Как найти тангенс нуля

пт., 2015-05-22 11:11 — eg_r

Чему равен tg 0? Много раз учил таблицу значений тригонометрических функций, и все впустую. Ну, не могу я ее запомнить. Вот так, каждый раз, ищу ответ в интернете. Даже не знаю, что буду делать на контрольной(((((

пт., 2015-05-22 11:33 — солнце

Не обязательно запоминать всю таблицу. Выучите только табличные значения sinx и cosx, а зная их, tgх и сtgх всегда можно найти по формулам
tgх = sinx/cosx
сtgх = cosx/sinx

  • ответить

сб., 2015-05-23 14:02 — belost

Согласен с солнцем, что значения функции тангенс запоминать не нужно. Внимательно посмотрите на табличные значения функций синус и косинус, вы увидите, что они повторяются, в обратном порядке, после 90 градусов, только в косинусе еще знак меняется на минус. Там учить нечего.

  • ответить

вс., 2015-05-24 14:51 — vedomur

Тангенс нуля равен нулю, и это можно вычислить по формуле
sin0/cos0= 0/1=0
Функция тангенс не имеет значения, только, если cosх=0, т.е при х= 90+пи

  • ответить

ср., 2015-05-27 18:50 — Alenka

А может быть вам будет проще, если запомните, как проходит график функции тангенс? Здесь очень хорошо видно, что tg 0=0. График проходит через начало координат.
тангенс нуля

  • ответить

ср., 2015-05-27 19:34 — Изюмина

Тангенс нуля всегда равен нулю, это легко запомнить.

  • ответить

Отправить комментарий

/^^^Вверх^^^^

Примеры:

(tg⁡:30^° =frac{1}{sqrt{3}})
(tg⁡:(frac{π}{3})=sqrt{3})
(tg:⁡2=-2,185…)

Содержание:

  • Аргумент и значение

  • Тангенс острого угла

  • Тангенс числа или любого угла

  • Знаки по четвертям

  • Связь с другими функциями

Аргумент и значение тангенса

аргумент и значение тангенса

Аргументом тангенса может быть:
– как число или выражение с Пи: (1,3), (frac{π}{4}), (π), (-frac{π}{3}) и т.п.
– так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Значение тангенса – всегда действительное число (возможно, иррациональное): (1), (sqrt{3}), (-frac{1}{sqrt{3}}), (-0,1543…)

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника – он равен отношению противолежащего катета к прилежащему.

Пример:

1) Пусть дан угол и нужно определить тагенс этого угла.

угол

2) Достроим на этом угле любой прямоугольный треугольник.

противолежащий катет к прилежащему

3) Измерив, нужные стороны, можем вычислить тангенс.

вычисление тангенса

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

(tg: t=)(frac{sin:⁡t}{cos:⁡t})

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга:

определение тангенса через синус и косинус

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=)(frac{sin:⁡0}{cos:⁡0}) (=)(frac{0}{1})(=0).

Ответ: (0).

Пример. Вычислите (tg:(-765^circ)).
Решение:   (tg: (-765^circ)=)(frac{sin:(-⁡765^circ)}{cos:⁡(-765^circ)})
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

вычисление тангенса -765 градусов через синус и косинус

(sin⁡(-765^°)=-frac{sqrt{2}}{2});
(cos⁡(-765^°)=frac{sqrt{2}}{2}) ;
получается (tg(-765^°)= -frac{sqrt{2}}{2} ∶ frac{sqrt{2}}{2}=-1).

Ответ: (-1).

Пример. Вычислите (tg:frac{π}{3}).
Решение:   (tg: frac{π}{3}=)(frac{sin:⁡frac{π}{3}}{cos:⁡frac{π}{3}}). Опять находим синус пи на 3 и косинус пи на 3 (хоть с помощью тригонометрического круга, хоть по таблице):
(sin⁡(frac{π}{3})=frac{sqrt{3}}{2});
(cos⁡(frac{π}{3})=frac{1}{2}) ;
получается (tg(frac{π}{3})= frac{sqrt{3}}{2} ∶ frac{1}{2}= frac{sqrt{3}}{2} cdot frac{2}{1}=sqrt{3}).

Ответ: (sqrt{3}).

Однако можно определять тангенс и напрямую через тригонометрический круг – для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

ось тангенсов

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

Пример. Вычислите (tg:frac{π}{4}).
Решение:   
1)Отмечаем (frac{π}{4}) на окружности.

как с помощью оси тангенсов определить tg пи на 4

2) Проводим через данную точку и начало координат прямую.

Проводим через данную точку и начало координат прямую

3) В данном случае координату долго искать не придется – она равняется (1).

Ответ: (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:   
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt{3}) (приблизительно (-1,73)).

определение тангенса любого угла через окружность

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

значение тангенса

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-)(frac{7π}{2}),(-)(frac{3π}{2}),(frac{π}{2}), (frac{5π}{2}), (frac{9π}{2}) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-)(frac{9π}{2}),(-)(frac{5π}{2}),(-)(frac{π}{2}), (frac{3π}{2}), (frac{7π}{2}) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ.

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

знаки тангенса по четвертям

Связь с другими тригонометрическими функциями:

– косинусом того же угла: формулой (1+tg^2⁡x=)(frac{1}{cos^2⁡x}) 

– синусом и косинусом того же угла: (tg⁡:x=)(frac{sin:⁡x}{cos⁡:x}) 

– котангенсом того же угла: формулой (ctg⁡:x=)(frac{1}{tg:x}) 
Другие наиболее часто применяемые формулы смотри здесь.

Смотрите также:
Формулы приведения

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Почему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что и

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить

Находим на круге . Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что

Ответ:

Пример 2.

Вычислить

Находим на круге . Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

не существует.

Ответ: не существует

Пример 3.

Вычислить

Находим на круге точку (это та же точка, что и ) и от нее по часовой стрелке (знак минус!) откладываем (). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как . Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение .

Так значит,

Ответ:

Пример 4.

Вычислить

Поэтому от точки (именно там будет ) откладываем против часовой стрелки .

Выходим на ось котангенсов, получаем, что

Ответ:

Пример 5.

Вычислить

Находим на круге . Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что

Ответ:

Теперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Таблица ТАНГЕНСОВ для углов от 0° до 360° градусов

ТАНГЕНС (Tg α) острого угла в прямоугольном треугольнике равняется отношение противолежащего катета к прилежащему катету.

α (радианы) 0 π/6 π/4 π/3 π/2 π 3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
tg α (Тангенс) 0 1/3 1 3 0 0

Малая таблица значений тригонометрических функций (в радианах и градусах)

Угол в градусах tg (Тангенс)
0
0.0175
0.0349
0.0524
0.0699
0.0875
0.1051
0.1228
0.1405
0.1584
10° 0.1763
11° 0.1944
12° 0.2126
13° 0.2309
14° 0.2493
15° 0.2679
16° 0.2867
17° 0.3057
18° 0.3249
19° 0.3443
20° 0.364
21° 0.3839
22° 0.404
23° 0.4245
24° 0.4452
25° 0.4663
26° 0.4877
27° 0.5095
28° 0.5317
29° 0.5543
30° 0.5774
31° 0.6009
32° 0.6249
33° 0.6494
34° 0.6745
35° 0.7002
36° 0.7265
37° 0.7536
38° 0.7813
39° 0.8098
40° 0.8391
41° 0.8693
42° 0.9004
43° 0.9325
44° 0.9657
45° 1
46° 1.0355
47° 1.0724
48° 1.1106
49° 1.1504
50° 1.1918
51° 1.2349
52° 1.2799
53° 1.327
54° 1.3764
55° 1.4281
56° 1.4826
57° 1.5399
58° 1.6003
59° 1.6643
60° 1.7321
61° 1.804
62° 1.8807
63° 1.9626
64° 2.0503
65° 2.1445
66° 2.246
67° 2.3559
68° 2.4751
69° 2.6051
70° 2.7475
71° 2.9042
72° 3.0777
73° 3.2709
74° 3.4874
75° 3.7321
76° 4.0108
77° 4.3315
78° 4.7046
79° 5.1446
80° 5.6713
81° 6.3138
82° 7.1154
83° 8.1443
84° 9.5144
85° 11.4301
86° 14.3007
87° 19.0811
88° 28.6363
89° 57.29
90°

Полная таблица тангенсов для углов от 0° до 360°

Угол tg (Тангенс)
91° -57.29
92° -28.6363
93° -19.0811
94° -14.3007
95° -11.4301
96° -9.5144
97° -8.1443
98° -7.1154
99° -6.3138
100° -5.6713
101° -5.1446
102° -4.7046
103° -4.3315
104° -4.0108
105° -3.7321
106° -3.4874
107° -3.2709
108° -3.0777
109° -2.9042
110° -2.7475
111° -2.6051
112° -2.4751
113° -2.3559
114° -2.246
115° -2.1445
116° -2.0503
117° -1.9626
118° -1.8807
119° -1.804
120° -1.7321
121° -1.6643
122° -1.6003
123° -1.5399
124° -1.4826
125° -1.4281
126° -1.3764
127° -1.327
128° -1.2799
129° -1.2349
130° -1.1918
131° -1.1504
132° -1.1106
133° -1.0724
134° -1.0355
135° -1
136° -0.9657
137° -0.9325
138° -0.9004
139° -0.8693
140° -0.8391
141° -0.8098
142° -0.7813
143° -0.7536
144° -0.7265
145° -0.7002
146° -0.6745
147° -0.6494
148° -0.6249
149° -0.6009
150° -0.5774
151° -0.5543
152° -0.5317
153° -0.5095
154° -0.4877
155° -0.4663
156° -0.4452
157° -0.4245
158° -0.404
159° -0.3839
160° -0.364
161° -0.3443
162° -0.3249
163° -0.3057
164° -0.2867
165° -0.2679
166° -0.2493
167° -0.2309
168° -0.2126
169° -0.1944
170° -0.1763
171° -0.1584
172° -0.1405
173° -0.1228
174° -0.1051
175° -0.0875
176° -0.0699
177° -0.0524
178° -0.0349
179° -0.0175
180° 0

Таблица тангенсов для углов от 91° до 180°

Угол tg (Тангенс)
181° 0.0175
182° 0.0349
183° 0.0524
184° 0.0699
185° 0.0875
186° 0.1051
187° 0.1228
188° 0.1405
189° 0.1584
190° 0.1763
191° 0.1944
192° 0.2126
193° 0.2309
194° 0.2493
195° 0.2679
196° 0.2867
197° 0.3057
198° 0.3249
199° 0.3443
200° 0.364
201° 0.3839
202° 0.404
203° 0.4245
204° 0.4452
205° 0.4663
206° 0.4877
207° 0.5095
208° 0.5317
209° 0.5543
210° 0.5774
211° 0.6009
212° 0.6249
213° 0.6494
214° 0.6745
215° 0.7002
216° 0.7265
217° 0.7536
218° 0.7813
219° 0.8098
220° 0.8391
221° 0.8693
222° 0.9004
223° 0.9325
224° 0.9657
225° 1
226° 1.0355
227° 1.0724
228° 1.1106
229° 1.1504
230° 1.1918
231° 1.2349
232° 1.2799
233° 1.327
234° 1.3764
235° 1.4281
236° 1.4826
237° 1.5399
238° 1.6003
239° 1.6643
240° 1.7321
241° 1.804
242° 1.8807
243° 1.9626
244° 2.0503
245° 2.1445
246° 2.246
247° 2.3559
248° 2.4751
249° 2.6051
250° 2.7475
251° 2.9042
252° 3.0777
253° 3.2709
254° 3.4874
255° 3.7321
256° 4.0108
257° 4.3315
258° 4.7046
259° 5.1446
260° 5.6713
261° 6.3138
262° 7.1154
263° 8.1443
264° 9.5144
265° 11.4301
266° 14.3007
267° 19.0811
268° 28.6363
269° 57.29
270°

Таблица тангенсов для углов от 181° до 270°

Угол tg (Тангенс)
271° -57.29
272° -28.6363
273° -19.0811
274° -14.3007
275° -11.4301
276° -9.5144
277° -8.1443
278° -7.1154
279° -6.3138
280° -5.6713
281° -5.1446
282° -4.7046
283° -4.3315
284° -4.0108
285° -3.7321
286° -3.4874
287° -3.2709
288° -3.0777
289° -2.9042
290° -2.7475
291° -2.6051
292° -2.4751
293° -2.3559
294° -2.246
295° -2.1445
296° -2.0503
297° -1.9626
298° -1.8807
299° -1.804
300° -1.7321
301° -1.6643
302° -1.6003
303° -1.5399
304° -1.4826
305° -1.4281
306° -1.3764
307° -1.327
308° -1.2799
309° -1.2349
310° -1.1918
311° -1.1504
312° -1.1106
313° -1.0724
314° -1.0355
315° -1
316° -0.9657
317° -0.9325
318° -0.9004
319° -0.8693
320° -0.8391
321° -0.8098
322° -0.7813
323° -0.7536
324° -0.7265
325° -0.7002
326° -0.6745
327° -0.6494
328° -0.6249
329° -0.6009
330° -0.5774
331° -0.5543
332° -0.5317
333° -0.5095
334° -0.4877
335° -0.4663
336° -0.4452
337° -0.4245
338° -0.404
339° -0.3839
340° -0.364
341° -0.3443
342° -0.3249
343° -0.3057
344° -0.2867
345° -0.2679
346° -0.2493
347° -0.2309
348° -0.2126
349° -0.1944
350° -0.1763
351° -0.1584
352° -0.1405
353° -0.1228
354° -0.1051
355° -0.0875
356° -0.0699
357° -0.0524
358° -0.0349
359° -0.0175
360° 0

Таблица тангенсов для углов от 271° до 360°

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен тангенс 30? …

— Ищем в таблице соответствующее значение. Правильный ответ: 0.5774

Тангенс

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Аргумент и значение тангенса

Аргументом тангенса может быть:
– как число или выражение с Пи: (1,3), (frac<π><4>), (π), (-frac<π><3>) и т.п.
– так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника – он равен отношению противолежащего катета к прилежащему.

1) Пусть дан угол и нужно определить тагенс этого угла.

2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить тангенс.

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга :

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=) (frac) (=) (frac<0><1>) (=0).

Пример. Вычислите (tg:(-765^circ)).
Решение: (tg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Однако можно определять тангенс и напрямую через тригонометрический круг – для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

2) Проводим через данную точку и начало координат прямую.

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt<3>) (приблизительно (-1,73)).

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-) (frac<7π><2>) ,(-) (frac<3π><2>) , (frac<π><2>) , (frac<5π><2>) , (frac<9π><2>) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-) (frac<9π><2>) ,(-) (frac<5π><2>) ,(-) (frac<π><2>) , (frac<3π><2>) , (frac<7π><2>) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Связь с другими тригонометрическими функциями:

котангенсом того же угла: формулой (ctg⁡:x=) (frac<1>)
Другие наиболее часто применяемые формулы смотри здесь .

[spoiler title=”источники:”]

http://kvn201.com.ua/table-tangensov.htm

http://cos-cos.ru/math/186/

[/spoiler]

Тангенс — одна из тригонометрических функций, обозначется tg (в англоязычной традиции — tan).

В прямоугольном треугольнике тангенс острого угла равен отношению противолежащего катета к прилежащему. Значение тангенса легко найти, зная синус и косинус угла:

tg(α) = sin(α)/cos(α).

Значения тангенсов для часто встречающихся углов (π — число пи, √ — корень квадратный):

  • tg (0°) = 0
  • tg (30°) = tg (π/6) = (√3)/3 = 1/√3
  • tg (45°) = tg (π/4) = 1
  • tg (60°) = tg (π/3) = √3
  • tg (90°) = tg (π/2) = +∞ (значение не определено, вблизи 90° тангенс стремится к бесконечности)
  • tg (180°) = tg (π) = 0
  • tg (270°) = tg (3π/2) = –∞ (значение не определено, вблизи 90° тангенс стремится к бесконечности)
  • tg (360°) = tg (2π) = 0

Другие тригонометрические функции:

  • Что такое синус? Значения синусов
  • Что такое косинус? Значения косинусов
  • Что такое котангенс? Значения котангенсов
  • Что такое секанс? Значения секансов
  • Что такое косеканс? Значения косекансов

Дополнительно от Генона:

  • Что такое теорема косинусов?
  • Что такое теорема синусов?
  • Где найти тригонометрические формулы двойного угла?
  • Как разложить квадрат синуса, косинуса и тангенса?
  • Как найти площадь прямоугольного треугольника?

Последнее редактирование ответа: 27.03.2010


  • Оставить отзыв

    Оставить отзыв

    Вы можете написать свои замечания к ответу, предложения об улучшении или просто поблагодарить автора. Комментарий, после проверки, увидят автор и редактор ответа. Будьте, пожалуйста, вежливыми. Спасибо!

    Если Вы хотите получить уведомление об
    исправлении ответа укажите свой e-mail:

    Неправильный формат адреса электронной почты

Похожие вопросы

  • Что такое косинус?
  • Что такое синус?
  • Что такое arcctg?
  • