Как найти тангенс меньшего угла параллелограмма

Помогите из публицистического текста переписать в научный

Роман  Тургенева  «Накануне»: идейно-художественное своеобразие

Из каких слоев общества появятся «новые люди»? Что будет отличать их от поколения Рудиных и Лаврецких? Какую про­грамму обновления России они примут и как приступят к осво­бождению народа от крепостного права? Эти вопросы волновали Тургенева давно. Еще в 1855 году, в момент работы над «Руди­ным», задача, которую он поставил в «Накануне», уже начинала возникать перед ним: «Фигура главной героини, Елены, тогда еще нового типа в русской жизни, довольно ясно обрисовывалась в моем воображении,— вспоминал Тургенев,— но недоставало ге­роя, такого лица, которому Елена, при ее еще смутном, хотя сильном стремлении к свободе, могла предаться» (XII, 306), Тогда же сосед Тургенева, отправляясь в Крым в качестве офи­цера дворянского ополчения, оставил писателю рукопись автобио­графической повести, одним из главных героев которой был моло­дой болгарский революционер, студент Московского университе­та. Теперь мы знаем, что прототипом тургеневского Инсарова явился Николай Димитров Катранов, родившийся в 1829 году в болгарском городе Свиштов в небогатой купеческой семье. В 1848 году в составе большой группы болгарских юношей он приехал в Россию и поступил на историко-филологический фа­культет Московского университета.

Начавшаяся в 1853 году русско-турецкая война всколыхнула революционные настроения балканских славян, боровшихся за избавление от многовекового турецкого ига. В начале 1853 года Николай Катранов с русской женой Ларисой уехал на родину. Но внезапная вспышка туберкулеза спутала все планы. При­шлось вернуться в Россию, а затем ехать на лечение в Венецию, где Катранов простудился и скоропостижно скончался 5 мая 1853 года. Это был талантливый человек: он писал стихи, зани­мался переводами, горячо пропагандировал среди русских друзей идею освобождения родины.  

Вплоть до 1859 года тетрадь с рукописью Каратеева — так звали тургеневского соседа — лежала без движения, хотя, позна­комившись с ней, писатель воскликнул: «Вот герой, которого я искал! Между тогдашними русскими такого еще не было». Поче­му же Тургенев обратился к этой тетради в 1859 году, когда и в России подобного типа герои уже появились? Почему в качестве образца для русских «сознательно-героических натур» Тургенев предлагает болгарина Дмитрия Инсарова? Что не устроило, на­конец, Тургенева в добролюбовской интерпретации романа «На­кануне», опубликованного в январском номере журнала «Русский вестник» в 1860 году?

Н. А. Добролюбов, посвятивший разбору этого романа специ­альную статью «Когда же придет настоящий день?», дал класси­ческое определение художественному дарованию Тургенева, уви­дев в нем писателя, чуткого к общественным проблемам. Очередной его роман «Накануне» еще раз блестяще оправдал эту репу­тацию. Добролюбов отметил четкую расстановку в нем главных действующих лиц. Центральная героиня Елена Стахова стоит перед выбором, на место ее избранника претендуют молодой уче­ный, историк Берсенев, будущий художник, человек искусства Шубин, успешно начинающий служебную деятельность чиновник Курнатовский и, наконец, человек гражданского подвига, болгар­ский революционер Инсаров. Социально-бытовой сюжет романа имеет символический подтекст: Елена Стахова олицетворяет мо­лодую Россию «накануне» предстоящих перемен, Кто всего нуж­нее ей сейчас: люди науки или искусства, государственные чинов­ники или героические натуры, люди гражданского подвига? Выбор Еленой Инсарова дает недвусмысленный ответ на этот вопрос.

Добролюбов заметил, что в Елене Стаховой «сказалась та смутная тоска по чем-то, та почти бессознательная, но неотрази­мая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называе­мое образованное» (VI, 120).

В описании детских лет Елены Тургенев обращает внимание на глубокую близость ее к народу. С тайным уважением и стра­хом слушает она рассказы нищей девочки Кати о жизни «на всей божьей воле» и воображает себя странницей, покинувшей отчий дом и скитающейся по дорогам. Из народного источника пришла к Елене русская мечта о правде, которую надо искать далеко-далеко, со странническим посохом в руках. Из того же источни­ка— готовность пожертвовать собой ради других, ради высокой цели спасения людей, попавших в беду, страдающих и несчаст­ных. Не случайно в разговорах с Инсаровым Елена вспоминает буфетчика Василия, «который вытащил из горевшей избы безно­гого старика и сам чуть не погиб».

