Как найти тангенс электротехника

Найти тангенс фи , если известен косинус фи

Калькулятор коэффициент мощности cos fi в tg fi

Как найти тангенс фи, если известен косинус фи формула:

  • tg φ = (√(1-cos²φ))/cos φ

Калькулятор онлайн – косинус в тангенс

cos φ:

tg φ:

Поделиться в соц сетях:

Популярные сообщения из этого блога

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание  доктора Диксона о “Использование сердечного индекса Руфье в медико-спортивном контроле”. Проба Руфье – представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле:  Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в

Найти косинус фи (cos φ), через тангенс фи (tg φ)

tg фи=…  чему равен cos фи? Как перевести тангенс в косинус формула: cos(a)=(+-)1/sqrt(1+(tg(a))^2) Косинус через тангенс, перевести tg в cos, калькулятор – онлайн tg φ: cos φ: ± Поделиться в соц сетях:

Что такое коэффициент мощности, косинус фи и тангенс фи

Содержание

  • 1 Виды мощности
  • 2 Что такое коэффициент мощности
  • 3 Выгода электрооборудования с высоким коэффициентом мощности
  • 4 Как узнать коэффициент мощности
  • 5 Значения коэффициента для различных случаев
  • 6 Видео по теме

Одной из важнейших характеристик электрических устройств является мощность. Поэтому желательно знать, что такое коэффициент мощности и как он рассчитывается. Это поможет не только оценить эффективность использования электрической энергии, но и правильно организовать работу электроприбора.

Коэффициент мощности определяет эффективность-использования электроэнергии

Виды мощности

В цепи переменного электротока возникают три мощности: активная, реактивная и полная. Активную называют полезной или действующей мощностью. Это связано с тем, что она тратится на осуществление полезной работы. Обычно при этом электрическая энергия преобразуется в другие виды.

Реактивная мощность в процессе работы электроприбора не тратится, а лишь переходит из одной формы в другую. В данной мощности нуждаются устройства, принцип действия которых основывается на использовании электромагнитного поля.

Одним из примеров таких устройств может служить колебательный контур, включающий в себя индуктивность и ёмкость в предположении, что активное сопротивление деталей пренебрежимо мало. Ещё одним можно считать трансформатор. В нём ток и напряжение передаются по сердечнику с помощью колебаний электромагнитного поля.

Полную мощность можно получить векторным сложением активной и реактивной составляющих.

Треугольник мощностей

Что такое коэффициент мощности

Иногда бывает важно понять, какая часть мощности уходит на выполнение полезной работы. Для этого необходимо узнать активную и реактивную мощность рассматриваемого электрического прибора. Далее на их основе определяют полную.

В электротехнике для определения мощности в сети постоянного тока используется следующее соотношение:

Формула мощности

В цепи переменного тока вычисление искомой величины производится более сложным образом. При этом следует учитывать, что изменения напряжения и тока по времени совпадать не будут. Электроток в ёмкостной нагрузке опережает напряжение, а в индуктивной, наоборот, отстает.

Поэтому при вычислении мощности принято использовать эффективные значения тока и напряжения. При этом рассматривается такая постоянная величина тока и напряжения, которая на активном сопротивлении выделит то же количество тепла, что и рассматриваемые переменные величины.

Сдвиг между напряжением и током

Конечно, в таких случаях можно также вычислить мгновенную мощность. Для этого достаточно перемножить мгновенные значения тока и напряжения. Однако данная величина не учитывает сильную инерцию энергетических процессов, в связи с чем подобный расчет величин имеет ограниченное применение.

Чтобы определить коэффициент активной мощности нужно разделить активную мощность на полную. Данный коэффициент позволяет оценить эффективность использования рассматриваемого технического решения. Соотношение между реактивной и активной мощностью определяет тангенс «фи».

Полная мощность измеряется в вольт-амперах (ВА). Для активной используют ватты (Вт). Для реактивной применяется единица измерения вольт-ампер реактивный (ВАР).

Поскольку сложение мощностей происходит по векторным правилам, то нужно учитывать, что векторы активной и реактивной составляющих перпендикулярны друг к другу. Результат вычислений представляет собой гипотенузу прямоугольного треугольника с указанными катетами. Формула полной мощности выглядит следующим образом:

Выражение для полной мощности

Это следует из теоремы Пифагора. Здесь применяется правило для нахождения гипотенузы прямоугольного треугольника. Если выразить катеты через гипотенузу и угол «фи», то можно получить формулу для определения активной мощности:

Активная мощность

Аналогичным образом выражается и реактивная:

Реактивная мощность

Следовательно, из формулы для активной мощности можно найти cosφ:

Определение косинуса фи

Для трехфазного напряжения формула принимает следующий вид:

Формула для трёхфазного напряжения

Поэтому следует понимать, что такое косинус «фи» в данной формуле. А это все тот же коэффициент мощности, который позволяет оценивать электроприемники при наличии реактивной составляющей в потребляемом токе.

Называется cosφ коэффициентом мощности в связи с тем, что при векторном сложении в прямоугольном треугольнике значение косинуса угла φ можно найти, разделив длину катета, соответствующего активной мощности, на длину гипотенузы, выражающей полную мощность. Следовательно, формула коэффициента мощности выглядит так:

Выражение для коэффициента мощности

Коэффициент активной мощности cosφ может иметь значение в диапазоне от 0 до 1. Иногда его выражают в процентах. В таком случае коэффициент обозначают греческой буквой «лямбда». Соотношение катетов в прямоугольном треугольнике определяет тангенс «фи».

Коэффициент мощности является низким в тех случаях, когда активная составляющая мала по сравнению с полной мощностью. Это говорит о неэффективности применяемого оборудования.

Для тока и напряжения синусоидальной формы cosφ соответствует косинусу угла отставания по фазе для этих параметров.

Сущность косинуса фи

Выгода электрооборудования с высоким коэффициентом мощности

Это связано с наличием следующих факторов:

  • Поставщики электроэнергии в некоторых случаях контролируют коэффициент мощности оборудования, используемого потребителями. Они могут выставлять дополнительный счёт, если он будет ниже 0.95. В том случае, когда коэффициент меньше 0.85, поставка электроэнергии может быть ограничена.
  • Низкий коэффициент приводит к тому, что при относительно небольшом объёме полезной работы происходят повышенные траты электроэнергии. Таким образом, за определённый объём полезной работы потребителю приходится переплачивать.
  • В линиях электропередач наличие высоких показателей указывает на незначительные потери при передаче энергии.
  • Низкий коэффициент в системе электроснабжения может приводить к уменьшению напряжения в сети. Это часто становится причиной перегрева используемых потребителем устройств.

При рассмотрении работы электрических устройств нужно учитывать, что часть из них генерирует реактивную мощность, а другие являются потребителями. Следовательно, применение первых приводит к возрастанию реактивной мощности, а использование вторых — к её уменьшению.

Реактивная мощность генерируется при работе асинхронного электродвигателя, трансформаторов, ветряных генераторов, систем освещения на разрядных лампах. Наличие реактивной нагрузки ухудшает эффективность работы оборудования. В качестве потребителей рассматриваются конденсаторы, синхронные двигатели и генераторы.

Для уменьшения реактивной мощности можно использовать следующие способы:

  • В цепи устанавливаются конденсаторы. При их использовании совместно с индуктивностью они образуют колебательный контур. В нём мощность от индуктивности будет потребляться ёмкостью.
  • Следует избегать работы асинхронных двигателей вхолостую или с малой мощностью.
  • Нужно исключить возможность работы оборудования при напряжении, которое превышает номинальное.
  • Рекомендуется по мере замены двигателей переходить на те, которые имеют более высокий коэффициент полезного действия.

Оптимальной нагрузкой является номинальная. Если используется нагрузка, значение которой меньше или больше номинальной, то это существенно снижает эффективность работы оборудования.

Как узнать коэффициент мощности

Значение рассматриваемого коэффициента указывается в сопроводительной технической документации к приобретаемому промышленному оборудованию или бытовому прибору. Однако при этом речь идёт о номинальном значении.

Указание косинуса фи на этикетке

Более точно коэффициент измеряется с помощью специализированного прибора, который называется фазометром.

Такие приборы могут быть электродинамическими или цифровыми. С помощью измерений можно достаточно просто и с большой точностью узнать чему равен cosφ и какова эффективность использования прибора.

Если фазометра нет в распоряжении, следует воспользоваться амперметром, вольтметром и ваттметром, с помощью которых измеряются такие физические величины, как сила тока, напряжение и мощность, а затем с помощью соответствующих формул вычислить коэффициент мощности.

Фазометр

Значения коэффициента для различных случаев

При измерении или вычислении коэффициента мощности необходимо знать характерные значения для различных видов оборудования:

  • При использовании нагревательных устройств, несмотря на возможное присутствие индуктивных элементов, считается, что вся используемая мощность является активной. В таких случаях принимают косинус «фи» равный единице.
  • Для перфораторов и ударных дрелей этот коэффициент составляет 0.95-0.97.
  • Сварочные трансформаторы в значительной степени используют индуктивную нагрузку. Поэтому коэффициент мощности трансформатора обычно находится в диапазоне от 0.5 до 0.85.

Значение коэффициента мощности

Когда значения коэффициента являются широко известными, их могут не указывать в сопроводительной документации. Нужно помнить, что хотя в большинстве случаев напряжение меняется синусоидально, иногда оно может существенно отклоняться от этой формы. В такой ситуации говорят о присутствии высших гармоник в колебаниях.

Их появление ведёт к дополнительным затратам мощности, а также снижает компенсацию реактивной мощности, если она применялась. Подобное явление наблюдается при работе с дуговыми сталеплавильными печами, установками дуговой сварки, газоразрядными лампами.

Видео по теме

В электродвигателе, а также в трансформаторе для работы необходимо создать магнитное поле. Это поле в цепях переменного тока меняется по синусоиде, причем энергия, с ним связанная, в течение половины периода течет от генератора к токоприемнику, а в следующий полупериод возвращается обратно в генератор.

Такая энергия называется реактивной. Протекание ее проявляется в виде добавочного тока, отстающего от напряжения, как показано на рис. 1, кривая в. Этот ток, протекая от генератора к приемнику и обратно, не производит полезной работы, а только вызывает дополнительное нагревание проводов, то есть дополнительные потери активной энергии.

Активный и реактивный токи, протекающие в проводе, складываются в один общий ток, который замеряется амперметром. Произведение этого полного тока на напряжение называется полной мощностью.

