Функция y=tgx, ее свойства и график
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы рассмотрим функцию у = tg t, ее свойства и график. В начале урока вспомним определение функции как закона соответствия и определение графика функции. Далее дадим определение функции у = tg t на числовой окружности и рассмотрим линию тангенсов – касательную к окружности. Найдем область значений функции и обсудим два важных свойства функции – нечетность и периодичность. Построим график функции тангенс с учетом ее свойств. Рассмотрим все свойства функции у = tg t.
Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Тригонометрия»
Как найти тангенс угла наклона прямой
Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.
Угол наклона прямой и угловой коэффициент прямой
Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.
Угол наклона прямой к оси О х , расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.
Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π ) .
Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.
Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.
Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.
Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.
Посчитать угловой коэффициент прямой при угле наклона равном 120 ° .
Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = — 3 .
Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k 0 , тогда угол тупой, что дает право определить его по формуле α = π — a r c t g k .
Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .
Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .
Ответ: α = a r c t g 3 .
Найти угол наклона прямой к оси О х , если угловой коэффициент = — 1 3 .
Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х . Отсюда k = — 1 3 0 , тогда необходимо применить формулу α = π — a r c t g k При подстановке получим выражение:
α = π — a r c t g — 1 3 = π — a r c t g 1 3 = π — π 6 = 5 π 6 .
Ответ: 5 π 6 .
Уравнение с угловым коэффициентом
Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у .
Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М , M 1 ( x 1 , y 1 ) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.
Задана прямая с угловым коэффициентом y = 1 3 x — 1 . Вычислить, принадлежат ли точки M 1 ( 3 , 0 ) и M 2 ( 2 , — 2 ) заданной прямой.
Необходимо подставить координаты точки M 1 ( 3 , 0 ) в заданное уравнение, тогда получим 0 = 1 3 · 3 — 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.
Если подставим координаты точки M 2 ( 2 , — 2 ) , тогда получим неверное равенство вида — 2 = 1 3 · 2 — 1 ⇔ — 2 = — 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.
Ответ: М 1 принадлежит прямой, а М 2 нет.
Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 ( 0 , b ) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х , где k = t g α .
Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x — 1 . Получим, что прямая пройдет через точку с координатой 0 , — 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х . Отсюда видно, что коэффициент равен 3 .
Уравнение прямой с угловым коэффициентом, проходящей через заданную точку
Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 ( x 1 , y 1 ) .
Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 ( x 1 , y 1 ) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y — y 1 = k · ( x — x 1 ) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 ( x 1 , y 1 ) .
Составьте уравнение прямой, проходящей через точку М 1 с координатами ( 4 , — 1 ) , с угловым коэффициентом равным — 2 .
Решение
По условию имеем, что x 1 = 4 , y 1 = — 1 , k = — 2 . Отсюда уравнение прямой запишется таким образом y — y 1 = k · ( x — x 1 ) ⇔ y — ( — 1 ) = — 2 · ( x — 4 ) ⇔ y = — 2 x + 7 .
Ответ: y = — 2 x + 7 .
Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами ( 3 , 5 ) , параллельную прямой y = 2 x — 2 .
По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x — 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:
y — y 1 = k · ( x — x 1 ) ⇔ y — 5 = 2 · ( x — 3 ) ⇔ y = 2 x — 1
Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно
Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.
Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x — x 1 a x = y — y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y — b = k · x ⇔ k · x k = y — b k ⇔ x 1 = y — b k .
Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.
Привести уравнение прямой с угловым коэффициентом y = — 3 x + 12 к каноническому виду.
Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:
y = — 3 x + 12 ⇔ — 3 x = y — 12 ⇔ — 3 x — 3 = y — 12 — 3 ⇔ x 1 = y — 12 — 3
Ответ: x 1 = y — 12 — 3 .
Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x — y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.
Дано уравнение прямой вида y = 1 7 x — 2 . Выяснить, является ли вектор с координатами a → = ( — 1 , 7 ) нормальным вектором прямой?
Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:
y = 1 7 x — 2 ⇔ 1 7 x — y — 2 = 0
Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , — 1 , отсюда 1 7 x — y — 2 = 0 . Понятно, что вектор a → = ( — 1 , 7 ) коллинеарен вектору n → = 1 7 , — 1 , так как имеем справедливое соотношение a → = — 7 · n → . Отсюда следует, что исходный вектор a → = — 1 , 7 — нормальный вектор прямой 1 7 x — y — 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x — 2 .
Решим задачу обратную данной.
Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ — A B · x — C B .
Результат и является уравннием с угловым коэффициентом, который равняется — A B .
Задано уравнение прямой вида 2 3 x — 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.
Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:
2 3 x — 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .
Ответ: y = 1 6 x + 1 4 .
Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x — x 1 a x = y — y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:
x a + y b = 1 ⇔ y b = 1 — x a ⇔ y = — b a · x + b .
Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:
x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x · ( y — y 1 ) ⇔ ⇔ a x · y = a y · x — a y · x 1 + a x · y 1 ⇔ y = a y a x · x — a y a x · x 1 + y 1
Имеется прямая, заданная уравнением x 2 + y — 3 = 1 . Привести к виду уравнения с угловым коэффициентом.
Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на — 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:
y — 3 = 1 — x 2 ⇔ — 3 · y — 3 = — 3 · 1 — x 2 ⇔ y = 3 2 x — 3 .
Ответ: y = 3 2 x — 3 .
Уравнение прямой вида x — 2 2 = y + 1 5 привести к виду с угловым коэффициентом.
Необходимо выражение x — 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · ( x — 2 ) = 2 · ( y + 1 ) . Теперь необходимо полностью его разрешить, для этого:
5 · ( x — 2 ) = 2 · ( y + 1 ) ⇔ 5 x — 10 = 2 y + 2 ⇔ 2 y = 5 x — 12 ⇔ y = 5 2 x
Ответ: y = 5 2 x — 6 .
Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.
Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = — 1 + 2 · λ .
Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:
x = λ y = — 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .
Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:
x 1 = y + 1 2 ⇔ 2 · x = 1 · ( y + 1 ) ⇔ y = 2 x — 1
Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .
Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:
— определение углового коэффициента прямой, когда известны две точки через которые она проходит;
— определение абсциссы или ординаты точки пересечения двух прямых на плоскости.
Что такое абсцисса и ордината точки было описано в прошлой статье данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.
Уравнение прямой на координатной плоскости имеет вид:
где k – это и есть угловой коэффициент прямой.
Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.
Он лежит в пределах от 0 до 180 градусов.
То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).
Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.
Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:
Подробнее об этой формуле рассказано в этой статье !
Рассмотрим задачи (аналогичные задачам из открытого банка заданий):
Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).
В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:
Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:
*Оба катета равны шести (это их длины).
Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.
Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).
Формула уравнения прямой походящей через две данные точки имеет вид:
Наши точки имеют координаты (5;0) и (0;5). Значит,
Получили, что угловой коэффициент k = – 1.
Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.
В данной задаче можно найти уравнение прямой a, определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b. А затем, подставив в него значение y = 0, найти абсциссу. НО!
В данном случае, проще использовать свойство подобия треугольников.
Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.
Искомая абсцисса равна 40/3.
Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.
Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.
Нам известны точки, через которые проходит прямая а. Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:
По условию точки имеют координаты (0;8) и (–12;0). Значит,
Получили, что угловой k = 2/3.
*Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.
Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:
Найти величину b мы можем подставив абсциссу и ординату в уравнение:
Таким образом, прямая имеет вид:
Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:
Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).
Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).
Формула уравнения прямой походящей через две данные точки имеет вид:
Наши точки имеют координаты (0;0) и (10;24). Значит,
Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:
Значение b найдём подставив в это уравнение координаты точки В(10;12):
Получили уравнение прямой:
Чтобы найти ординату точки пересечения этой прямой с осью оу нужно подставить в найденное уравнение х = 0:
*Самый простой способ решения. При помощи параллельного переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).
