким образом, ускорение a
есть векторная величина, равная первой
производной скорости по времени.

Разложим вектор v
на две составляющие. Для этого из точки
А (рис. 4) по направлению скорости v
отложим вектор

,
по модулю равный v1.
Очевидно, что вектор

,
равный

,
определяет изменение скорости за время
t
по моду­лю:

.
Вторая же составляющая

вектора v
характеризует изменение ско­рости
за время t
по направлению.

  1. Тангенциальное и нормальное ускорение.

Тангенциа́льное
ускоре́ние

— компонента ускорения, направленная
по касательной к траектории движения.
Совпадает с направлением вектора
скорости при ускоренном движении и
противоположно направлено при замедленном.
Характеризует изменение модуля скорости.
Обозначается обычно или (, итд в
соответствии с тем, какая буква выбрана
для обозначения ускорения вообще в
данном тексте).

Иногда
под тангенциальным ускорением понимают
проекцию вектора тангенциального
ускорения — как он определен выше — на
единичный вектор касательной к траектории,
что совпадает с проекцией (полного)
вектора ускорения на единичный вектор
касательной то есть соответствующий
коэффициент разложения по сопутствующему
базису. В этом случае используется не
векторное обозначение, а «скалярное»
— как обычно для проекции или координаты
вектора —

.

Величину
тангенциального ускорения – в смысле
проекции вектора ускорения на единичный
касательный вектор траектории – можно
выразить так:

где

– путевая скорость вдоль траектории,
совпадающая с абсолютной величиной
мгновенной скорости в данный момент.

Если
использовать для единичного касательного
вектора обозначение

,
то можно записать тангенциальное
ускорение в векторном виде:

Вывод

Выражение
для тангенциального ускорения можно
найти, продифференцировав по времени
вектор скорости, представленный в виде

через единичный вектор касательной

:

где
первое слагаемое — тангенциальное
ускорение, а второе — нормальное
ускорение.

Здесь
использовано обозначение

для единичного вектора нормали к
траектории и

– для текущей длины траектории (
);
в последнем переходе также использовано
очевидное

и,
из геометрических соображений,

Центростремительное
ускорение(нормальное)

часть полного ускорения точки,
обусловленного кривизной траектории
и скоростью движения по ней материальной
точки. Такое ускорение направлено к
центру кривизны траектории, чем и
обусловлен термин. Формально и по
существу термин центростремительное
ускорение в целом совпадает с термином
нормальное ускорение, различаясь скорее
лишь стилистически (иногда исторически).

Особенно
часто о центростремительном ускорении
говорят, когда речь идет о равномерном
движении по окружности или при движении,
более или менее приближенном к этому
частному случаю.

Элементарная
формула


или

где

— нормальное (центростремительное)
ускорение,

— (мгновенная) линейная скорость движения
по траектории,

— (мгновенная) угловая скорость этого
движения относительно центра кривизны
траектории,

— радиус кривизны траектории в данной
точке. (Cвязь между первой формулой и
второй очевидна, учитывая ).

Выражения
выше включают абсолютные величины. Их
легко записать в векторном виде, домножив
на — единичный вектор от центра кривизны
траектории к данной ее точки:

Эти
формулы равно применимы к случаю движения
с постоянной (по абсолютной величине)
скоростью, так и к произвольному случаю.
Однако во втором надо иметь в виду, что
центростремительное ускорение не есть
полный вектор ускорения, а лишь его
составляющая, перпендикулярная траектории
(или, что то же, перпендикулярная вектору
мгновенной скорости); в полный же вектор
ускорения тогда входит еще и тангенциальная
составляющая (тангенциальное ускорение)


,
по направлению совпадающее с касательной
к траектории (или, что то же, с мгновенной
скоростью).