Отношение активной мощности к полной называется коэффициентом мощности . Для удобства технических расчетов коэффициент мощности выражают через косинус условного угла “фи” (cos φ ).

При изменяющейся нагрузке определяют усредненный коэффициент мощности за какой-то период времени. Для определения коэффициента мощности пользуются показаниями активного и реактивного счетчиков, что позволяет узнать средневзвешенное значение tg φ за весь период, в течение которого расходовалась энергия.

Если разделить расход реактивной энергии на расход активной энергии, то получим величину, называемую тангенсом “фи”:

tg φ = W реак/ W акт

Определив tg φ ср, находят величину cos φ .

Величину коэффициента мощности можно определить также по показаниям вольтметра, амперметра и ваттметра по следующим формулам:

для однофазного тока cos φ = P/UI

для трехфазного тока cos φ = P/ ( 1 , 73U лин I лин)

Рис. 1. Сдвиг по фазе между током и напряжением: а — кривая изменения напряжения, б — кривая активного тока, в — кривая емкостного тока, г — кривая изменения индуктивного тока

Коэффициент мощности можно определить с помощью фазометра. Подробнее об этом смотрите здесь: Как измерить коэффициент мощности

Определение cos φ с помощью электроизмерительных клещей

Определить коэффициент мощности отдельных электроприемников или участков сети при мало изменяющейся нагрузке можно с помощью фазометров или ваттметров. Однако эти способы затруднительны, так как требуют разрыва токовых цепей, а для мощных установок необходимо включение трансформаторов тока.

Для измерения cos φ без разрыва цепи тока используется способ с использованием электроизмерительных клещей типа Д90.

Электроизмерительные клещи Д90

В трехфазных цепях при симметричной нагрузке измеряют мощность в одной фазе. Для этого магнитопроводом клещей охватывают один из проводов линии, генераторную клемму параллельной цепи ваттметра присоединяют к той же фазе, а вторую к нулевому проводу. Затем клещами типа Ц91 или Ц4505 измеряют ток в фазе и фазное напряжение.

Коэффициент мощности вычисляют по формуле: cos φ = P/UI

При работе с измерительными клещами обязательно необходимо соблюдать меры безопасности.

Приказ Министерства энергетики РФ от 23 июня 2015 г. N 380
“О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии”

В соответствии с подпунктом “в” пункта 15 Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг, утвержденных постановлением Правительства Российской Федерации от 27 декабря 2004 г. N 861 (Собрание законодательства Российской Федерации, 2004, N 52 (ч. 2), ст. 5525; 2007, N 14, ст. 1687; N 31, ст. 4100; 2009, N 9, ст. 1103; N 8, ст. 979; N 17, ст. 2088; N 25, ст. 3073; N 41, ст. 4771; 2010, N 12, ст. 1333; N 24, ст. 2607; N 25, ст. 3175; N 40, ст. 5086; 2011, N 10, ст. 1406; 2012, N 4, ст. 504; N 23, ст. 3008; N 41, ст. 5636; N 49, ст. 6858; N 52, ст. 7525; 2013, N 30 (ч. 2), ст. 4119; N 31, ст. 4226; N 31, ст. 4236; N 32, ст. 4309; N 33, ст. 4392; N 35, ст. 4523; N 42, ст. 5373; N 44, ст. 5765; N 47, ст. 6105; N 48, ст. 6255; N 50, ст. 6598; 2014, N 7, ст. 689; N 9, ст. 913; N 11, ст. 1156; N 25, ст. 3311; N 32, ст. 4513; N 32, ст. 4521), приказываю:

1. Утвердить прилагаемый Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии.

2. Признать утратившим силу приказ Минпромэнерго России от 22 февраля 2007 г. N 49 “О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах энергоснабжения)” (зарегистрирован Минюстом России 22 марта 2007 г., регистрационный N 9134).

Зарегистрировано в Минюсте РФ 22 июля 2015 г.

Регистрационный N 38151

Порядок
расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии
(утв. приказом Министерства энергетики РФ от 23 июня 2015 г. N 380)

I. Общие положения

1. Настоящий Порядок разработан в соответствии с Правилами недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг, утвержденными постановлением Правительства Российской Федерации от 27 декабря 2004 г. N 861 (Собрание законодательства Российской Федерации, 2004, N 52 (ч. 2), ст. 5525; 2007, N 14, ст. 1687; N 31, ст. 4100; 2009, N 9, ст. 1103; N 8, ст. 979; N 17, ст. 2088; N 25, ст. 3073; N 41, ст. 4771; 2010, N 12, ст. 1333; N 24, ст. 2607; N 25, ст. 3175; N 40, ст. 5086; 2011, N 10, ст. 1406; 2012, N 4, ст. 504; N 23, ст. 3008; N 41, ст. 5636; N 49, ст. 6858; N 52, ст. 7525; 2013, N 30 (ч. 2), ст. 4119; N 31, ст. 4226; N 31, ст. 4236; N 32, ст. 4309; N 33, ст. 4392; N 35, ст. 4523; N 42, ст. 5373; N 44, ст. 5765; N 47, ст. 6105; N 48, ст. 6255; N 50, ст. 6598; 2014, N 7, ст. 689; N 9, ст. 913; N 11, ст. 1156; N 25, ст. 3311; N 32, ст. 4513; N 32, ст. 4521), и устанавливает требования к расчету значений соотношения потребления активной и реактивной мощности, определяемых при заключении и исполнении договоров об оказании услуг по передаче электрической энергии сетевыми организациями с потребителями услуг (договоров энергоснабжения гарантирующими поставщиками, энергосбытовыми, энергоснабжающими организациями с потребителями электрической энергии (далее – потребители).