Искомая ордината равна –12.
Найдите ординату точки пересечения прямой, заданной уравнением
3х + 2у = 6 , с осью Oy .
Координата точки пересечения заданной прямой с осью оу имеет вид (0;у). Подставим в уравнение абсциссу х = 0, и найдём ординату:
Ордината точки пересечения прямой с осью оу равна 3.
Найдите ординату точки пересечения прямых, заданных уравнениями
3х + 2у = 6 и у = – х .
Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:
В первом уравнении подставляем – х вместо у:
Ордината равна минус шести.
Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).
Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).
Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.
Прямая a проходит через точки с координатами (0;4) и (–6;0). Прямая b проходит через точку с координатами (0; –6) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.
Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).
Найдите абсциссу точки пересечения прямой, заданной уравнением 2х + 2у = 6, с осью ох.
Найдите абсциссу точки пересечения прямых, заданных уравнениями 3х + 2у = 6 и у = х.
Конечно, некоторые задачи, которые мы рассмотрели можно было решить более рациональными способами. Но ставилась цель показать разные подходы к решению. Надеюсь, это удалось.
1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.
2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.
3. Помните о том, что угловые коэффициенты параллельных прямых равны.
4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.
5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.
6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:
>> Угол наклона прямой от 0 до 90 градусов
>> Угол наклона прямой от 90 до 180 градусов
В данных двух случаях, по свойству тангенса :
То есть, чтобы найти уголвой коэффициент прямой, необходимо вычислить тангенс бетта в полученном прямоугольном треугольнике и записать результат с отрицательным знаком.
В данной рубрике продолжим рассматривать задачи, не пропустите!
Функция НАКЛОН в Excel предназначена для определения угла наклона прямой, используемой для аппроксимации данных методом линейной регрессии, и возвращает значение коэффициента a из уравнения y=ax+b. Для определения наклона используются две любые точки на прямой. При этом вычисляется частное от деления длины отрезка, полученного при проецировании этих двух точек на ось Ординат (OY), на длину отрезка, образованного проекциями этих же двух точек на ось Абсцисс (OX).
Фактически, функция НАКЛОН вычисляет значение, которое характеризует скорость изменения данных вдоль линии регрессии. Зная наклон (коэффициент a) и значение коэффициента b можно рассчитать приближенные будущие значения какого-либо свойства y, которое меняется при изменении характеристики x.
Примеры использования функции НАКЛОН в Excel
Для расчета наклона линии регрессии используется уравнение:
- x_ср – среднее значение для диапазона известных значений независимой переменной;
- y_ср – среднее значение для диапазона известных значений зависимой переменной.
Функция НАКЛОН не может быть использована для анализа коллинеарных данных и будет возвращать код ошибки #ДЕЛ/0! в отличие от функции ЛИНЕЙН, которая использует иной алгоритм расчета и возвращает как минимум одно полученное значение.
Пример 1. Определить наклон аппроксимирующей прямой для показателей средней пенсии на протяжении нескольких лет.
Вид исходной таблицы данных:
Для нахождения наклона используем следующую формулу:
- B3:B13 – ссылка на диапазон ячеек, содержащих данные о средней пенсии, характеризующие зависимую переменную y;
- A3:A13 – диапазон ячеек с данными об отчетных периодах (годах), характеризующие независимую переменную x.
В результате вычислений получим:
Полученное значение свидетельствует о том, что на протяжении обозначенного периода размер пенсионных выплат в среднем увеличивался примерно на 560 рублей.
Прогноз объема продаж по линейно регрессии в Excel
Пример 2. В таблице Excel содержатся данные о прибыли за продажи некоторого продукта компании на протяжении последних нескольких дней. Рассчитать коэффициенты a и b уравнения прямой y=ax+b, аппроксимирующей данные. На основе полученного уравнения спрогнозировать данные о продажах для трех последующих дней.