вывод

То,
что разложение вектора ускорения на
компоненты — одну вдоль касательного
к траектории вектора (тангенциальное
ускорение) и другую ортогональную ему
(нормальное ускорение) — может быть
удобным и полезным, довольно очевидно
само по себе. Это усугубляется тем, что
при движении с постоянной по величине
скоростью тангенциальная составляющая
будет равной нулю, то есть в этом важном
частном случае остается только нормальная
составляющая. Кроме того, как можно
увидеть ниже, каждая из этих составляющих
имеет ярко выраженные собственные
свойства и структуру, и нормальное
ускорение содержит в структуре своей
формулы достаточно важное и нетривиальное
геометрическое наполнение. Не говоря
уже о важном частном случае движения
по окружности (который, к тому же,
практически без изменения может быть
обобщен и на общий случай).

Формальный
вывод

Разложение
ускорения на тангенциальную и нормальную
компоненты (вторая из которых и есть
центростремительное или нормальное
ускорение) можно найти, продифференцировав
по времени вектор скорости, представленнный
в виде

через единичный вектор касательной

.

Где
первое слагаемое — тангенциальное
ускорение, а второе — нормальное
ускорение.

Здесь
использовано обозначение

для единичного вектора нормали к
траектории и —

для

текущей
длины траектории (
);
в последнем переходе также использовано
очевидное

.

Далее
можно просто формально назвать член

нормальным
(центростремительным) ускорением. При
этом его смысл, смысл входящих в него
объектов, а также доказательство того
факта, что он действительно ортогонален
касательному вектору (то есть что —
действительно вектор нормали) — будет
следовать из геометрических соображений
(впрочем, то, что производная любого
вектора постоянной длины по времени
перпендикулярна самому этому вектору,
— достаточно простой факт; в данном
случае мы применяем это утверждение
для ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти тангенциальную составляющую вектора

Рис. 1.2.7. К выводу тангенциальной составляющей ускорения: единичный вектор т направлен по касательной к траектории

Получаем два слагаемых ускорения: тангенциальное ускорение, совпадающее с направлением v в данной точке, нормальное ускорение, или центростремительное, т.к. направлено оно к центру кривизны, перпендикулярно вектору т:

где dv/dt – скорость изменения модуля вектора скорости v.

Итак, aT показывает изменение вектора скорости по величине:

нормальная и тангенциальная составляющая вектора

Как найти нормальную и тангенциальную составляющую вектора А. Площадь Y0Z.

Пусть ваш вектор А. И есть вектор В (возможно он нормален к какой либо кривой или поверхности)
Тогда An = (A*B)/|B|) ; |B| – норма (длина вектора В) .
Произведение скалярное.
А вектор С = A – An ; тангенциальная соствляющая ( по отношению к поверхности, которой нормален В.

Тангенциальное ускорение – определение, формула и измерение

Общие сведения

Первая лекция для студентов, изучающих кинематику, начинается с рассмотрения тангенциального ускорения, характеризуемого произвольным движением. По сути, рассматривается неравномерное прямолинейное движение общего вида. Кинематика входит в механику и изучает перемещение объектов без учёта сил, вызвавших их движение. Под перемещением понимают изменение положения в пространстве по отношению к другому физическому телу, которое и считается точкой отсчёта. Если изменение положения связать с координатами и временем, то образуется система отсчёта. С её помощью можно определить положение объекта в любой момент.

В кинематике любые процессы принято рассматривать, приняв тело за материальную точку. То есть его размерами и формой пренебрегают. При изменении за какой-то промежуток времени точка проходит путь, описывающийся линией — траекторией. Она является скалярной величиной, а само перемещение — векторной. Движение материальной точки может происходить с разной скоростью и ускорением. Быстроту движения разделяют на среднюю и мгновенную. Вторая определяется как предел, к которому стремится скорость на бесконечно малом временном интервале: v = Δs / Δt (Δt → 0).