Даже внешний облик Елены напоминает птицу, готовую взле­теть, и ходит героиня «быстро, почти стремительно, немного на­клонясь вперед». Смутная тоска и неудовлетворенность Елены тоже связаны с темой полета: «Отчего я с завистью гляжу на пролетающих птиц? Кажется, полетела бы с ними, полетела — куда, не знаю, только далеко, далеко отсюда» (VIII, 79). Устрем­ленность к полету проявляется и в безотчетных поступках герои­ни: «Долго глядела она на темное, низко нависшее небо; потом она встала, движением головы откинула от лица волосы и, сама не зная зачем, протянула к нему, к этому небу, свои обнаженные, похолодевшие руки…» (VIII, 35—36). Проходит тревога — «опу­скаются невзлетевшие крылья». И в роковую минуту, у постели больного Инсарова, Елена видит высоко над водой белую чайку: «Вот если она полетит сюда,— подумала Елена,— это будет хоро­ший знак…» Чайка закружилась на месте, сложила крылья — и, как подстреленная, с жалобным криком пала куда-то далеко за темный корабль» (VIII, 157).

Таким же окрыленным героем, достойным Елены, оказывается Дмитрий Инсаров. Что отличает   его   от русских   Берсеневых   и  Шубиных? Прежде всего — цельность характера, полное отсутст­вие противоречий между словом и делом. Он занят не собой, все помыслы его сосредоточены на одной цели — освобождении роди­ны, Болгарии. Тургенев верно уловил в характере Инсарова типи­ческие черты лучших людей эпохи болгарского Возрождения: широту и разносторонность умственных интересов, сфокусирован­ных в одну точку, подчиненных одному делу — освобождению на­рода от векового рабства. Силы Инсарова питает и укрепляет живая связь с родной землей, чего так не хватает русским геро­ям романа — Берсеневу, который пишет труд «О некоторых осо­бенностях древнегерманского права в деле судебных наказаний», талантливому Шубину, который лепит вакханок и мечтает об Италии. И Берсенев, и Шубин — тоже деятельные люди, но их деятельность слишком далека от насущных потребностей народ­ной жизни. Это люди без крепкого корня, отсутствие которого придает их характерам или внутреннюю вялость, как у Берсене­ва, или мотыльковое непостоянство, как у Шубина.

В то же время в характере Инсарова сказывается родовая ограниченность, типичная для Дон-Кихота. В поведении героя подчеркиваются упрямство и прямолинейность, некоторый педан­тизм. Художественную завершенность эта двойственная характе­ристика получает в ключевом эпизоде с двумя статуэтками ге­роя, которые вылепил Шубин. В первой Инсаров представлен героем, а во второй — бараном, поднявшимся на задние ноги и склоняющим рога для удара. Не обходит Тургенев в своем ро­мане и размышлений о трагичности судьбы людей донкихотского склада.

Рядом с сюжетом социальным, отчасти вырастая из него, от­части возвышаясь над ним, развертывается в романе сюжет фи­лософский. «Накануне» открывается спором между Шубиным и Берсеневым о счастье и долге. «…Каждый из нас желает для се­бя счастья… Но такое ли это слово «счастье», которое соединило, воспламенило бы нас обоих, заставило бы нас подать друг другу руки? Не эгоистическое ли, я хочу сказать, не разъединяющее ли это слово?» (VIII, 14). Соединяют людей слова: «родина», «нау­ка», «справедливость». И «любовь», но только если она — не «лю­бовь-наслаждение», а «любовь-жертва».

Инсарову и Елене кажется, что их любовь соединяет личное с общественным, что она одухотворяется высшей целью. Но вот оказывается, что жизнь вступает в некоторое противоречие с же­ланиями и надеждами героев. На протяжении всего романа Ин­саров и Елена не могут избавиться от ощущения непростительно­сти своего счастья, от чувства виновности перед кем-то, от страха расплаты за свою любовь. Почему?