2. Значения соотношения потребления активной и реактивной мощности определяются в виде диапазонов допустимых значений коэффициента реактивной мощности, задаваемых максимальным значением коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети, соблюдение которых обеспечивается потребителями посредством соблюдения режимов потребления электрической энергии (мощности) либо использования устройств компенсации реактивной мощности, и минимальным значением коэффициента реактивной мощности, генерируемой в часы малых суточных нагрузок электрической сети.

II. Общие требования к расчету

3. В случае участия потребителя по соглашению с сетевой организацией в регулировании реактивной мощности в договоре оказания услуг по передаче электрической энергии в отношении соответствующего энергопринимающего устройства (группы энергопринимающих устройств) определяются часы больших и (или) малых суточных нагрузок электрической сети в периоды участия потребителя в регулировании реактивной мощности, а также диапазоны допустимых значений коэффициентов реактивной мощности, устанавливаемые отдельно для часов больших и (или) малых суточных нагрузок электрической сети в периоды участия потребителя в регулировании реактивной мощности.

В случае урегулирования в интересах потребителя отношений по передаче электрической энергии гарантирующим поставщиком (энергосбытовой, энергоснабжающей организацией) указанное соглашение с сетевой организацией заключает в интересах потребителя гарантирующий поставщик (энергосбытовая, энергоснабжающая организация), при этом диапазоны допустимых значений коэффициентов реактивной мощности, устанавливаемые отдельно для часов больших и (или) малых суточных нагрузок электрической сети в периоды участия потребителя в регулировании реактивной мощности, определяются в договоре энергоснабжения, заключенном между потребителем и гарантирующим поставщиком (энергосбытовой, энергоснабжающей организацией), и в договоре оказания услуг по передаче электрической энергии, заключенном гарантирующим поставщиком (энергосбытовой, энергоснабжающей организацией) с сетевой организацией в интересах указанного потребителя.

4. Для энергопринимающих устройств потребителей, за исключением случаев, указанных в пункте 3 настоящего Порядка, сумма часов, составляющих определяемые соответствующими договорами об оказании услуг по передаче электрической энергии (договорами об оказании услуг по передаче электрической энергии и энергоснабжения в случае если договоры об оказании услуг по передаче электрической энергии в интересах потребителей заключены гарантирующими поставщиками (энергосбытовыми, энергоснабжающими организациями)) периоды больших и малых суточных нагрузок, должна быть равна 24 часам для каждых суток месяца. Если иное не определено указанными договорами, часами больших суточных нагрузок считается период с 7 часов 00 минут до 23 часов 00 минут по местному времени, а часами малых суточных нагрузок – с 23 часов 00 минут до 7 часов 00 минут по местному времени.

5. Максимальные и минимальные значения коэффициентов реактивной мощности определяются отдельно для каждой точки поставки потребителя на границе балансовой принадлежности энергопринимающих устройств и (или) иных объектов электроэнергетики такого потребителя со смежными субъектами электроэнергетики или потребителями.

При присоединении энергопринимающего устройства (группы энергопринимающих устройств) потребителя к объектам электросетевого хозяйства одной сетевой организации в нескольких точках в пределах одного распределительного устройства подстанции допускается задание максимального и минимального значения коэффициента реактивной мощности по совокупности точек поставки потребителя на одном уровне напряжения, по которому дифференцируется цена (тариф) на услуги по передаче электрической энергии, в пределах указанного распределительного устройства подстанции на границе балансовой принадлежности энергопринимающих устройств и (или) иных объектов электроэнергетики такого потребителя со смежными субъектами электроэнергетики или потребителями.

III. Расчет коэффициентов реактивной мощности

6. Для энергопринимающих устройств потребителей в точках поставки с уровнем напряжения 220 кВ и выше, а также с уровнем напряжения 110 кВ (154 кВ) в случае, если субъектом оперативно-диспетчерского управления в электроэнергетике заданы предельные значения соотношения активной и реактивной мощности на шинах классом напряжения 110 кВ (154 кВ) и выше объектов электросетевого хозяйства сетевой организации, к которым присоединены такие энергопринимающие устройства, максимальное значение коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети, минимальное значение коэффициента реактивной мощности, генерируемой в часы малых суточных нагрузок электрической сети, а также диапазоны допустимых значений коэффициента реактивной мощности, применяемые в периоды участия потребителя в регулировании реактивной мощности, определяются сетевой организацией на основе расчетов режимов работы электрической сети в указанные периоды, выполняемых сетевой организацией для нормальной и ремонтной схем сети, на основании заданных субъектом оперативно-диспетчерского управления в электроэнергетике предельных значений соотношения активной и реактивной мощности на шинах классом напряжения 110 кВ (154 кВ) и выше объектов электросетевого хозяйства данной сетевой организации.