Вид таблицы с данными:
Для нахождения коэффициента a используем следующую формулу:
Коэффициент b рассчитывается с помощью следующей функции:
Искомое уравнение имеет вид:
Для определения последующих значений y достаточно лишь подставить требуемое значение x. Выполним расчет предполагаемой прибыли для 13-го дня:
- D3 – полученное значение коэффициента a;
- A15 – новое значение x;
- E3 – значение коэффициента b.
Используем функцию автозаполнения чтобы получить значения для остальных дней:
Анализ корреляции спроса и объема производства в Excel
Пример 3. В таблице содержатся данные о количестве произведенной продукции за месяц, а также о числе приобретенных товаров данной марки покупателями. Отобразить взаимосвязь между данными графически, определить, целесообразно ли использовать уравнение линейно регрессии для описания корреляции между спросом и числом произведенных товаров.
Вид таблицы данных:
Для определения зависимости между двумя рядами числовых данных рассчитаем коэффициент корреляции по формуле:
Полученное значение (0,983) свидетельствует о том, что между двумя числовыми диапазонами существует сильная прямая взаимосвязь. Поэтому целесообразно использовать аппроксимирующую прямую, для нахождения коэффициентов уравнения которой используем формулы:
Для нахождения спроса на товары за июль при условии, что будет произведено, например, 2000 единиц продукции, используем полученное уравнение:
Альтернативным использованию функции НАКЛОН вариантом нахождения наклона в Excel является графический метод. Построим график на основе имеющихся данных, при этом для значений X выберем диапазон ячеек со значениями числа произведенных товаров, а для Y – с числом купленных товаров:
Отобразим на графике линию тренда:
В меню «Формат линии тренда» установим флажок напротив пункта «показывать уравнение на диаграмме»:
График примет следующий вид:
Как видно, найденные коэффициенты a и b соответствуют отображаемым на графике.
Особенности использования функции НАКЛОН в Excel
Функция имеет следующий синтаксис:
Описание аргументов (все являются обязательными для заполнения):
- известные_значения_y – аргумент, принимающий массив числовых значений или ссылку на диапазон ячеек, которые содержат числа, характеризующие значения зависимой переменной y, которые определены для известных значений x;
- известные_значения_x – аргумент, который может быть указан в виде массива чисел или ссылки на диапазон ячеек, содержащих числовые значения, которые характеризуют известные значения независимой переменной x.
- В качестве аргументов должны быть переданы массивы чисел либо ссылки на диапазоны ячеек с числовыми значениями или текстовыми строками, которые могут быть преобразованы к числам. Строки, не являющиеся текстовыми представлениями числовых данных, а также логические ИСТИНА и ЛОЖЬ в расчете не учитываются.
- Если в качестве аргументов были переданы массивы, содержащие разное количество элементов, или ссылки на диапазоны с разным количеством ячеек, функция НАКЛОН вернет код ошибки #Н/Д. Аналогичный код ошибки будет возвращен в случае, если оба аргумента принимают пустые массивы или ссылки на диапазоны пустых ячеек.
- Если оба аргумента ссылаются на нечисловые данные, функция НАКЛОН вернет код ошибки #ДЕЛ/0!.
- Если в диапазоне, переданном в качестве любого из аргументов, содержатся пустые ячейки, они игнорируются в расчете. Однако ячейки, содержащие значение 0 (нуль) будут учтены.
Алгебра
Помощь студентам в решении контрольных и курсовых работ
Консультационная помощь по студенческим работам
Помощь студентам в решении контрольных и курсовых работ
Консультационная помощь по студенческим работам
Помощь в подготовке дипломной. Сопровождение до защиты!