Жизнь ставит перед влюбленной Еленой роковой вопрос: со­вместимо ли великое дело, которому она отдалась, с горем бед­ной, одинокой матери, которое попутно этим делом вызывается? Елена смущается и не находит на этот вопрос возражения. Ведь любовь Елены к Инсарову приносит страдание не только матери: она оборачивается невольной нетерпимостью и по отношению к отцу, к русским друзьям — Берсеневу и Шубину, она ведет Елену к разрыву с Россией. «Ведь все-таки это мой дом,—думала она,— моя семья, моя родина…»

Елена безотчетно ощущает, что и в ее чувствах к Инсарову счастье близости с любимым человеком временами преобладает над любовью к тому делу, которому весь, без остатка, хочет от­даться герой. Отсюда — чувство вины перед Инсаровым: «Кто знает, может быть, я его убила».

В свою очередь, Инсаров задает Елене аналогичный вопрос: «Скажи мне, не приходило ли тебе в голову, что эта болезнь по­слана нам в наказание?» (VIII, 128). Любовь и общее дело ока­зываются не вполне совместимыми. В бреду, в период первой болезни, а потом в предсмертные мгновения коснеющим языком Инсаров произносит два роковых для него слова: «резеда» и «Рендич». Резеда — это тонкий запах духов, оставленный Еленой в комнате больного Инсарова; Рендич — соотечественник героя, один из организаторов готовящегося восстания балканских сла­вян против турецких поработителей. Бред выдает глубокое внут­реннее раздвоение цельного Инсарова, источником этого раздво­ения является любовь.

В отличие от Чернышевского и Добролюбова с их оптимисти­ческой теорией «разумного эгоизма», утверждавшей единство личного и общего, счастья и долга, любви и революции в приро­де человека, Тургенев обращает внимание на скрытый драматизм человеческих чувств, на вечную борьбу центростремительных (эгоистических) и центробежных (альтруистических) начал в ду­ше каждого человека. Человек, по Тургеневу, драматичен не толь­ко в своем внутреннем существе, но и в отношениях с окружаю­щей его природой. Природа не считается с неповторимой цен­ностью человеческой личности: с равнодушным спокойствием она поглощает и простого смертного, и героя; все равны перед ее не­различающим взором. Этот мотив универсального трагизма жиз­ни вторгается в роман неожиданной смертью Инсарова, исчезно­вением Елены на этой земле —«навсегда, безвозвратно». «Смерть, как рыбак,—с горечью говорит Тургенев,—который поймал ры­бу в свою сеть и оставляет ее на время в воде: рыба еще плава­ет, но сеть на ней, и рыбак выхватит ее —когда захочет» (VIII, 166). С точки зрения «равнодушной природы» каждый из нас «виноват уже тем, что живет».

Однако мысль о трагизме человеческого существования не умаляет, а, напротив, укрупняет в романе Тургенева красоту и величие дерзновенных, освободительных порывов человеческого духа, оттеняет поэзию любви Елены к Инсарову, придает широ­кий общечеловеческий смысл социальному содержанию романа. Неудовлетворенность Елены современным состоянием жизни в России, ее тоска по иному, более совершенному социальному по­рядку в философском плане романа приобретает «продолжаю­щийся» смысл, актуальный во все эпохи и все времена. «Накануне» — это роман о порыве России к новым общественным отно­шениям, пронизанный нетерпеливым ожиданием «сознательно-героических натур», которые двинут вперед дело освобождения крестьян.

И в то же время это роман о бесконечных исканиях чело­вечества, о постоянном стремлении его к социальному совер­шенству, о вечном вызове, который бросает человеческая лич­ность «равнодушной природе»:

«О, как тиха и ласкова была ночь, какою голубиною кротостию дышал лазурный воздух, как всякое страдание, всякое горе должно было замолкнуть и заснуть под этим ясным небом, под этими святыми, невинными лучами! «О боже! — думала Елена,— зачем смерть, зачем разлука, болезнь и слезы? или зачем эта красота, это сладостное чувство надежды, зачем успокоительное сознание прочного убежища, неизменной защиты, бессмертного покровительства? Что же значит это улыбающееся, благословля­ющее небо, эта счастливая, отдыхающая земля? Ужели это все только в нас, а вне нас вечный холод и безмолвие? Ужели мы одни… одни… а там, повсюду, во всех этих недосягаемых безднах и глубинах, — все, все нам чуждо? К чему же тогда эта жажда и радость молитвы?.. Неужели же нельзя умолить, отвратить, спасти… О боже! неужели нельзя верить чуду?»  (VIII,  156).

Современников Тургенева из лагеря революционной демокра­тии, для которых главнее был социальный смысл романа, не мог не смущать его финал: неопределенный ответ Увара Ивановича на вопрос Шубина, будут ли у нас,. в России, люди, подобные Инсарову. Какие могли быть загадки на этот счет в конце 1859 года, когда дело реформы стремительно подвигалось вперед, когда «новые люди» заняли ключевые посты в журнале «Совре­менник»? Чтобы правильно ответить на этот вопрос, нужно выяс­нить, какую программу действий предлагал Тургенев «русским Инсаровым».

Автор «Записок охотника» вынашивал мысль о братском сою­зе всех антикрепостнических сил и надеялся на гармонический исход социальных конфликтов. Инсаров говорит: «Заметьте: по­следний мужик, последний нищий в Болгарии и я — мы желаем одного и того же. У всех у нас одна цель. Поймите, какую это дает уверенность и крепость!» (VIII, 68). Тургеневу хотелось, чтобы все прогрессивно настроенные люди России, без различия социальных положений и оттенков в политических убеждениях, протянули друг другу руки.

В жизни случилось другое. Добролюбов в статье «Когда же придет настоящий день?» решительно противопоставил задачи «русских Инсаровых» той программе общенационального едине­ния, которую провозгласил в романе Тургенева болгарский рево­люционер. «Русским Инсаровым» предстояла борьба с «внутрен­ними турками», в число которых у Добролюбова попадали не только консерваторы, противники реформ, но и либеральные пар­тии русского общества. Статья била в святая святых убеждений и верований Тургенева. Поэтому он буквально умолял Некрасова не печатать ее, а когда она была опубликована – покинул журнал «Современник» навсегда.

В романе «Накануне» (1860) смутные светлые предчувствия и надежды, которые пронизывали меланхоличное повествование «Дворянского гнезда», превращаются в определенные решения. Основной для Тургенева вопрос о соотношении мысли и деятельности, человека дела и теоретика в этом романе решается в пользу практически осуществляющего идею героя.

Само название романа «Накануне» — название «временное», в отличие от «локального» названия «Дворянское гнездо», — отра­жает то обстоятельство, что замкнутости, неподвижности пат­риархальной русской жизни приходит конец. Русский дворянский дом с вековым укладом его быта, с приживалками, соседями, кар­точными проигрышами оказывается на распутье мировых дорог. Русская девушка находит применение своим силам и самоотвер­женным стремлениям, участвуя в борьбе за независимость бол­гарского народа. Сразу после выхода в свет романа читатели и критики обратили внимание на то, что личностью, которую рус­ское молодое поколение готово признать за образец, здесь пред­ставлен болгарин.

Название романа «Накануне» не только отражает прямое, сюжетное его содержание (Инсаров гибнет накануне войны за независимость его родины, в которой он страстно хочет принять участие), но и содержит оценку состояния русского общества накануне реформы и мысль о значении народно-освободительной борьбы в одной стране (Болгарии) как кануна общеевропейских политических перемен (в романе косвенно затрагивается и во­прос о значении сопротивления итальянского народа австрийскому владычеству).

Добролюбов считал образ Елены средоточием романа — вопло­щением молодой России. В этой героине, по мнению критика, воплощена «неотразимая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называемое «образованное» <.. .> «Желание деятель­ного добра» есть в нас, и силы есть; но боязнь, неуверенность в своих силах и, наконец, незнание: что делать? — постоянно нас останавливают <…и мы всё ищем, жаждем, ждем… ждем, чтобы нам хоть кто-нибудь объяснил, что делать».

Таким образом, Елена, представлявшая, по его мнению, моло­дое поколение страны, ее свежие силы, характеризуется стихий­ностью протеста, она ищет «учителя» — черта, присущая деятель­ным героиням Тургенева.