Перемещение может происходить с ускорением. Это физическая величина, определяющая изменение быстроты перемещения. Иными словами, показывает изменение положения за единицу времени. Измеряется она в метрах на секунду в квадрате. В кинематике существует три вида ускорения:

  • Тангенциальное — направленное вдоль касательного пути точки в определённый момент. Из-за происхождения слова его часто называют касательным.
  • Нормальное — совпадающее с нормалью траектории изменения положения.
  • Полное — определяющееся суммой тангенциального и нормального ускорений.

Но также используется понятие «вектор среднего ускорения тела». Определяется он как приращение вектора скорости за промежуток времени: aср = Δv / Δt. При этом он будет совпадать по направлению с вектором скорости, то есть направлен в сторону вогнутости траектории.

Угловое ускорение

Если имеется какая-то точка, находящаяся на вращающемся теле, то скорость её направлена по касательной. Когда движение равномерное, то линейная скорость связана с угловой равенством: v = w * r. А вот ускорение тела будет направлено по радиусу к центру окружности, причём модуль вычисляется как a = v / r либо если это точка на вращающемся теле: a = w2 * r.

В момент, когда тело поворачивается за небольшой промежуток времени на угол дельта фи, угловую скорость можно связать с условием поворота через формулу: w = Δ φ / Δ t. Если тело вращается равномерно, то промежуток времени может быть любым. В ином случае эта величина будет равна мгновенной угловой скорости.

Можно представить, что материальная точка движется неравномерно, то есть изменяется угловая скорость тела. Линейная скорость не будет представлять собой постоянную величину, в отличие от равномерного перемещения. Угол поворота равняется: w = v / r. Так как скорость не может быть константой, то отсюда следует, что и угловая скорость не будет постоянной величиной. Её изменение обозначают Δw. Она равняется разности конечной угловой скорости и начальной: Δw = wк — wн.

Изменение угловой скорости можно разделить на промежуток времени, за который оно поменяло значение: (wк — wн) / Δt. По сути, получается ускорение. Обозначается характеристика буквой эпсилон E и называется угловым ускорением. Измеряется характеристика в радианах на секунду в квадрате. Её смысл заключается в описании физической величины через отношение изменения угловой скорости тела за небольшой промежуток времени к длительности этого промежутка.

Пусть есть дуга окружности с центром. В начальный момент времени у тела есть скорость, направленная по касательной к траектории v0. Через некоторое время точка переместится по окружности на небольшое расстояние. Так как движение неравномерное, модуль скорости изменится v ≠ v0. Для того чтобы найти ускорение тела, нужно воспользоваться следующей формулой: a = Δv / Δt, при этом Δv = v — v0.

Чтобы найти эту разность, нужно воспользоваться правилом треугольника. Для этого следует перенести вектор V0 к V и соединить их линией. Радиус от центра к материальной точке можно обозначить R. Дельта V можно представить, как сумму взаимно перпендикулярных векторов. Один из них будет направленных тангенциально к радиусу, в физике обозначают его Δ Vτ, а другой радиально Δ Vr. В итоге: ΔV = Δ Vτ + Δ Vr.

Вывод формулы

Для доказательства формулы необходимо рассмотреть плоскую систему координат, в которой материальная точка изменяет своё положение по криволинейной траектории. В начальный момент её скорость будет равняться V0. Через некоторое время она изменится и станет V. На графике в плоском измерении это можно представить в виде синусоиды. В определённый момент времени скорость превышает начальную: V > V0. На схеме вектор нулевой скорости направлен из точки t0 вверх по касательной, а вектор V с нижней точки синусоиды параллельно оси ординаты.

Исходя из графика, можно сделать два вывода:

  • Через промежуток времени Δt скорость изменяется как по направлению, так и по модулю: Δt = t — t0.
  • Вектор изменения скорости, определяемый по правилу треугольника, будет равняться разности существующей скорости на данный момент и начальной: Δv = v — v0.