План урока:
Синус и косинус угла на единичной окружности
Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:
С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что
ВС = АВ•sinα = 5•0,8 = 4
Если известно, что cosα = 0,6, то мы сможем найти и второй катет:
АС = АВ•cosα = 5•0,6 = 3
Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:
tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)
Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:
Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:
Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле
Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда
АВ = sinα•ОА = sinα•1 = sinα
С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или
Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:
Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:
хА = ОВ = cosα•ОА = cosα•1 = cosα
то есть координата хА равна cos α:
Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.
Таким образом, нам удалось дать новое определение синусу и косинусу угла:
Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть
[spoiler title=”источники:”]
http://hd01.ru/info/kak-najti-tangens-ugla-naklona-prjamoj/
http://100urokov.ru/predmety/urok-2-funkcii-trigonometricheskie
[/spoiler]
- Определение
- График тангенса
- Свойства тангенса
- Обратная к тангенсу функция
- Таблица тангенсов
Определение
Тангенс острого угла α (tg α или tan α) – это отношение противолежащего катета (a) к прилежащему (b) в прямоугольном треугольнике.
tg α = a / b
Например:
a = 3
b = 4
tg α = a / b = 3 / 4 = 0.75
График тангенса
Функция тангенса пишется как y = tg (x). График в общем виде выглядит следующим образом:
Свойства тангенса
Ниже в табличном виде представлены основные свойства тангенса с формулами.
Свойство | Формула |
Симметричность | tg (-α) = -tg α |
Симметричность | tg (90°- α) = ctg α |
Тригонометрические тождества | tg α = sin α / cos α |
tg α = 1 / ctg α | |
Тангенс двойного угла | tg 2α = 2 tg α / (1 – tg2α) |
Тангенс суммы углов | tg (α+β) = (tg α + tg β) / (1 – tg α tg β) |
Тангенс разности углов | tg (α-β) = (tg α – tg β) / (1 + tg α tg β) |
Сумма тангенсов | tg α + tg β = sin (α + β) / cos α cos β |
Разность тангенсов | tg α – tg β = sin (α – β) / cos α cos β |
Произведение тангенсов | tg α tg β = (tg α + tg β) / (ctg α + ctg β) |
Произведение тангенса и котангенса | tg α ctg β = (tg α + ctg β) / (ctg α + tg β) |
Производная тангенса | tg’ x = 1 / cos2 (x) |
Интеграл тангенса | ∫ tg x dx = -ln |cos x| + C |
Формула Эйлера | tg x = (eix – e–ix) / i(eix + e–ix) |
microexcel.ru
Обратная к тангенсу функция
Арктангенс x – это обратная функция к тангенсу x, где x – любое число (x∈ℝ).
Если тангенс угла у равняется х (tg y = x), значит арктангенс x равен у:
arctg x = tg-1 x = y
Например:
arctg 1 = tg-1 1 = 45° = π/4 рад
Таблица тангенсов
x (°) | x (рад) | tg x |
-90° | -π/2 | -∞ |
-71.565° | -1.2490 | -3 |
-63.435° | -1.1071 | -2 |
-60° | -π/3 | -√3 |
-45° | -π/4 | -1 |
-30° | -π/6 | -1/√3 |
-26.565° | -0.4636 | -0.5 |
0° | 0 | 0 |
26.565° | 0.4636 | 0.5 |
30° | π/6 | 1/√3 |
45° | π/4 | 1 |
60° | π/3 | √3 |
63.435° | 1.1071 | 2 |
71.565° | 1.2490 | 3 |
90° | π/2 | ∞ |
microexcel.ru
- Развертка тангенса движения точки по числовой окружности в функцию от угла
- Свойства функции y=tgx
- Примеры
п.1. Развертка тангенса движения точки по числовой окружности в функцию от угла
При движении точки по числовой окружности на вертикальной касательной, проведенной через точку (1;0), отображаются значения тангенсов соответствующих углов (см. §3 данного справочника).
Рассмотрим, как изменяется тангенс, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=tgx на этом отрезке.
Если мы продолжим движение по окружности для углов x > 2π, кривые продолжатся вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x<0, кривые продолжатся влево.
