Как найти тангенс альфа деленное на 2

Ангелина158



Ученик

(216),
на голосовании



11 лет назад

Голосование за лучший ответ

Julia Tarasevich

Ученик

(116)


11 лет назад

1 – косинус альфа / синус альфа

Похожие вопросы

Уравнения разложения тригонометрических функций:квадрат синус альфа, косинус альфа, тангенс альфа, котангенс альфа.

Квадрат синуса

Квадрат косинуса

Квадрат тангенса

Квадрат синуса

Формулы преобразования функций двойного угла (2α) в выражение через одинарный угол (α)

sin(2α)- через sin и cos:

все тригонометрические формулы

sin(2α)- через tg и ctg:

все тригонометрические формулы

cos(2α)- через sin и cos:

все тригонометрические формулы

cos(2α)- через tg и ctg:

все тригонометрические формулы

tg(2α) и сtg(2α):

все тригонометрические формулы

все тригонометрические формулы


Формулы преобразования функций (синус, косинус, тангенс, котангенс), тройного угла (3α) в выражение через одинарный угол (α):

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы


Тригонометрические формулы преобразования разности аргументов

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы


все тригонометрические формулы

sin(α)=OA

cos(α)=OC

tg(α)=DE

ctg(α)=MK

R=OB=1

Значения функций для некоторых углов, α

все тригонометрические формулы


В таблице показаны формулы приведения для тригонометрических функций (sin, cos, tg, ctg).

формулы приведения для тригонометрических функций

(1)  Основное тригонометрическое тождество sin2(α) + cos2(α) = 1

(2)  Основное тождество через тангенс и косинус (3)  Основное тождество через котангенс и синус

(4)  Соотношение между тангенсом и котангенсом tg(α)ctg(α) = 1 (5)  Синус двойного угла sin(2α) = 2sin(α)cos(α) (6)  Косинус двойного угла cos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α) (7)  Тангенс двойного угла
tg(2α) =   2tg(α)


1 – tg2(α)

(8)  Котангенс двойного угла
ctg(2α) = ctg2(α) – 1


  2ctg(α)

(9)  Синус тройного угла sin(3α) = 3sin(α)cos2(α) – sin3(α) (10)  Косинус тройного угла cos(3α) = cos3(α) – 3cos(α)sin2(α) (11)  Косинус суммы/разности cos(α±β) = cos(α)cos(β) sin(α)sin(β) (12)  Синус суммы/разности sin(α±β) = sin(α)cos(β) ± cos(α)sin(β)

(13)  Тангенс суммы/разности (14)  Котангенс суммы/разности (15)  Произведение синусов sin(α)sin(β) = ½(cos(α–β) – cos(α+β)) (16)  Произведение косинусов cos(α)cos(β) = ½(cos(α+β) + cos(α–β)) (17)  Произведение синуса на косинус sin(α)cos(β) = ½(sin(α+β) + sin(α–β)) (18)  Сумма/разность синусов sin(α) ± sin(β) = 2sin(½(α±β))cos(½(αβ)) (19)  Сумма косинусов cos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β)) (20)  Разность косинусов cos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))

(21)  Сумма/разность тангенсов

(22)  Формула понижения степени синуса sin2(α) = ½(1 – cos(2α)) (23)  Формула понижения степени косинуса cos2(α) = ½(1 + cos(2α))

(24)

 Сумма/разность синуса и косинуса (25)  Сумма/разность синуса и косинуса с коэффициентами (26)  Основное соотношение арксинуса и арккосинуса arcsin(x) + arccos(x) = π/2 (27)  Основное соотношение арктангенса и арккотангенса arctg(x) + arcctg(x) = π/2

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2021

tg(0°)=tg(360°)=0 точная, но чуть более сложная таблица ( с точностью до 1′) здесь.