Идея романа и структурное ее выражение, столь сложные и многозначные в «Дворянском гнезде», в «Накануне» предельно ясны, однозначны. Героиня, ищущая учителя-наставника, до­стойного любви, в «Накануне» выбирает из четырех претендентов на ее руку, из четырех идеальных вариантов, ибо каждый из героев — высшее выражение своего этико-идейного типа. Шубин и Берсенев представляют художественно-мыслительный тип (тип людей отвлеченно-теоретического или образно-художественного творчества), Инсаров и Курнатовский относятся к «деятельному» типу, т. е. к людям, призвание которых состоит в  практическом «жизнетворчестве».                                                  

Говоря о значении в романе выбора своего пути и своего «героя», который делает Елена, Добролюбов рассматривает этот поиск-выбор как некий процесс, эволюцию, аналогичную разви­тию русского общества за последнее десятилетие. Шубин, а затем и Берсенев соответствуют по своим принципам и характерам бо­лее архаичным, отдаленным стадиям этого процесса. Вместе с тем оба они не настолько архаичны, чтобы быть «несовместимыми» с Курнатовским (деятелем эпохи реформ) и Инсаровым (особое значение которому придает складывающаяся революционная си­туация), Берсенев и Шубин — люди 50-х гг. Ни один из них не является чистым представителем гамлетовского типа. Таким образом, Тургенев в «Накануне» как бы распростился со своим излюбленным типом. И Берсенев, и Шубин генетически связаны с «лишними людьми», но в них нет многих главных черт героев этого рода. Оба они прежде всего не погружены в чистую мысль, анализ действительности не является их основным занятием. От рефлексии, самоанализа и бесконечного ухода в теорию их «спасает» профессионализация, призвание, живой интерес к опре­деленной сфере деятельности и постоянный труд.

«Одарив» своего героя-художника Шубина фамилией вели­кого русского скульптора, Тургенев придал его портрету привле­кательные черты, напоминающие внешность Карла Брюллова, — он сильный, ловкий блондин.

Из первого же разговора героев — друзей и антиподов (наруж­ность Берсенева рисуется как прямая противоположность внеш­ности Шубина: он худой, черный, неловкий), разговора, который является как бы прологом романа, выясняется, что один из них «умница, философ, третий кандидат московского университета», начинающий ученый, другой — художник, «артист», скульптор. Но характерные черты «артиста» — черты человека 50-х гг. и идеала людей 50-х гг. — сильно рознятся от романтического пред­ставления о художнике. Тургенев нарочито дает это понять: в самом начале романа Берсенев указывает Шубину, каковы должны быть его — «артиста» — вкусы и склонности, и Шубин, шутливо «отбиваясь» от этой обязательной и неприемлемой для него позиции художника-романтика, защищает свою любовь к чувственной жизни и ее реальной красоте.

В самом подходе Шубина к своей профессии проявляется его связь с эпохой. Сознавая ограниченность возможностей скульп­туры как художественного рода, он стремится передать в скульп­турном портрете не только и не столько внешние формы, сколько духовную суть, психологию оригинала, не «линии лица», а взгляд глаз. Вместе с тем ему присуща особенная, заостренная способ­ность оценивать людей и умение возводить их в типы. Меткость характеристик, которые он дает другим героям романа, превра­щает его выражения в крылатые слова; Эти характеристики в большинстве случаев и являются ключом к типам, изображен­ным в романе.

Если в уста Шубина автор романа вложил все социально-исторические приговоры, вплоть до приговора о правомерности «выбора Елены», Берсеневу он передал ряд этических деклара­ций. Берсенев — носитель высокого этического принципа самоот­вержения и служения идее («идее науки»), как Шубин — вопло­щение идеального «высокого» эгоизма, эгоизма здоровой и цель­ной натуры.

Берсеневу придана нравственная черта, которой Тургенев отводил особенно высокое место на шкале душевных достоинств: доброта. Приписывая эту черту Дон-Кихоту, Тургенев на ней основывался в своем утверждении исключительного этического значения образа Дон-Кихота для человечества. «Все пройдет, все исчезнет, высочайший сан, власть, всеобъемлющий гений, всё рас­сыплется прахом <…> Но добрые дела не разлетятся дымом: они долговечнее самой сияющей красоты» (VIII, 191). У Берсенева эта доброта происходит от глубоко, органически усвоенной им гуманистической культуры и присущей ему «справедливости», объективности историка, способного встать выше личных, эгои­стических интересов и пристрастий и оценить значение явлений действительности безотносительно к своей личности.

Отсюда и проистекает истолкованная Добролюбовым как при­знак нравственной слабости «скромность», понимание им второ­степенного значения своих интересов в духовной жизни совре­менного общества и своего «второго номера» в строго определен­ной иерархии типов современных деятелей.