Для того чтобы построить вектор изменения Δv, нужно из конечной точки отрезка V0 провести линию к рассматриваемой точки, характеризующейся во времени скоростью V. Вершины полученного треугольника можно обозначить буквами ABD. Из верхнего угла B на сторону AD можно опустить медиану. Точка пересечения со стороной пусть будет C. Получается, что вектор Δv можно разложить на две составляющие — отрезки BC и СD. Причём медиана равняется Δvn, а изменение по оси ординаты Δvt.

Для разложения необходимо использовать вектор АС, длина которого совпадает с Vo по модулю: |AC| = |AB| = V0. Так как Δvn — результирующий вектор, то его можно вычислить через сумму: Δv = Δvn + Δvt. Причём первый член в равенстве характеризует изменение быстроты за промежуток времени по направлению, а второй — по модулю. Исходя из того, что t не равняется нулю, на него можно разделить левую и правую часть равенства: Δv / Δt = Δvn / Δt + Δvt / Δt. Если дельта-времени стремится к нулю, то формулу можно переписать в виде: lim Δv / Δt = lim Δvn / Δt + lim Δvt / Δt.

Учитывая связь между ускорениями и то, что полное значение состоит из суммы изменения быстроты движения по модулю и направлению, можно утверждать о верности формулы: a = at + an. Так как направление векторов ускорения и скорости всегда совпадают, то последний можно представить, как параметр, состоящий из двух взаимно перпендикулярных компонент:

  • at — тангенциальной составляющей, совпадающей с отрезком V;
  • an — перпендикулярным по отношению расположения V вектором.

Используя теорему Пифагора, можно сказать, что модуль полного ускорения равняется корню квадратному из суммы квадратов тангенциального и нормального ускорения: a = √at 2 + an 2 .

Решение простых примеров

В школьном курсе на уроках физики учащимся для закрепления материала предлагается решить определённый тип задач, используя определение тангенциального ускорения. Это типовые примеры, объясняющие суть характеристики и её применение в реальной практике. Вот некоторые из них.

  1. Вычислить все ускорения точки, лежащей на окружности, через десять секунд после воздействия на диск вращателя. При этом учесть, что радиус окружности составит 20 см, а угол между валом и радиус вектором тела соответствует закону: j =3-t+0.2t 3 . Для решения примера необходимо использовать формулы для нахождения угловой скорости и ускорения. Подставив заданные значения, можно получить: w = d φ / dt = -1 + 0,2 * 3t 2 и e = dw / dt = 0,6 * 2t. Применив формулу связи, легко найти ускорение: at = R * E * (0,6 * 2t) = 1,2 * Rt = 24 м 2 /с. Подставив в формулу нормального ускорения значения, можно вычислить и его an = V 2 / R = R * (0,6 * 10 2 — 1) 2 / 0,2 = 696 м/с 2 . Отсюда полное ускорение будет равняться: a = √ 24 2 + 696 2 = 697 м/с 2 .
  2. Материальное тело перемещается по окружности, имеющей радиус 20 см. При этом тангенциальное ускорение равняется 5 см на секунду в квадрате. Определить, сколько понадобится времени, чтобы ускорения сравнялись и нормальное стало больше тангенциального в два раза. Исходя из условия, можно утверждать, что движение является равноускоренным. Поэтому можно применить формулы: an = V2 / t; at = V / t. Отсюда: t = V / at, а V = √an * R. Подставив второе выражение в первое, получится: t = (√an * R) / at. При равенстве ускорений an = at, будет верной запись: t = √R / at = √20 / 5 = 2 с. Для второго случая an = 2at, поэтому: t = (√2 * 20) / 5 = 2,8 c.