Углы
1° – 90°

Углы
91 ° – 180°

Углы
181° – 270°

Углы
271 ° – 360°

Угол

tg

tg= 0.0174
tg= 0.0349
tg= 0.0524
tg= 0.0699
tg= 0.0874
tg= 0.1051
tg= 0.1227
tg= 0.1405
tg= 0.1583
10° tg= 0.1763
11° tg= 0.1943
12° tg= 0.2125
13° tg= 0.2308
14° tg= 0.2493
15° tg= 0.2679
16° tg= 0.2867
17° tg= 0.3057
18° tg= 0.3249
19° tg= 0.3443
20° tg= 0.364
21° tg= 0.3839
22° tg= 0.404
23° tg= 0.4245
24° tg= 0.4452
25° tg= 0.4663
26° tg= 0.4877
27° tg= 0.5095
28° tg= 0.5317
29° tg= 0.5543
30° tg= 0.5774
31° tg= 0.6009
32° tg= 0.6249
33° tg= 0.6494
34° tg= 0.6745
35° tg= 0.7002
36° tg= 0.7265
37° tg= 0.7535
38° tg= 0.7813
39° tg= 0.8098
40° tg= 0.8390
41° tg= 0.8693
42° tg= 0.9004
43° tg= 0.9325
44° tg= 0.9657
45° tg= 1
46° tg= 1.0355
47° tg= 1.0724
48° tg= 1.1106
49° tg= 1.1504
50° tg= 1.1918
51° tg= 1.2349
52° tg= 1.2799
53° tg= 1.327
54° tg= 1.3764
55° tg= 1.4281
56° tg= 1.4826
57° tg= 1.5399
58° tg= 1.6003
59° tg= 1.6643
60° tg= 1.7321
61° tg= 1.804
62° tg= 1.8807
63° tg= 1.9626
64° tg= 2.0503
65° tg= 2.1445
66° tg= 2.2460
67° tg= 2.3559
68° tg= 2.475
69° tg= 2.605
70° tg= 2.7475
71° tg= 2.9042
72° tg= 3.0777
73° tg= 3.2709
74° tg= 3.4874
75° tg= 3.732
76° tg= 4.0108
77° tg= 4.3315
78° tg= 4.7046
79° tg= 5.1446
80° tg= 5.6713
81° tg= 6.3138
82° tg= 7.1154
83° tg= 8.1443
84° tg= 9.5144
85° tg= 11.4301
86° tg= 14.3007
87° tg= 19.0811
88° tg= 28.6363
89° tg= 57.29
90° tg не определен

Угол

tg

91° tg= -57.29
92° tg= -28.6363
93° tg= -19.0811
94° tg= -14.3007
95° tg= -11.4301
96° tg= -9.5144
97° tg= -8.1443
98° tg= -7.1154
99° tg= -6.3138
100° tg= -5.6713
101° tg= -5.1446
102° tg= -4.7046
103° tg= -4.3315
104° tg= -4.0108
105° tg= -3.732
106° tg= -3.4874
107° tg= -3.2709
108° tg= -3.0777
109° tg= -2.9042
110° tg= -2.7475
111° tg= -2.605
112° tg= -2.475
113° tg= -2.3559
114° tg= -2.2460
115° tg= -2.1445
116° tg= -2.0503
117° tg= -1.9626
118° tg= -1.8807
119° tg= -1.804
120° tg= -1.7321
121° tg= -1.6643
122° tg= -1.6003
123° tg= -1.5399
124° tg= -1.4826
125° tg= -1.4281
126° tg= -1.3764
127° tg= -1.327
128° tg= -1.2799
129° tg= -1.2349
130° tg= -1.1918
131° tg= -1.1504
132° tg= -1.1106
133° tg= -1.0724
134° tg= -1.0355
135° tg= -1
136° tg= -0.9657
137° tg= -0.9325
138° tg= -0.9004
139° tg= -0.8693
140° tg= -0.8390
141° tg= -0.8098
142° tg= -0.7813
143° tg= -0.7535
144° tg= -0.7265
145° tg= -0.7002
146° tg= -0.6745
147° tg= -0.6494
148° tg= -0.6249
149° tg= -0.6009
150° tg= -0.5774
151° tg= -0.5543
152° tg= -0.5317
153° tg= -0.5095
154° tg= -0.4877
155° tg= -0.4663
156° tg= -0.4452
157° tg= -0.4245
158° tg= -0.404
159° tg= -0.3839
160° tg= -0.364
161° tg= -0.3443
162° tg= -0.3249
163° tg= -0.3057
164° tg= -0.2867
165° tg= -0.2679
166° tg= -0.2493
167° tg= -0.2308
168° tg= -0.2125
169° tg= -0.1943
170° tg= -0.1763
171° tg= -0.1583
172° tg= -0.1405
173° tg= -0.1227
174° tg= -0.1051
175° tg= -0.0874
176° tg= -0.0699
177° tg= -0.0524
178° tg= -0.0349
179° tg= -0.0174
180° tg= 0