В результате получаем график y=tgx для для всех x из области допустимых значений.
График y=tgx называют тангенцоидой.
Часть тангенцоиды c (-fracpi2lt xlt fracpi2) называют главной ветвью тангенцоиды.
п.2. Свойства функции y=tgx
1. Область определения (xnefracpi2+pi k) – множество действительных чисел, кроме точек, в которых (cosx=0).
2. Функция не ограничена сверху и снизу. Область значений (yinmathbb{R})
3. Функция нечётная $$ tg(-x)=-tgx $$
4. Функция периодическая с периодом π $$ tg(x+pi k)=tgx $$
5. Функция стремится к (+infty) при приближении слева к точкам (x=fracpi2+pi k).
Приближение к точке a слева записывается как (xrightarrow a-0) $$ lim_{xrightarrowfracpi2+pi k-0} tgx=+infty $$ Функция стремится к (-infty) при приближении справа к точкам (x=fracpi2+pi k).
Приближение к точке a справа записывается как (xrightarrow a+0) $$ lim_{xrightarrowfracpi2+pi k+0} tgx=-infty $$ Нули функции (y_{0}=0) достигаются в точках (x_0=pi k)
6. Функция возрастает на всей области определения.
7. Функция имеет разрывы в точках (x=fracpi2+pi k), через эти точки проходят вертикальные асимптоты. На интервалах между асимптотами (left(-fracpi2+pi k; fracpi2+pi kright)) функция непрерывна.
п.3. Примеры
Пример 1.Найдите наименьшее и наибольшее значение функции y=tgx на заданном промежутке:
a) (left[frac{2pi}{3}; frac{3pi}{2}right)) $$ y_{min}=tgleft(frac{2pi}{3}right)=-sqrt{3}, y_{max}=lim_{xrightarrowfrac{3pi}{2}-0}tgx=+infty $$ б) (left(frac{pi}{2}; piright]) $$ y_{min}=lim_{xrightarrowfrac{pi}{2}+0}tgx=-infty, y_{max}=tg(pi)=0 $$ в) (left[frac{3pi}{4}; frac{7pi}{6}right]) $$ y_{min}=tgleft(frac{3pi}{4}right)=-1, y_{max}=tgleft(frac{7pi}{6}right)=frac{1}{sqrt{3}} $$
Пример 2. Решите уравнение:
a) (tgx=-sqrt{3})
Бесконечное множество решений: (x=frac{2pi}{3}+pi k, kinmathbb{Z})
б) (tgleft(x-fracpi2right)=0)
(x-fracpi2=pi k)
Бесконечное множество решений: (x=frac{pi}{2}+pi k, kinmathbb{Z})
в) (tg(2x)=1)
(2x=fracpi4+pi k)
Бесконечное множество решений: (x=frac{pi}{8}+frac{pi k}{2}, kinmathbb{Z})
г) (tgleft(frac{x}{3}-1right)=-1)
(frac{x}{3}-1=-frac{pi}{4}+pi k)
(frac{x}{3}=1-frac{pi}{4}+pi k)
Бесконечное множество решений: (x=3-frac{3pi}{4}+3pi k, kinmathbb{Z})
Пример 3. Определите чётность функции: a) (y(x)=4tgx+5sinx)
$$ y(-x)=4tg(-x)+5sin(-x)=-4tgx-5sinx=-(4tgx+5sinx)=-y(x) $$ Функция нечётная.
б) (y(x)=tgx-2cosx)
$$ y(-x)=tg(-x)-2cos(-x)=-tgx-2cosx=-(tgx+2cosx)ne left[ begin{array} -y(x)\ y(x) end{array} right. $$ Функция ни чётная, ни нечётная.
в) (y(x)=tg^2x+cos5x)
$$ y(-x)=tg^2(-x)+cos(-5x)=(-tgx)^2+cos5x=tg^2x+cos5x)=y(x) $$ Функция чётная.