7. Максимальные значения коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети, для энергопринимающих устройств потребителей в точках поставки с уровнем напряжения ниже 220 кВ, за исключением энергопринимающих устройств, определенных в пункте 6 настоящего Порядка, определяются в соответствии с приложением к настоящему Порядку.

8. Минимальные значения коэффициента реактивной мощности, генерируемой в часы малых суточных нагрузок электрической сети, за исключением часов малых суточных нагрузок электрической сети, применяемых в периоды участия потребителя в регулировании реактивной мощности, устанавливаются равными нулю.

Приложение
к Порядку расчета
значений соотношения потребления
активной и реактивной мощности
для отдельных энергопринимающих
устройств (групп энергопринимающих
устройств) потребителей электрической энергии

Максимальные значения коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети

Уровень напряжения в точке поставки потребителя электрической энергии

Максимальное значение коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети

Были установлены новые правила функционирования розничных рынков электроэнергии.

В связи с этим обновлен порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (их групп) потребителей электроэнергии.

Такие значения определяются в виде диапазонов допустимых показателей коэффициента реактивной мощности. Они задаются максимальным и минимальным значениями коэффициента реактивной мощности, потребляемой и генерируемой в часы больших и малых суточных нагрузок электросети соответственно. Данные значения рассчитываются отдельно для каждой точки поставки потребителя на границе балансовой принадлежности энергопринимающих устройств и (или) иных объектов электроэнергетики такого потребителя со смежными субъектами электроэнергетики или потребителями.

Для энергопринимающих устройств в точках поставки с напряжением 220 кВ и выше, а в ряде случаев – 110 кВ (154 кВ) максимальное и минимальное значения, а также диапазоны допустимых значений указанного коэффициента, применяемые в периоды участия потребителя в регулировании реактивной мощности, определяются сетевой организацией на основе расчетов режимов работы электросети в данные периоды.

Установлены максимальные значения коэффициента для энергопринимающих устройств в точках поставки с напряжением ниже 220 кВ.

Минимальные значения коэффициента устанавливаются равными 0 (кроме часов малых суточных нагрузок электросети, применяемых в периоды участия потребителя в регулировании реактивной мощности).

Приказ Министерства энергетики РФ от 23 июня 2015 г. N 380 “О Порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии”

Зарегистрировано в Минюсте РФ 22 июля 2015 г.

Регистрационный N 38151

Настоящий приказ вступает в силу по истечении 10 дней после дня его официального опубликования

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Содержание

Определение и физический смысл [ править | править код ]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения cos ⁡ φ <displaystyle operatorname varphi > (где φ <displaystyle varphi > — сдвиг фаз между силой тока и напряжением) либо λ <displaystyle lambda > . Когда для обозначения коэффициента мощности используется λ <displaystyle lambda > , его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстоят соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл [ править | править код ]

Можно показать, что если к источнику синусоидального напряжения (например, розетка

230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). Т.е. счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Математические расчёты [ править | править код ]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U <displaystyle U> (напряжение) и I <displaystyle I> (сила тока) используются следующие математические формулы:

  1. χ = P S <displaystyle chi =<frac

>>

  • P = U × I × cos ⁡ φ <displaystyle P=U imes I imes cos varphi >
  • Q = U × I × sin ⁡ φ <displaystyle Q=U imes I imes sin varphi >
  • S = ∑ k = 1 ∞ ( U ) × I = P 2 + Q 2 + T 2 <displaystyle S= extstyle sum _^<infty >displaystyle (U) imes I=<sqrt <2>+Q^<2>+T^<2>>>>
  • Здесь P <displaystyle P> — активная мощность, S <displaystyle S> — полная мощность, Q <displaystyle Q> — реактивная мощность, T – мощность искажения.

    Типовые оценки качества электропотребления [ править | править код ]

    При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

    Значение коэффициента мощности Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
    cos ⁡ φ <displaystyle operatorname varphi > 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5
    λ <displaystyle lambda > 95…100 % 80…95 % 65…80 % 50…65 % 0…50 %

    Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5. 0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos ⁡ φ <displaystyle operatorname varphi > близко к 1, то есть к идеальному значению.

    Несинусоидальность [ править | править код ]

    Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

    Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

    Коррекция коэффициента мощности [ править | править код ]

    Коррекция коэффициента мощности (англ. power factor correction (PFC)) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

    К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos ⁡ φ <displaystyle cos varphi > . Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

    Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт [ источник не указан 3159 дней ] . Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

    Причины необходимости компенсации реактивной мощности у потребителя электроэнергии. Некоторые аспекты применения коэффициентов мощности cos φ и реактивной мощности tg φ. Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ.

    Выработка, передача и потребление электроэнергии переменного тока сопряжено с решением ряда проблем и ключевой из них можно смело считать проблему компенсации реактивной мощности. В сетях переменного тока de facto потребителями реактивной мощности являются, как звенья самой сети (линии электропередачи, трансформаторы подстанций, шунтирующие реакторы и т.д.), так и все без исключения приемники электроэнергии, причем львиную долю реактивной мощности (порядка 60%) потребляют асинхронные двигатели сетей среднего и низкого напряжения, около четверти всей реактивной мощности приходится на трансформаторы разного назначения, в том числе трансформаторы понижающих подстанций и одну десятую часть делят между собой приемники, использующие для запуска и работы переменное магнитное поле (индукционные печи, выпрямители и т.д.).