Но не всегда решаемые задания можно решить, обойдясь одной формулой. При этом значения тех или иных величин могут быть довольно сложными для проведения вычислений. В таких случаях есть резон использовать так называемые онлайн-калькуляторы. Это специализированные сайты, выполняющие подсчёт в автоматическом режиме. Из таких сервисов можно выделить: сalc, widgety, webmath. Указанные интернет-решители работают на русском языке, так что вопросов, как с их помощью выполнять расчёты, возникнуть не должно.

Сложная задача

Пусть имеется физическое тело, которое движется, замедляясь по окружности радиусом R так, что в каждый момент времени её тангенциальное и нормальное убыстрение равны друг другу по модулю. Необходимо найти зависимость скорости и полного ускорения от времени и пройденного пути. В начальный момент скорость равняется V0.

Согласно условию, тангенциальное ускорение будет отрицательным, так как точка движется, замедляясь. Для понимания задачи можно изобразить схему движения. Для этого необходимо нарисовать окружность и указать на ней вектор начальной скорости, тангенциального и нормального ускорения. Изобразить вектор полного ускорения как сумму векторов.

Нормальное ускорение можно выразить через скорость и радиус: an = V 2 / R. Затем необходимо записать формулу для тангенциального ускорения: at = dV / dt. Так как они равны, то справедливым будет равенство: V 2 / R = dV / dt. Анализируя уравнение, можно сделать вывод, что так как скорость и радиус положительный, то слева будет стоять величина со знаком плюс. Но, с другой стороны, со временем скорость убывает, поэтому с правой стороны нужно поставить знак минус: V 2 / R = – dV / dt.

Полученное уравнение является дифференциальным и показывает зависимость скорости от времени. Равенство можно преобразовать, умножив на отношение dt / V 2 . В итоге должно получиться выражение: dV / V 2 = – dt / R. Это уравнение можно проинтегрировать. При этом пределами интеграла с левой стороны будет V0 и V, а с правой — 0 и t. Получился обыкновенный степенной интеграл, который будет равняться: 1 / V = dt / R.

Подставив пределы, можно получить равенство: (1 / V) — (1 / V0) = t / R. Из полученной формулы следует выразить скорость: V = (V0 * R) / (R + V0 * t). Поделив числитель и знаменатель на радиус, ответ примет вид: V (t) = V0 / (1 + (V0 * t / R)).

Теперь можно найти тангенциальное убыстрение, так как оно представляет производную от скорости. После взятия производной получится: at = dV / dt = – V02 / R (1 + V0 * t / R)2 = – V2 / R. Отсюда можно написать, что модуль полного ускорения будет равняться: a = √2 *|ar| = (√2 * V2) / R. Осталось найти путь. Он совпадает с длиной дуг и равняется интегралу модуля скорости от времени. После решения должно получиться равенство: S (t) = R * ln (1 + V0 * t / R). Задача решена.

[spoiler title=”источники:”]

http://sprashivalka.com/tqa/q/25509788

http://nauka.club/fizika/tangentsialno%D0%B5-uskoreni%D0%B5.html

[/spoiler]

Определение и смысл тангенциального ускорения

Общие сведения

Первая лекция для студентов, изучающих кинематику, начинается с рассмотрения тангенциального ускорения, характеризуемого произвольным движением. По сути, рассматривается неравномерное прямолинейное движение общего вида. Кинематика входит в механику и изучает перемещение объектов без учёта сил, вызвавших их движение. Под перемещением понимают изменение положения в пространстве по отношению к другому физическому телу, которое и считается точкой отсчёта. Если изменение положения связать с координатами и временем, то образуется система отсчёта. С её помощью можно определить положение объекта в любой момент.

В кинематике любые процессы принято рассматривать, приняв тело за материальную точку. То есть его размерами и формой пренебрегают. При изменении за какой-то промежуток времени точка проходит путь, описывающийся линией — траекторией. Она является скалярной величиной, а само перемещение — векторной. Движение материальной точки может происходить с разной скоростью и ускорением. Быстроту движения разделяют на среднюю и мгновенную. Вторая определяется как предел, к которому стремится скорость на бесконечно малом временном интервале: v = Δs / Δt (Δt → 0).

Перемещение может происходить с ускорением. Это физическая величина, определяющая изменение быстроты перемещения. Иными словами, показывает изменение положения за единицу времени. Измеряется она в метрах на секунду в квадрате. В кинематике существует три вида ускорения:

Вывод формулы для расчёта

  • Тангенциальное — направленное вдоль касательного пути точки в определённый момент. Из-за происхождения слова его часто называют касательным.
  • Нормальное — совпадающее с нормалью траектории изменения положения.
  • Полное — определяющееся суммой тангенциального и нормального ускорений.

Но также используется понятие «вектор среднего ускорения тела». Определяется он как приращение вектора скорости за промежуток времени: aср = Δv / Δt. При этом он будет совпадать по направлению с вектором скорости, то есть направлен в сторону вогнутости траектории.

Угловое ускорение

Физическая зависимость и решение уравнений разной сложности

Если имеется какая-то точка, находящаяся на вращающемся теле, то скорость её направлена по касательной. Когда движение равномерное, то линейная скорость связана с угловой равенством: v = w * r. А вот ускорение тела будет направлено по радиусу к центру окружности, причём модуль вычисляется как a = v / r либо если это точка на вращающемся теле: a = w2 * r.

В момент, когда тело поворачивается за небольшой промежуток времени на угол дельта фи, угловую скорость можно связать с условием поворота через формулу: w = Δ φ / Δ t. Если тело вращается равномерно, то промежуток времени может быть любым. В ином случае эта величина будет равна мгновенной угловой скорости.

Можно представить, что материальная точка движется неравномерно, то есть изменяется угловая скорость тела. Линейная скорость не будет представлять собой постоянную величину, в отличие от равномерного перемещения. Угол поворота равняется: w = v / r. Так как скорость не может быть константой, то отсюда следует, что и угловая скорость не будет постоянной величиной. Её изменение обозначают Δw. Она равняется разности конечной угловой скорости и начальной: Δw = wк — wн.

Изменение угловой скорости можно разделить на промежуток времени, за который оно поменяло значение: (wк — wн) / Δt. По сути, получается ускорение. Обозначается характеристика буквой эпсилон E и называется угловым ускорением. Измеряется характеристика в радианах на секунду в квадрате. Её смысл заключается в описании физической величины через отношение изменения угловой скорости тела за небольшой промежуток времени к длительности этого промежутка.

Формула для нахождения параметра

Пусть есть дуга окружности с центром. В начальный момент времени у тела есть скорость, направленная по касательной к траектории v0. Через некоторое время точка переместится по окружности на небольшое расстояние. Так как движение неравномерное, модуль скорости изменится v ≠ v0. Для того чтобы найти ускорение тела, нужно воспользоваться следующей формулой: a = Δv / Δt, при этом Δv = v — v0.

Чтобы найти эту разность, нужно воспользоваться правилом треугольника. Для этого следует перенести вектор V0 к V и соединить их линией. Радиус от центра к материальной точке можно обозначить R. Дельта V можно представить, как сумму взаимно перпендикулярных векторов. Один из них будет направленных тангенциально к радиусу, в физике обозначают его Δ Vτ, а другой радиально Δ Vr. В итоге: ΔV = Δ Vτ + Δ Vr.

Вывод формулы

Единица измерения и определение тангенциального ускорения

Для доказательства формулы необходимо рассмотреть плоскую систему координат, в которой материальная точка изменяет своё положение по криволинейной траектории. В начальный момент её скорость будет равняться V0. Через некоторое время она изменится и станет V. На графике в плоском измерении это можно представить в виде синусоиды. В определённый момент времени скорость превышает начальную: V > V0. На схеме вектор нулевой скорости направлен из точки t0 вверх по касательной, а вектор V с нижней точки синусоиды параллельно оси ординаты.