Тип ученого как идеал оказывается исторически дезавуиро­ванным. Это «низведение» закреплено и сюжетной ситуацией (отношение Елены к Берсеневу), и прямыми оценками, данными герою в тексте романа, и самооценкой, вложенной в его уста. Такое отношение к профессиональной деятельности ученого могло родиться лишь в момент, когда жажда непосредственного жизне­строительства, исторического общественного творчества охватила лучших людей молодого поколения. Этот практицизм, это деятель­ное отношение к жизни не у всех молодых людей 60-х гг. носили характер революционного или даже просто бескорыстного служе­ния. В «Накануне» Берсенев выступает как антипод не столько Инсарова (мы уже отмечали, что он более чем кто-либо другой способен оценить значение личности Инсарова), сколько обер-­секретаря Сената — карьериста Курнатовского.

В характеристике Курнатовского, «приписанной» автором Елене,   раскрывается  мысль  о  принадлежности  Курнатовского,  как и Инсарова, к «действенному типу» и о взаимовраждебных позициях, занимаемых ими внутри этого — очень широкого — психологического типа. Вместе с тем в этой характеристике ска­зывается и то, как исторические задачи, необходимость решения которых ясна всему обществу (по словам Ленина, во время рево­люционной ситуации обнаруживается невозможность «для гос­подствующих классов сохранить в неизменном виде свое гос­подство» и вместе с тем наблюдается «значительное повышение <…> активности масс», не желающих жить по-старому), застав­ляют людей самой разной политической ориентации надевать маску прогрессивного человека и культивировать в себе черты, которые приписываются обществом таким людям.

«Вера» Курнатовского — это вера в государство в приложении к реальной русской жизни эпохи, вера в сословно-бюрократиче­ское, монархическое государство. Понимая, что реформы неиз­бежны, деятели типа Курнатовского связывали все возможные в жизни страны изменения с функционированием сильного госу­дарства, а себя считали носителями идеи государства и исполни­телями его исторической миссии, отсюда — самоуверенность, вера в себя, по словам Елены.

В центре романа — болгарский патриот-демократ и револю­ционер по духу — Инсаров. Он стремится опрокинуть деспотиче­ское правление в родной стране, рабство, утвержденное веками, и систему попрания национального чувства, охраняемую крова­вым, террористическим режимом. Душевный подъем, который он испытывает и сообщает Елене, связан с верой в дело, которому он служит, с чувством своего единства со всем страдающим наро­дом Болгарии. Любовь в романе «Накануне» именно такова, ка­кой ее рисует Тургенев в выше цитированных словах о любви как революции («Вешние воды»). Воодушевленные герои ра­достно летят на свет борьбы, готовые к жертве, гибели и победе.

В «Накануне» впервые любовь предстала как единство в убе­ждениях и участие в общем деле. Здесь была опоэтизирована ситуация, характерная для большого периода последующей жизни русского общества и имевшая огромное значение как выражение нового этического идеала. Прежде чем соединить свою жизнь с ее жизнью, Инсаров подвергает Елену своеобраз­ному «экзамену», предвосхищающему символический «допрос», которому подвергает таинственный голос судьбы смелую де­вушку-революционерку в стихотворении в прозе Тургенева «По­рог». При этом герой «Накануне» вводит любимую девушку в свои планы, свои интересы и заключает с ней своеобразный договор, предполагающий с ее стороны сознательную оценку их возможной будущности, — черта отношений, характерная для демократов-шестидесятников.

 Любовь Елены и ее благородная решимость разрушают аске­тическую замкнутость Инсарова, делают его счастливым. Добро­любов особенно ценил страницы романа, где изображалась светлая и счастливая любовь молодых людей. В уста Шубина Тур­генев вложил лирическую апологию идеала героической моло­дости: «Да, молодое, славное, смелое дело. Смерть, жизнь, борьба, падение, торжество, любовь, свобода, родина… Хорошо, хорошо. Дай бог всякому! Это не то, что сидеть по горло в болоте да стараться показывать вид, что тебе всё равно, когда тебе действи­тельно в сущности всё равно. А там — натянуты струны, звени на весь мир или порвись!» (VIII, 141).

Здравствуйте, дорогие читатели. В этом выпуске поговорим о задании, которое иногда доставляет неожиданные неприятности на экзамене. Задания довольно простые, но бывают промахи. Это задания, которые сделаны как бы на тетрадном листочке в клеточку. Итак, давайте начнем.

Задание №1. УГЛЫ

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №1

Найти тангенс угла АОB
Найти тангенс угла АОB

Запомните, чтобы найти тангенс острого угла на таких картинках, обязательно нужно достроить до прямоугольного треугольника.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Вспомним, что такое тангенс острого угла прямоугольного треугольника?