    Генераторы электростанций в нормальном режиме работы вырабатывают активную мощность, в режиме перевозбуждения — реактивную мощность в объемах от 20% до 70% от средней потребности в реактивной мощности распределительных сетей, понижающих подстанций и приемников электроэнергии у потребителей. Также незначительная доля потребности в реактивной мощности компенсируется емкостью воздушных и кабельных линий, но все это в совокупности не решает и даже отчасти усугубляет проблему дефицита реактивной мощности и вызываемых этим негативных последствий, поскольку транспорт реактивной мощности от генераторов электростанций:

    • снижает объемы передаваемой активной мощности, около 10% которой и так теряется в различных звеньях сетей разного напряжения;
    • значительно повышает риски перегрева линий электропередач; перегружает трансформаторы подстанций более высокого уровня;
    • уменьшает число оптимальных для подключения к сети потребителей;
    • приводит к падению сетевого напряжения и ухудшению качества передаваемой электроэнергии.

    По этим причинам в РД 34.20.185-94 «Инструкция по проектированию городских электрических сетей» (п. 5.2.9), «Методических указаниях по проектированию развития энергосистем» Минпромэнерго (п. 5.36.3), «Правилах технической эксплуатации электрических станций и сетей Российской Федерации» Минэнерго РФ (п. 6.3.16) и ряде других нормативно-правовых актов определена необходимость использования устройств компенсации реактивной мощности у потребителей, что снижает объемы перетоков мощности и в целом увеличивает пропускную способность сетей различного напряжения.

    Далекий от электротехники, но весьма наглядный пример

    Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

    Тележка на рельсах

    Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

    Угол приложения усилий

    Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

    Сдвиг фаз между напряжением и током

    При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

    Активная нагрузка

    Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

    Индуктивная нагрузка

    При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

    Емкостная нагрузка

    Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?

    В разделе Техника на вопрос для чего нужен тангенс фи в электроэнергетики? При tgф<0 потребитель выдает реактивную мощность (емкостной характер) , при tgф>1 потребитель потребляет реактивную мощность (индуктивный характер).

    Рассмотрев треугольник сопротивлений, можно понять смысл термина «тангенс фи». Это отношение между реактивной и активной составляющими нагрузки. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

    Часть электрической мощности, пришедшая к потребителю, используется для совершения полезной работы и тепловое рассеяние на нагрузке у потребителя. Почему фазовый сдвиг приводит к потерям электроэнергии? Если активное сопротивление проводника просто рассеивает электроэнергию, переводя ее в тепловую, то фазовый сдвиг между током и напряжением приводит к повышенному расходу энергии на электростанции. Отношение активной мощности, потребляемой в нагрузке, и полной мощности, подаваемой на нагрузку по линии электропередач, численно равно cos(φ), где φ – угол фазового сдвига между током и напряжением. С другой стороны, 0% — крайне нежелательный вариант, когда φ=π/2, cos(φ)=0, при этом вся подаваемая мощность переменного тока отражается от реактивной нагрузки и рассеивается в подводящих проводах.

    Р — мощность активная,Q — мощность реактивная. Главный инженер ЭнергосбытаА.

    Мне тут в акте о разграничении балансовой ответственности МКС прописал Базовый коэффициент реактивной мощности тангенс Фи, который равен 0,2. Это как понимать?

    Активный и реактивный токи, протекающие в проводе, складываются в один общий ток, который замеряется амперметром. Отношение активной мощности к полной называется коэффициентом мощности. Для удобства технических расчетов коэффициент мощности выражают через косинус условного угла «фи» (cosφ).

    Коэффициент мощности (cos φ) это параметр, характеризующий искажения формы тока, потребляемого от электросети переменного тока. Важный показатель потребителя электроэнергии. Для оценки и расчетов цепей переменного тока используются действующие значения тока и напряжения. Вольтметры и амперметры переменного тока показывают именно действующие значения. Полная мощность в цепях переменного тока равна квадратному корню из суммы квадратов активной и реактивной мощностей. Фазового сдвига нет, cos φ = 1, вся энергия из сети переходит в активную мощность на нагрузке.

    Косинус фи (cos φ) — это косинус угла между фазой напряжения и фазой тока. При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю. Получается что полезная, активная мощность равна 0(нулю). Счетчики активной мощности фиксируют соответственно только активную мощность.

    Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности. Численно коэффициент мощности равен косинусу этого фазового сдвига. Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Тогда в однофазной цепи cos φ = P / (U х I), где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно.

    В тренде:

    • Как Путин обошел Обаму в списке «Форбс»?Если это действительно так, то Путин с легкостью попадает в первую десятку богатейших людей мира по версии журнала Forbes. Этот журнал ежегодно проводит публикацию рейтинга самых богатых […]
    • Когда можно съесть банан, а когда нельзяЛучше всего их кушать утром, когда ваш организм так жаден к питательным веществам. Возможно, банан – именно то, чего в этот момент так не хватает организму. Съеденный банан перед сном […]
    • Типичные ошибки при приготовлении пломбираЕго разводят в молоке, а после заваривают до густоты. Если в пломбир добавляют ароматизаторы или ягоды и фрукты, то делать это нужно на заключительном этапе приготовления, уже пред тем как […]

    Треугольник мощностей

    Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

    Треугольник мощностей

    Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи — это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

    На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

    Как посчитать баланс мощностей между сетями 0.4 кВ и 6 (10) кВ.