г) (y(x)=x^2-tgx)
$$ y(-x)=(-x)^2-tg(-x)=x^2+tgxne left[ begin{array} -y(x)\ y(x) end{array} right. $$ Функция ни чётная, ни нечётная.
Пример 4. Если (tg(7pi-x)=frac34), то чему равны (tgx, ctgx)?
Т.к. период тангенса равен π, получаем: begin{gather*} tg(7pi-x)=tg(-x)=-tgx=frac34Rightarrow tgx=-frac34\ ctgx=frac{1}{tgx}=-frac43 end{gather*} Ответ: (-frac34, -frac43)
Функция тангенса: формула, свойства, график
Содержание:
- Что такое тангенс
- Что такое функция тангенса: формула
- Свойства функции
- Как построить график
- Примеры решения задач
Что такое тангенс
Тангенсом какого-либо острого угла (alpha (tg alpha)) называют величину, выражающую отношение противоположного катета (а) к прилегающему катету (b) в треугольнике с углом 90°, то есть: (tg alpha = frac{a}{b})
Понятие тангенса угла можно проиллюстрировать таким образом:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Источник: microexcel.ru
Пример 1
Рассмотрим наглядный пример. Предположим, что катеты в треугольнике из определения тангенса имеют следующие значения: a = 3 b = 4 В таком случае справедливо записать выражение для расчета тангенса угла: (tg alpha = frac{a}{b} = frac{3}{4} = 0,75)
Что такое функция тангенса: формула
При решении задач можно нередко встретить примеры с тригонометрическими функциями, в том числе, функцией тангенса. Эта функция обладает специфическими свойствами, которые значительно упрощают вычисления. Запись имеет следующий вид:
(у = tg х)
Здесь х обозначает аргумент тригонометрической функции и играет роль независимой переменной, а у определяет непосредственно функцию, то есть зависимую переменную.
Свойства функции
С помощью знаний свойств функций в тригонометрии достаточно просто решать самые сложные и громоздкие примеры. Перечислим закономерности, характерные для функции тангенса:
- Функция тангенса определяется в области ((xnefracpi2+pi k)), то есть на множестве, в состав которого включены действительные числа, за исключением точек, характеризующихся нулевым значением для косинуса.
- Функция на графике не имеет ограничений в верхней и нижней части, поэтому ее область значений можно записать как (yinmathbb{R}).
- Функция тангенса является нечетной, что целесообразно записать в виде соотношения (tg(-x)=-tgx).
- Тригонометрическая функция тангенса является периодической, а ее период составляет pi. Таким образом:(tg(x+pi k)=tgx) .
- Стремление функции (к +infty) можно наблюдать при сближении с левой стороны с точками (x=fracpi2+pi k). Приближение к точке, обозначенной за a, слева формулируют таким образом: (xrightarrow) (a-0 lim_{xrightarrowfracpi2+pi k-0} tgx=+infty) .
- Стремление функции (к -infty) можно наблюдать при сближении с правой стороны с точками (x=fracpi2+pi k). Приближение к точке, обозначенной за а, справа следует зафиксировать как (xrightarrow) (a+0 lim_{xrightarrowfracpi2+pi k+0} tgx=-infty).
- Нули рассматриваемой функции (y_{0}=0) определены точками (x_0=pi k).
- Возрастание функции можно наблюдать на всей области, где она определена.
- Функция разрывается в точках (x=fracpi2+pi k), которые пересечены вертикальными асимптотами. На отрезках между ними функция не прерывается, то есть (left(-fracpi2+pi k; fracpi2+pi kright).)
- Функция не обладает максимальными и минимальными значениями.
