Как найти тангенс фигуры

Здравствуйте, дорогие читатели. В этом выпуске поговорим о задании, которое иногда доставляет неожиданные неприятности на экзамене. Задания довольно простые, но бывают промахи. Это задания, которые сделаны как бы на тетрадном листочке в клеточку. Итак, давайте начнем.

Задание №1. УГЛЫ

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №1

Найти тангенс угла АОB
Найти тангенс угла АОB

Запомните, чтобы найти тангенс острого угла на таких картинках, обязательно нужно достроить до прямоугольного треугольника.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Вспомним, что такое тангенс острого угла прямоугольного треугольника?

Определение тангенса острого угла:

Тангенсом острого угла прямоугольного треугольника, называется отношение противолежащего катета к прилежащему. Катет BF- противолежащий угла FОВ, OF – прилежащий к углу FOB.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №2

Фигуры на квадратной решетке. Задание №18 ОГЭ

Чтобы найти тангенс угла АОВ на этой картинке, нужно достроить до прямоугольного треугольника, и найти стороны этого треугольника.

1. Достроим до треугольника ОВН и докажем, что он прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

2. Для этого достроим на стороне ОН, ОВ и ВН прямоугольные треугольники ОСВ, ОНК и BDH. Докажем, что треугольник АВН прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Найдем гипотенузу ОВ прямоугольного треугольника ОСВ, гипотенузу ОН прямоугольного треугольника ОКН и гипотенузу ВН прямоугольного треугольника ВDH через теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Фигуры на квадратной решетке. Задание №18 ОГЭ
Фигуры на квадратной решетке. Задание №18 ОГЭ

Теперь докажем, что треугольник ОВН прямоугольный. Воспользуемся обратной теоремой Пифагора: если квадрат одной стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Так как равенство верно, то треугольник ОВН прямоугольный.

Теперь найдем тангенс угла АОВ

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задание №2 Расстояние

Фигуры на квадратной решетке. Задание №18 ОГЭ
Вычисление расстояния между точкой и отрезком
Вычисление расстояния между точкой и отрезком

Для выполнения этого задания, проведите отрезок ВС, найдите середину его и отметим точкой К. Проведите отрезок АК, который равен 4. Ответ 4

Задание №3 Площадь

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №1

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задание простое, но есть ошибки по невнимательности.

Задача №2

а) Площадь треугольника и параллелограмма

Вычисление площади треугольника и параллелограмма
Вычисление площади треугольника и параллелограмма

Запомните! Площадь треугольника от площади параллелограмма отличается только тем, что площадь треугольника нужно делить на 2, а площадь параллелограмма нет.

б) Площадь трапеции. Чтобы найти площадь трапеции, нужно сложить основания трапеции, умножить на высоту и поделить на 2.

Вычисление площади трапеции
Вычисление площади трапеции

в) Площадь ромба равна половине произведения диагоналей.

Вычисление площади ромба
Вычисление площади ромба

Это не все типы заданий, что встречаются на экзамене. Продолжение следует.

Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Фигуры на квадратной решетке. Задание №18 ОГЭ

№8. Найдите тангенс угла AOB, изображенного на рисунке.

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Опустим перпендикуляр AH на сторону OB.

Рассмотрим прямоугольный △ A O H :

Геометрия. Урок 1. Задания. Часть 2.

Тангенс угла – отношение противолежащего катета к прилежащему.

tg ∠ A O H = A H O H = 4 2 = 2

Ответ: 2

№9. Найдите тангенс угла A треугольника ABCб изображённого на рисунке.

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Геометрия. Урок 1. Задания. Часть 2.

Тангенс угла – это отношение противолежащего катета к прилежащему.

tg ∠ B A C = B C A C = 2 5 = 0,4

Ответ: 0,4

№10. На рисунке изображена трапеция ABCD. Используя рисунок, найдите sin ∠ B A H .

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Рассмотрим прямоугольный △ A B H :

Геометрия. Урок 1. Задания. Часть 2.

Синус угла – отношение противолежащего катета к гипотенузе.

sin ∠ A = B H A B

Найдем AB по теореме Пифагора:

A B 2 = A H 2 + B H 2

A B 2 = 3 2 + 4 2

A B 2 = 9 + 16 = 25

A B = ± 25 = [ − 5 не подходит 5 подходит

A B = 5

sin ∠ A = B H A B = 4 5 = 0,8

Ответ: 0,8

№11. На рисунке изображен ромб ABCD. Используя рисунок, найдите tg ∠ O B C .

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Геометрия. Урок 1. Задания. Часть 2.

Тангенс угла – это отношение противолежащего катета к прилежащему.

tg ∠ O B C = O C B O = 3 4 = 0,75

Ответ: 0,75

№12. На рисунке изображена трапеция ABCD. Используя рисунок, найдите cos ∠ H B A .

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Рассмотрим прямоугольный △ A B H :

Геометрия. Урок 1. Задания. Часть 2.