Исходя из графика, можно сделать два вывода:

  • Через промежуток времени Δt скорость изменяется как по направлению, так и по модулю: Δt = t — t0.
  • Вектор изменения скорости, определяемый по правилу треугольника, будет равняться разности существующей скорости на данный момент и начальной: Δv = v — v0.

Для того чтобы построить вектор изменения Δv, нужно из конечной точки отрезка V0 провести линию к рассматриваемой точки, характеризующейся во времени скоростью V. Вершины полученного треугольника можно обозначить буквами ABD. Из верхнего угла B на сторону AD можно опустить медиану. Точка пересечения со стороной пусть будет C. Получается, что вектор Δv можно разложить на две составляющие — отрезки BC и СD. Причём медиана равняется Δvn, а изменение по оси ординаты Δvt.

Для разложения необходимо использовать вектор АС, длина которого совпадает с Vo по модулю: |AC| = |AB| = V0. Так как Δvn — результирующий вектор, то его можно вычислить через сумму: Δv = Δvn + Δvt. Причём первый член в равенстве характеризует изменение быстроты за промежуток времени по направлению, а второй — по модулю. Исходя из того, что t не равняется нулю, на него можно разделить левую и правую часть равенства: Δv / Δt = Δvn / Δt + Δvt / Δt. Если дельта-времени стремится к нулю, то формулу можно переписать в виде: lim Δv / Δt = lim Δvn / Δt + lim Δvt / Δt.

Учитывая связь между ускорениями и то, что полное значение состоит из суммы изменения быстроты движения по модулю и направлению, можно утверждать о верности формулы: a = at + an. Так как направление векторов ускорения и скорости всегда совпадают, то последний можно представить, как параметр, состоящий из двух взаимно перпендикулярных компонент:

  • at — тангенциальной составляющей, совпадающей с отрезком V;
  • an — перпендикулярным по отношению расположения V вектором.

Используя теорему Пифагора, можно сказать, что модуль полного ускорения равняется корню квадратному из суммы квадратов тангенциального и нормального ускорения: a = √at 2 + an 2.

Решение простых примеров

В школьном курсе на уроках физики учащимся для закрепления материала предлагается решить определённый тип задач, используя определение тангенциального ускорения. Это типовые примеры, объясняющие суть характеристики и её применение в реальной практике. Вот некоторые из них.

Определение тангенциального ускорения

Как направлено тангенциальное ускорение

  1. Вычислить все ускорения точки, лежащей на окружности, через десять секунд после воздействия на диск вращателя. При этом учесть, что радиус окружности составит 20 см, а угол между валом и радиус вектором тела соответствует закону: j =3-t+0.2t3. Для решения примера необходимо использовать формулы для нахождения угловой скорости и ускорения. Подставив заданные значения, можно получить: w = d φ / dt = -1 + 0,2 * 3t2 и e = dw / dt = 0,6 * 2t. Применив формулу связи, легко найти ускорение: at = R * E * (0,6 * 2t) = 1,2 * Rt = 24 м2/с. Подставив в формулу нормального ускорения значения, можно вычислить и его an = V2 / R = R * (0,6 * 102 — 1)2 / 0,2 = 696 м/с2. Отсюда полное ускорение будет равняться: a = √ 242 + 6962 = 697 м/с2.
  2. Материальное тело перемещается по окружности, имеющей радиус 20 см. При этом тангенциальное ускорение равняется 5 см на секунду в квадрате. Определить, сколько понадобится времени, чтобы ускорения сравнялись и нормальное стало больше тангенциального в два раза. Исходя из условия, можно утверждать, что движение является равноускоренным. Поэтому можно применить формулы: an = V2 / t; at = V / t. Отсюда: t = V / at, а V = √an * R. Подставив второе выражение в первое, получится: t = (√an * R) / at. При равенстве ускорений an = at, будет верной запись: t = √R / at = √20 / 5 = 2 с. Для второго случая an = 2at, поэтому: t = (√2 * 20) / 5 = 2,8 c.