Как построить график
Как и любую другую тригонометрическую функцию, тангенс достаточно просто изобразить в системе координат. Графическое изображение функции тангенса в обобщенном виде представлено на рисунке ниже:
Источник: microexcel.ru
Построить график функции тангенса несложно. Нужно лишь последовательно выполнять действия согласно стандартному алгоритму:
- определить контрольные точки для построения;
- начертить плавную кривую линию на плоскости координат;
- для выбранного промежутка построить значения, которые расположены симметрично по отношению к началу координат;
- так как для значений функции характерны повторы с некоторым периодом, то целесообразно скопировать график для каждого из промежутков области определения;
- в результате получен график под названием тангенсоида.
Примеры решения задач
Задача 1
Требуется путем применения свойств тригонометрической функции, изученных в теоретическом разделе, записать область определения для следующей функции: (y=text{tg}left( 2x+frac{pi }{3} right))
Решение
Зная, что функция тангенса не может быть определена в точках при нулевом значении косинуса, запишем справедливое соотношение и выполним необходимые преобразования:
(cos left( 2x+frac{pi }{3} right)=0)
(2x+frac{pi }{3}ne frac{pi }{2}+pi n,nin Z)
(xne frac{pi }{12}+frac{pi n}{2},nin Z)
В результате получена область, в которой определена функция из условия задания:
(D(y)=left( -frac{pi }{12}+frac{pi n}{2},frac{pi }{12}+frac{pi n}{2} right),nin Z)
Ответ: (D(y):xin left( -frac{pi }{12}+frac{pi n}{2},frac{pi }{12}+frac{pi n}{2} right),nin Z)
Задача 2
Дано уравнение, решение которого требуется найти: (sin 2x-sqrt{3}cos 2x=0)
Решение
Выполним преобразования исходного соотношения. В результате получим:
(sin 2x=sqrt{3}cos 2x)
После деления всех частей записи на выражение (cos 2x) соотношение изменится таким образом:
(text{tg}2x=sqrt{3})
При этом ОДЗ для полученного выражения примет следующий вид:
(left( -frac{pi }{4}+frac{pi n}{2},frac{pi }{4}+frac{pi n}{2} right),nin Z.)
Далее целесообразно приступить к решению уравнения:
(2=frac{pi }{3}+pi n,nin Z)
(x=frac{pi }{6}+frac{pi n}{2},nin Z)
Заметим, что корни, которые получились по итогам расчетов, соответствуют ОДЗ. Можно записать ответ.
Ответ: (x=frac{pi }{6}+frac{pi n}{2},nin Z)
24
Окт 2013
Категория: Справочные материалыФункции и графики
Графики тригонометрических функций. Тангенс, котангенс
2013-10-24
2014-02-08
График функции y=tgx
Если вы умеете работать с тригонометрическим кругом, то вам не составит труда построить график функции .
Надеюсь, вы помните, где располагается ось тангенсов…
Глядя на картинку, хорошо видно, что значения тангенса в I и III четвертях совпадают с соответствующими значениями тангенса II и IV четвертей. (Например, и т.д.)
Переносим основные значения углов, представленные на круге, например, из I и IV четвертей и соответствующие им значения тангенса на координатную плоскость.
По оси абсцисс откладываем угол в радианах, по оси ординат — значения тангенса угла.
Нанесенные на координатную плоскость точки подсказывают нам плавную кривую. Это и есть график функции на .
Обратите внимание! Тангенс в точках не существует. Мы лишь можем сколь угодно близко «подбираться» к этим значениям.
Указанный выше фрагмент графика тангенса будет для нас являться как бы штампом. Тиражируя этот фрагмент, мы и получим вот такой график функции :
График функции является симметричным относительно начала координат.
График функции y=ctgx
Точно также, как мы строили график при помощи тригонометрического круга, мы могли бы построить и .
Поступим несколько иначе.
Согласно формулам приведения или, что тоже самое, что .
Из чего мы делаем вывод, что график функции будет получен смещением графика функции на единиц влево и при этом график «опрокидывается» относительно оси (ox) за счет коэффициента -1.
График функции является симметричным относительно начала координат.
Автор: egeMax |
комментариев 5
Печать страницы