    Расчетные значения активной Рр и реактивной Qр мощности определяются, как Рр = Рмакс + ΔРт и Qр = Qмакс + ΔQт, где ΔРт и ΔQт потери мощности в трансформаторах по паспортным данным или приближенно по формулам ΔРт = 0.02*Sр и ΔQт = 0.1*Sр, где полная расчетная мощность Sр = √(P²+Q²)

    Устанавливают заданные по ТУ или расчетные входные реактивные мощности QЭ1 и QЭ2, которые будут переданы из сети электросетевой компании в сеть объекта в режимах наибольшей и наименьшей активных нагрузок:

    QЭ1 принимается по меньшему значению, определяемому из формул QЭ1 = Qр – 0.7*Qсд и QЭ1 = α*Рр, где Qсд – реактивная мощность, генерируемая синхронными двигателями (см. выше или при отсутствии синхронных двигателей в сети Qсд = 0), α – расчетный коэффициент из таблицы ниже
    Таблица.
    Расчетные коэффициенты α для энергосистем разных регионов.

    Энергетические системы по регионкам Значение коэффициента α для шин 6-20 кВ при высшем напряжении
    35 кВ 110-150 кВ 200-330 кB
    Северо — Запада, Центра, Средней Волги, Юга, Казахстана 0,23 0,28 0,37
    Средней Азии 0,30 0,35 0,47
    Сибири 0,24 0,29 0,40
    Урала 0,27 0,31 0,42
    Северного Кавказа, Закавказья 0,22 0,26 0,34
    Востока 0,20 0,35 0,32

    QЭ2 устанавливается по большему предельному значению из формул QЭ2 = Qмин – (Qр — QЭ1) и QЭ2 = Qмин + Qк, где Qк – реактивная мощность, генерируемая эксплуатируемыми установками при их наличии (при отсутствии Qк = 0 и QЭ2 = Qмин).

    Усредненные значения коэффициента мощности

    Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

    В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

    Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

    Сварочный аппарат

    Как посчитать число и мощность трансформаторов.

    Определяют удельную плотность нагрузки трансформаторов по расчетной полной мощности Sр и площади объекта F, а именно σ = Sр/F

    Устанавливают пороговые значения номинальной мощности трансформаторов Sнт по удельной плотности нагрузки с учетом того, что:

    • при σ ˂ 0.2 кВА/м² целесообразны трансформаторы мощностью до 1000 кВА;
    • при σ ˂ 0.2-0.3 кВА/м² целесообразны трансформаторы мощностью 1600 кВА;
    • при σ > 0.3 кВА/м² целесообразны трансформаторы мощностью 1600 кВА или 2500 кВА.

    Таблица.
    Рекомендуемая номинальная мощность трансформатора при различной удельной плотности нагрузки.

    Удельная плотность нагрузки σ кВА 0,05 0,08-0,14 0,15-0,2 0,21-0,3 0,3-0,35
    Номинальная мощность Sнт кВА 400 630 1000 1600 2500

    Находят число трансформаторов (с округлением в сторону большего целого значения) Nт = Рмакс/(Кз*Sнт), где Кз – коэффициент загрузки трансформатора, который принимают равным:

    • Кз = 0.65-0.7 при преобладании нагрузок I категории для двухтрансформаторной подстанции;
    • Кз = 0.7-0.8 при преобладании нагрузок II категории для однотрансформаторных ТП и взаимном резервировании на стороне низшего напряжения;
    • Кз = 0.9-0.95 при нагрузках II категории и наличии складского резерва, а также при преобладании нагрузок III категории.

    На что влияет низкий коэффициент мощности

    К чему могут привести низкие показатели коэффициента мощности:

    • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8 I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
    • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
    • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

    Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

    Целесообразность компенсации реактивной мощности для потребителя можно рассматривать, как в техническом, так и экономическом аспектах. В случае подключения потребителя к распределительной сети 6,3 (10,5) кВ конденсаторные установки могут интегрироваться на подстанции в балансовой принадлежности электросетевой компании и тогда потребитель будет иметь чисто техническую выгоду от качества получаемой электроэнергии. При установке КРМ 6,3 (10,5) кВ (или УКРМ 6,3 (10,5) кВ) на шинах РУ 6,3 (10,5) кВ предприятия, или на шинах РУ цеховых ТП 6-10/0,4 кВ, шинах первичных цеховых РП 0,4 кВ, а также непосредственно у электроприемников, потребитель будет иметь, как техническую, так и экономическую выгоду за счет возможности использования активной мощности в более полном объеме и соответственно снижения затрат на «балластную» реактивную мощность.

    Plan

    • 1 Что такое реактивная мощность простыми словами?
    • 2 Как рассчитывается активная реактивная и полная мощность трехфазной цепи?
    • 3 Что такое коэффициент Фи?
    • 4 Как определяется коэффициент мощности?
    • 5 Зачем нужно повышать коэффициент мощности?
    • 6 Как найти реактивную мощность?
    • 7 Когда косинус фи равен 1?
    • 8 В чем измеряется cos фи?
    • 9 Как можно найти тангенс?
    • 10 Как найти косинус какого то числа?