Но не всегда решаемые задания можно решить, обойдясь одной формулой. При этом значения тех или иных величин могут быть довольно сложными для проведения вычислений. В таких случаях есть резон использовать так называемые онлайн-калькуляторы. Это специализированные сайты, выполняющие подсчёт в автоматическом режиме. Из таких сервисов можно выделить: сalc, widgety, webmath. Указанные интернет-решители работают на русском языке, так что вопросов, как с их помощью выполнять расчёты, возникнуть не должно.

Сложная задача

Что характеризует тангенциальное ускорение

Пусть имеется физическое тело, которое движется, замедляясь по окружности радиусом R так, что в каждый момент времени её тангенциальное и нормальное убыстрение равны друг другу по модулю. Необходимо найти зависимость скорости и полного ускорения от времени и пройденного пути. В начальный момент скорость равняется V0.

Согласно условию, тангенциальное ускорение будет отрицательным, так как точка движется, замедляясь. Для понимания задачи можно изобразить схему движения. Для этого необходимо нарисовать окружность и указать на ней вектор начальной скорости, тангенциального и нормального ускорения. Изобразить вектор полного ускорения как сумму векторов.

Нормальное ускорение можно выразить через скорость и радиус: an = V2 / R. Затем необходимо записать формулу для тангенциального ускорения: at = dV / dt. Так как они равны, то справедливым будет равенство: V2 / R = dV / dt. Анализируя уравнение, можно сделать вывод, что так как скорость и радиус положительный, то слева будет стоять величина со знаком плюс. Но, с другой стороны, со временем скорость убывает, поэтому с правой стороны нужно поставить знак минус: V2 / R = – dV / dt.

Полученное уравнение является дифференциальным и показывает зависимость скорости от времени. Равенство можно преобразовать, умножив на отношение dt / V2. В итоге должно получиться выражение: dV / V2 = – dt / R. Это уравнение можно проинтегрировать. При этом пределами интеграла с левой стороны будет V0 и V, а с правой — 0 и t. Получился обыкновенный степенной интеграл, который будет равняться: 1 / V = dt / R.

Подставив пределы, можно получить равенство: (1 / V) — (1 / V0) = t / R. Из полученной формулы следует выразить скорость: V = (V0 * R) / (R + V0 * t). Поделив числитель и знаменатель на радиус, ответ примет вид: V (t) = V0 / (1 + (V0 * t / R)).

Теперь можно найти тангенциальное убыстрение, так как оно представляет производную от скорости. После взятия производной получится: at = dV / dt = – V02 / R (1 + V0 * t / R)2 = – V2 / R. Отсюда можно написать, что модуль полного ускорения будет равняться: a = √2 *|ar| = (√2 * V2) / R. Осталось найти путь. Он совпадает с длиной дуг и равняется интегралу модуля скорости от времени. После решения должно получиться равенство: S (t) = R * ln (1 + V0 * t / R). Задача решена.

При криволинейном движении за малый промежуток времени (Delta{t}) любой участок траектории материальной точки можно рассматривать как движение по окружности.

33.PNG

Рис. (1). Траектория тела, движущегося криволинейно

При неравномерном криволинейном движении скорость может меняться по модулю и направлению, соответственно, есть две составляющие ускорения: тангенциальное и нормальное (центростремительное) ускорение (рис. (2)).

15.PNG

Рис. (2). Ускорение при криволинейном движении

16.PNG

Рис. (3). Тангенциальное и нормальное ускорение

Источники:

Рис. 1. Траектория тела, движущегося криволинейно. © ЯКласс.

Рис. 2. Ускорение при криволинейном движении. © ЯКласс.

Рис. 3. Тангенциальное и нормальное ускорение. © ЯКласс.

Добавить комментарий