Косинус угла – отношение прилежащего катета к гипотенузе.

cos ∠ A B H = B H A B

Найдем A B по теореме Пифагора:

A B 2 = A H 2 + B H 2

A B 2 = 6 2 + 8 2

A B 2 = 36 + 64 = 100

A B = ± 100 = [ − 10 не подходит 10 подходит

A B = 10

cos ∠ A B H = B H A B = 8 10 = 0,8

Ответ: 0,8

№13. Найдите тангенс угла, изображенного на рисунке.

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Геометрия. Урок 1. Задания. Часть 2.

tg β = tg ( 180 ° − α ) = − tg α

Рассмотрим прямоугольный △ B C H .

Тангенс угла – отношение противолежащего катета к прилежащему.

tg α = C H B H = 3 1

tg β = − tg α = − 3

Ответ: -3

№14. Найдите тангенс угла AOB.

Геометрия. Урок 1. Задания. Часть 2.

Решение:

Опустим высоту BH на сторону OA.

Рассмотрим прямоугольный △ O B H :

Геометрия. Урок 1. Задания. Часть 2.

tg ∠ O = B H O H

Найдем B H и O H по теореме Пифагора:

B H 2 = 2 2 + 8 2 = = 4 + 64 = 68

B H = ± 68   = ± 4 ⋅ 17 = ± 4 ⋅ 17 = ± 2 17 = [ − 2 17 не подходит 2 17 подходит

B H   =   2 17

O H 2 = 1 2 + 4 2 = 1 + 16 = 17

O H = ± 17 = [ − 17 не подходит 17 подходит

O H   =   17

tg ∠ O = B H O H = 2 17 17 = 2

Ответ: 2

Всего: 40    1–20 | 21–40

Добавить в вариант

Тип 18 № 40

i

Найдите тангенс угла AOB, изображенного на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, в треугольнике, изображённом на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB. Размер клетки 1 × 1.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс AOB

Всего: 40    1–20 | 21–40

Как найти тангенс внешнего угла

Если продолжить любую сторону многоугольника, в точке примыкания к ней смежной стороны получится развернутый угол, разделенный примыкающей стороной на два – внешний и внутренний. Внешним называется тот из них, который лежит вне периметра геометрической фигуры. Его величина связана с размерами внутреннего определенным соотношением, а величина внутреннего, в свою очередь, связана с другими параметрами многоугольника. Такая взаимосвязь позволяет, в частности, рассчитать по параметрам многоугольника тангенс внешнего угла.

Как найти тангенс внешнего угла

Инструкция

Если вам известна величина соответствующего внешнему углу (α₀) внутреннего (α), исходите из того, что вместе они всегда образуют развернутый угол. Величина развернутого равна 180° в градусах, что соответствует числу Пи в радианах. Из этого вытекает, что тангенс внешнего угла равен тангенсу разницы между 180° и величиной внутреннего угла: tg(α₀) = tg(180°-α₀). В радианах эту формулу надо записать так: tg(α₀) = tg(π-α₀).

Если в условиях задачи дана величина тангенса внутреннего угла (α), тангенс внешнего (α₀) приравнивайте к ней, но с измененным знаком: tg(α₀) = -tg(α).

Зная величину какой-нибудь другой тригонометрической функции, выражающей внутренний угол (α), проще всего для расчета тангенса внешнего (α₀) использовать обратную функцию, чтобы вычислить градусную меру внутреннего. Например, если известно значение косинуса, величину угла можно найти с использованием арккосинуса: α = arccos(cos(α)). Подставьте полученную величину в формулу из предыдущего шага: tg(α₀) = -tg(arccos(cos(α))).

В треугольнике величина любого внешнего угла (α₀) равна сумме величин двух внутренних углов (β и γ), лежащих в других вершинах фигуры. Если эти две величины известны, вычислите тангенс их суммы: tg(α₀) = tg(β+γ).

В прямоугольном треугольнике величину тангенса внешнего угла (α₀) можно рассчитать по длинам двух катетов. Разделите длину того из них, который лежит напротив вершины внешнего угла (a), на длину прилегающего к этой вершине (b). Результат надо брать с противоположным знаком: tg(α₀) = -a/b.

Если требуется вычислить тангенс внешнего угла (α₀) правильного многоугольника, вполне достаточно будет знания числа вершин (n) этой фигуры. По определению любой правильный многоугольник можно вписать в окружность, а любой внешний угол будет равен центральному углу круга, соответствующему длине стороны. Поскольку все стороны одинаковы, центральный угол можно рассчитать делением полного оборота – 360° – на количество сторон 360°/n. Значит, для получения искомого значения найдите тангенс от соотношения 360° и числа вершин: tg(α₀) = tg(360°/n).

Источники:

  • рассчитать тангенс

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Тангенс

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение…

Итак, есть два определения:

  1. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

    Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

  2. Тангенс – это отношение синуса к косинусу.

    Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

Приняты обозначения:

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Треугольник

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Сумма углов

Так как тангенс – это отношение катетов, то

Отношение катетов

Получается, что

Результат вычислений

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

В частности,

Углы

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Тригонометрическое тождество

Из формулы тангенсов, записывающей кратко второе определение

Формула

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится его зависимость от косинуса:

Зависимость

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Синус

Добавить комментарий