    Что такое реактивная мощность простыми словами?

    Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ). Таким образом, реактивная мощность является величиной характеризующей нагрузку.

    В чем разница между активной и реактивной мощности?

    Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной. Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока.

    Что такое активная мощность?

    Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии.

    Как рассчитывается активная реактивная и полная мощность трехфазной цепи?

    Активная мощность трехфазной цепи равна сумме активных мощностей ее фаз: Реактивная мощность трехфазной цепи равна сумме реактивных мощностей ее фаз: Очевидно, что в симметричной трехфазной цени Тогда Мощность одной фазы определяется по формулам для однофазной цепи….

    Как определяется полная мощность трехфазной цепи?

    Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

    Как найти коэффициент мощности трехфазной цепи?

    P=U*I*sinφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

    Что такое коэффициент Фи?

    Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность.

    Как найти коэффициент мощности цепи?

    Определение коэффициента мощности PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.

    Как определяется коэффициент мощности cos φ?

    Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра). Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением.

    Как определяется коэффициент мощности?

    Обозначается чаще всего λ («лямбда»), PF (Power Factor) или по старинке cosφ: THD — Total Harmonic Distortion или КНИ (коэффициент нелинейных искажений) — коэффициент, определяемый отношением действующего значения первой гармоники тока к корню из суммы квадратов высших гармоник.

    Как определить коэффициент мощности трансформатора?

    Она равна полусумме номинальных мощностей всех обмоток трансформатора, т. е. полусумме произведений наибольшего длительно допустимого в каждой обмотке тока на допустимое напряжение.

    Каким образом можно повысить коэффициент мощности?

    Увеличения коэффициента мощности (уменьшения угла φ — сдвига фаз тока и напряжения) можно добиться следующими способами:

    1. заменой мало загруженных двигателей двигателями меньшей мощности,
    2. понижением напряжения
    3. выключением двигателей и трансформаторов, работающих на холостом ходу,

    Зачем нужно повышать коэффициент мощности?

    Повышение коэффициента мощности позволяет уменьшить номинальные значения мощности трансформаторов, распределительных устройств, кабелей, а также сократить потери мощности и ограничить потери напряжения.

    Для чего нужен коэффициент мощности?

    Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность).

    Что является причиной низкого коэффициента мощности?

    Напомним, что причиной низкого коэффициента мощности являются индуктивные нагрузки, которым нужна реактивная мощность. Увеличение реактивной мощности приводит к увеличению полной мощности, потребляемой от поставщика электроэнергии.

    Как найти реактивную мощность?

    Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.

    Как найти ФИ в электротехнике?

    cos фи = P / (U х I), где Р, U, I — показания приборов. где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

    Как определить косинус фи у трансформатора?

    Косинус фи составляет 0,83.

    Когда косинус фи равен 1?

    При активной нагрузке (лампа накаливания, электрочайник) косинус фи (cosφ) равен единице, так как угол фи — ноль. При емкостной нагрузке ток будет опережать напряжение, а при индуктивной — отставать.

    Какой косинус фи у светодиодных ламп?

    Если, например, взять ДРД лампы, то косинус «ФИ» представлен значением 0,5, это говорит о том, что до 50% тратится просто так. Самый высокий показатель у светодиодных светильников. От 0,9 до 1.

    Что такое синус фи?

    Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. …

    В чем измеряется cos фи?

    Реактивная мощность измеряется в вольт-амперах реактивных (Вар, кВАр), а общая мощность измеряется в кВА. Коэффициент мощности, он же cosφ — это отношение активной мощности к полной.

    Чему равен тангенс фи?

    Тангенс фи – характеристика потерь Это отношение между реактивной и активной составляющими нагрузки. При возрастании доли реактивной составляющей тангенс возрастает, в пределе стремясь к бесконечности. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

    Как найти тангенс через косинус?

    Тригонометрические формулы

    1. При известном синусе или косинусе числа можно найти его тангенс или котангенс: tg a = sin a/cos a.
    2. Можно найти синус числа, если известен его косинус и наоборот: sin2 a + cos2 a = 1.
    3. Найти тангенс можно через синус при известном косинусе: 1 + tg2 a = 1/cos2 a.

    Как можно найти тангенс?

    Представляет собой соотношение катетов прямоугольного треугольника. То есть, tg(А)=ВС/АС, где ВС – противолежащий к углу (А) катет, АС – прилежащий катет.

    Как найти тангенс если известен косинус на калькуляторе?

    Как найти тангенс фи если известен косинус на инженерном калькулятор? Очень нужно для расчета электрических нагрузок Возводишь косинус в квадрат и делишь 1 на полученное значение (на калькуляторе есть кнопка 1/х) . Из полученного значения вычитаешь 1 и из получившегося числа извлекаешь корень квадратный.

    Как найти тангенс фи зная косинус фи формула?

    Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ

    Как найти косинус какого то числа?

    Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе. Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней. Значение косинуса всегда лежит в пределах от (-1) до (1).

    Как найти косинус тангенс и котангенс если известен синус?

    Тангенс это отношение синуса к косинусу: Tg(a)=Sin(a)/Cos(a). Котангенс это отношение косинуса к синусу: Ctg(a)=Cos(a)/Sin(a).

    Добавить комментарий