Определение тангенса острого угла:

Тангенсом острого угла прямоугольного треугольника, называется отношение противолежащего катета к прилежащему. Катет BF- противолежащий угла FОВ, OF – прилежащий к углу FOB.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №2

Фигуры на квадратной решетке. Задание №18 ОГЭ

Чтобы найти тангенс угла АОВ на этой картинке, нужно достроить до прямоугольного треугольника, и найти стороны этого треугольника.

1. Достроим до треугольника ОВН и докажем, что он прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

2. Для этого достроим на стороне ОН, ОВ и ВН прямоугольные треугольники ОСВ, ОНК и BDH. Докажем, что треугольник АВН прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Найдем гипотенузу ОВ прямоугольного треугольника ОСВ, гипотенузу ОН прямоугольного треугольника ОКН и гипотенузу ВН прямоугольного треугольника ВDH через теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Фигуры на квадратной решетке. Задание №18 ОГЭ
Фигуры на квадратной решетке. Задание №18 ОГЭ

Теперь докажем, что треугольник ОВН прямоугольный. Воспользуемся обратной теоремой Пифагора: если квадрат одной стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Так как равенство верно, то треугольник ОВН прямоугольный.

Теперь найдем тангенс угла АОВ

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задание №2 Расстояние

Фигуры на квадратной решетке. Задание №18 ОГЭ
Вычисление расстояния между точкой и отрезком
Вычисление расстояния между точкой и отрезком

Для выполнения этого задания, проведите отрезок ВС, найдите середину его и отметим точкой К. Проведите отрезок АК, который равен 4. Ответ 4

Задание №3 Площадь

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №1

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задание простое, но есть ошибки по невнимательности.

Задача №2

а) Площадь треугольника и параллелограмма

Вычисление площади треугольника и параллелограмма
Вычисление площади треугольника и параллелограмма

Запомните! Площадь треугольника от площади параллелограмма отличается только тем, что площадь треугольника нужно делить на 2, а площадь параллелограмма нет.

б) Площадь трапеции. Чтобы найти площадь трапеции, нужно сложить основания трапеции, умножить на высоту и поделить на 2.

Вычисление площади трапеции
Вычисление площади трапеции

в) Площадь ромба равна половине произведения диагоналей.

Вычисление площади ромба
Вычисление площади ромба

Это не все типы заданий, что встречаются на экзамене. Продолжение следует.

Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Высота – перпендикуляр исходящий из вершины угла на противоположенную сторону

Высота параллелограммаa, b – стороны параллелограмма

Hb высота на сторону b

Ha – высота на сторону a

αβ – углы параллелограмма

Формулы длины высоты параллелограмма, через сторону и угол, ( Hb, Ha):

Формула высоты параллелограмма

Формула высоты параллелограмма

Острый угол пересечения высот, равен острому углу параллелограмма.

Тупой угол пересечения высот, равен тупому углу параллелограмма.



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства биссектрисы параллелограмма

Биссектриса по определению делит угол пополам

Биссектриса отсекает равнобедренный треугольник   (в данном случае треугольники ABF и DKC)

Биссектрисы смежных углов, пересекаются под прямым углом (90°)

Биссектрисы противоположных углов, равны и параллельны

Биссектриса параллелограммаAF – биссектриса из острого угла

DK – биссектриса из тупого угла

α – острый угол

β тупой угол

a – меньшая сторона

b – большая сторона

Так как треугольники ABF и DKC, равнобедренные, следовательно справедливы тождества:

Свойства биссектрисы параллелограмма

Свойства биссектрисы параллелограмма


Длина биссектрисы параллелограмма

Биссектриса параллелограмма

L – биссектриса параллелограмма

ab – стороны

α, β – углы

Формулы длины биссектрисы через сторону и углы, (L):

Формулы биссектрисы параллелограмма

Формулы биссектрисы параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства углов между диагоналями параллелограмма:

1. Противоположные углы равны

2. Косинус тупого угла, всегда имеет отрицательное значение:  cos β <0

Формулы параллелограмма

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол между диагоналями

β тупой угол между диагоналями

Формулы косинуса острого и тупого углов между диагоналями, через стороны и диагонали (по теореме косинусов):

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формула синуса острого и тупого углов через площадь (S) и диагонали:

Формулы углов между диагоналями параллелограмма

Формулы соотношения острого и тупого углов между диагоналями:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos и arcsin



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства углов параллелограмма:

1. Противоположные углы равны

2. Косинус тупого угла, всегда имеет отрицательное значение:  cos β <0

Формулы параллелограмма

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол

β тупой угол

Формулы косинуса острого и тупого углов через стороны и диагонали (по теореме косинусов):

Формулы углов параллелограмма

Формулы углов параллелограмма

Формула синуса острого и тупого углов через площадь (S) и стороны:

Формулы углов параллелограмма

Формулы соотношения острого и тупого углов:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos или arcsin



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Длина диагонали параллелограмма через стороны, известную диагональ и угол.

Формулы параллелограмма

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

αβ – углы параллелограмма

Формулы диагонали через стороны и углы параллелограмма (по теореме косинусов), (D, d):

Формулы параллелограмма

Формулы параллелограмма

Формулы параллелограмма

Формулы параллелограмма

Формулы диагонали через стороны и известную диагональ (по формуле- сумма квадратов диагоналей), (Dd):

Формулы параллелограмма

Формулы параллелограмма

2. Длина диагонали параллелограмма через площадь, известную диагональ и угол.

Формулы параллелограмма

D большая диагональ

d меньшая диагональ

α β – углы между диагоналями

S – площадь параллелограмма

Формулы диагонали через площадь, известную диагональ и угол между диагоналями, (Dd):

Формулы параллелограмма

Формулы параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Формулы длины сторон через диагонали и угол между ними.

Формулы длины сторон через диагонали и угол между ними

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α, β углы между диагоналями

Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

Длина стороны параллелограмма

Длина стороны параллелограмма

Формулы сторон параллелограмма через диагонали и сторону, (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

Формулы сторон параллелограмма , (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

2. Формулы длины сторон параллелограмма через высоту.

Длина стороны параллелограмма через высоту

a, b – стороны параллелограмма

Hb высота на сторону b

Ha – высота на сторону a

α β – углы параллелограмма

Формулы сторон параллелограмма через высоту, (a, b):

Длина стороны параллелограмма через высоту

Длина стороны параллелограмма через высоту

3. Дополнительные, интересные формулы параллелограмма:

Параллелограмм

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол между диагоналями

Формула суммы квадратов диагоналей:

Формула суммы квадратов диагоналей

Формула разности квадратов сторон:

Формула разности квадратов сторон параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Тангенс

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение…

Итак, есть два определения:

  1. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

    Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

  2. Тангенс – это отношение синуса к косинусу.

    Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

Приняты обозначения:

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Треугольник

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Сумма углов

Так как тангенс – это отношение катетов, то

Отношение катетов

Получается, что

Результат вычислений

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

В частности,

Углы

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Тригонометрическое тождество

Из формулы тангенсов, записывающей кратко второе определение

Формула

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится его зависимость от косинуса:

Зависимость

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Синус

Обычно в задачах требуется найти тангенс именно острого угла, как, допустим, на этом примере:

Для этого мы строим прямоугольный треугольник, проведя линию (перпендикуляр) BD:

Далее вспоминаем определение тангенса, это отношение противолежащего катета к прилежащему.

То есть tg(BOA) = DB / DO.

Чтобы найти DO и DB достаточно будет посчитать количество клеточек.

DO = 2.

DB = 5.

Значит, tg(BOA) = 5 / 2 = 2,5.

Зная тангенс, мы можем легко найти и котангенс:

ctg(BOA) = 1 / tg(BOA) = 1 / 2,5 = 0,4.

_

А вот задача на нахождение тангенса угла по клеточкам немного другого плана (ищем тангенс угла AOB):

Если соединить точки A и B, то угол ABO будет прямым.

И тангенс можно вычислить как отношение BA к BO.

Как же нам их найти?

И BO, и BA будут гипотенузами 2 совершенно равных прямоугольных треугольников (для наглядности я их выделил красным).

Длина катетов их равна 2 и 8, а квадрат гипотенузы, как известно, равен сумме квадратов катетов.

Таким образом, у нас получится следующее:

tg(BOA) = BA / BO = √(2² + 8²) / √(2² + 8²) = 1.

И нетрудно догадаться, что треугольник этот равнобедренный с равными углами BOA и BAO по 45 градусов.

Добавить комментарий