Угол

tg

181° tg= 0.0174
182° tg= 0.0349
183° tg= 0.0524
184° tg= 0.0699
185° tg= 0.0874
186° tg= 0.1051
187° tg= 0.1227
188° tg= 0.1405
189° tg= 0.1583
190° tg= 0.1763
191° tg= 0.1943
192° tg= 0.2125
193° tg= 0.2308
194° tg= 0.2493
195° tg= 0.2679
196° tg= 0.2867
197° tg= 0.3057
198° tg= 0.3249
199° tg= 0.3443
200° tg= 0.364
201° tg= 0.3839
202° tg= 0.404
203° tg= 0.4245
204° tg= 0.4452
205° tg= 0.4663
206° tg= 0.4877
207° tg= 0.5095
208° tg= 0.5317
209° tg= 0.5543
210° tg= 0.5774
211° tg= 0.6009
212° tg= 0.6249
213° tg= 0.6494
214° tg= 0.6745
215° tg= 0.7002
216° tg= 0.7265
217° tg= 0.7535
218° tg= 0.7813
219° tg= 0.8098
220° tg= 0.8390
221° tg= 0.8693
222° tg= 0.9004
223° tg= 0.9325
224° tg= 0.9657
225° tg= 1
226° tg= 1.0355
227° tg= 1.0724
228° tg= 1.1106
229° tg= 1.1504
230° tg= 1.1918
231° tg= 1.2349
232° tg= 1.2799
233° tg= 1.327
234° tg= 1.3764
235° tg= 1.4281
236° tg= 1.4826
237° tg= 1.5399
238° tg= 1.6003
239° tg= 1.6643
240° tg= 1.7321
241° tg= 1.804
242° tg= 1.8807
243° tg= 1.9626
244° tg= 2.0503
245° tg= 2.1445
246° tg= 2.2460
247° tg= 2.3559
248° tg= 2.475
249° tg= 2.605
250° tg= 2.7475
251° tg= 2.9042
252° tg= 3.0777
253° tg= 3.2709
254° tg= 3.4874
255° tg= 3.732
256° tg= 4.0108
257° tg= 4.3315
258° tg= 4.7046
259° tg= 5.1446
260° tg= 5.6713
261° tg= 6.3138
262° tg= 7.1154
263° tg= 8.1443
264° tg= 9.5144
265° tg= 11.4301
266° tg= 14.3007
267° tg= 19.0811
268° tg= 28.6363
269° tg= 57.29
270° tg не определен

Угол

tg

271° tg= -57.29
272° tg= -28.6363
273° tg= -19.0811
274° tg= -14.3007
275° tg= -11.4301
276° tg= -9.5144
277° tg= -8.1443
278° tg= -7.1154
279° tg= -6.3138
280° tg= -5.6713
281° tg= -5.1446
282° tg= -4.7046
283° tg= -4.3315
284° tg= -4.0108
285° tg= -3.732
286° tg= -3.4874
287° tg= -3.2709
288° tg= -3.0777
289° tg= -2.9042
290° tg= -2.7475
291° tg= -2.605
292° tg= -2.475
293° tg= -2.3559
294° tg= -2.2460
295° tg= -2.1445
296° tg= -2.0503
297° tg= -1.9626
298° tg= -1.8807
299° tg= -1.804
300° tg= -1.7321
301° tg= -1.6643
302° tg= -1.6003
303° tg= -1.5399
304° tg= -1.4826
305° tg= -1.4281
306° tg= -1.3764
307° tg= -1.327
308° tg= -1.2799
309° tg= -1.2349
310° tg= -1.1918
311° tg= -1.1504
312° tg= -1.1106
313° tg= -1.0724
314° tg= -1.0355
315° tg= -1
316° tg= -0.9657
317° tg= -0.9325
318° tg= -0.9004
319° tg= -0.8693
320° tg= -0.8390
321° tg= -0.8098
322° tg= -0.7813
323° tg= -0.7535
324° tg= -0.7265
325° tg= -0.7002
326° tg= -0.6745
327° tg= -0.6494
328° tg= -0.6249
329° tg= -0.6009
330° tg= -0.5774
331° tg= -0.5543
332° tg= -0.5317
333° tg= -0.5095
334° tg= -0.4877
335° tg= -0.4663
336° tg= -0.4452
337° tg= -0.4245
338° tg= -0.404
339° tg= -0.3839
340° tg= -0.364
341° tg= -0.3443
342° tg= -0.3249
343° tg= -0.3057
344° tg= -0.2867
345° tg= -0.2679
346° tg= -0.2493
347° tg= -0.2308
348° tg= -0.2125
349° tg= -0.1943
350° tg= -0.1763
351° tg= -0.1583
352° tg= -0.1405
353° tg= -0.1227
354° tg= -0.1051
355° tg= -0.0874
356° tg= -0.0699
357° tg= -0.0524
358° tg= -0.0349
359° tg= -0.0174
360° tg= 0

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.

Доп. Инфо:

  1. Таблица косинусов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений косинусов.
  2. Таблица синусов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений синусов.
  3. Таблица синусов, она-же косинусов точная.
  4. Таблица тангенсов углов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений тангенса, tg
  5. Таблица котангенсов углов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений котангенса, ctg
  6. Таблица тангенсов, она же котангенсов точная.
  7. Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
    Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.
  8. Знаки тригонометрических функций синус, косинус, тангенс и котангенс по четвертям в тригонометрическом круге.
  9. Определение и численные соотношения между единицами измерения углов в РФ.
    Тысячные, угловые градусы, минуты, секунды, радианы, обороты.
  10. Таблица соответствия угловых градусов, радиан, оборотов, тысячных (артиллерийских РФ). 0-360 градусов, 0-2π радиан.

Основные формулы тригонометрии – это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных тригонометрических формул можно находить и решать практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь все тригонометрические формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую (посредством преобразования).

Тригонометрические тождества

sin2a+cos2a=1tgα=sinαcosα, ctgα=cosαsinαtgα·ctgα=1tg2α+1=1cos2α, ctg2α+1=1sin2α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg) и их свойств.

Основные формулы приведения в тригонометрии

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов, то есть, преобразовывать их.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

Формулы приведения являются следствием периодичности тригонометрических функций.

Все формулы сложения в тригонометрии

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sinα±β=sinα·cosβ±cosα·sinβcosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβtgα±β=tgα±tgβ1±tgα·tgβctgα±β=-1±ctgα·ctgβctgα±ctgβ

На основе формул сложения выводятся тригонометрические формулы кратного угла. 

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin2α=2·sinα·cosαcos2α=cos2α-sin2α, cos2α=1-2sin2α, cos2α=2cos2α-1tg2α=2·tgα1-tg2α сtg2α=сtg2α-12·сtgα sin3α=3sinα·cos2α-sin3α, sin3α=3sinα-4sin3αcos3α=cos3α-3sin2α·cosα, cos3α=-3cosα+4cos3αtg3α=3tgα-tg3α1-3tg2αctg3α=ctg3α-3ctgα3ctg2α-1

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы понижения степени

Формулы понижения степени

sin2α=1-cos2α2cos2α=1+cos2α2sin3α=3sinα-sin3α4cos3α=3cosα+cos3α4sin4α=3-4cos2α+cos4α8cos4α=3+4cos2α+cos4α8

Часто при расчетах действовать с громоздкими степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n решение 

sinnα=Cn2n2n+12n-1∑k=0n2-1(-1)n2-k·Ckn·cos((n-2k)α)cosnα=Cn2n2n+12n-1∑k=0n2-1Ckn·cos((n-2k)α)

для нечетных n

sinnα=12n-1∑k=0n-12(-1)n-12-k·Ckn·sin((n-2k)α)cosnα=12n-1∑k=0n-12Ckn·cos((n-2k)α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно для применения при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sinα+sinβ=2sinα+β2·cosα-β2sinα-sinβ=2sinα-β2·cosα+β2cosα+cosβ=2cosα+β2·cosα-β2cosα-cosβ=-2sinα+β2·sinα-β2, cosα-cosβ=2sinα+β2·sinβ-α2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению или умножению, то формулы произведения (здесь нужно умножать) тригонометрических функций осуществляют обратный переход – от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sinα·sinβ=12·(cos(α-β)-cos(α+β))cosα·cosβ=12·(cos(α-β)+cos(α+β))sinα·cosβ=12·(sin(α-β)+sin(α+β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции – тангенс, котангенс, синус, косинус – могут быть выражены через тангенс половинного угла. 

Универсальная тригонометрическая подстановка

sinα=2tgα21+tg2α2cosα=1-tg2α21+tg2α2tgα=2tgα21-tg2α2ctgα=1-tg2α22tgα2

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Добавить комментарий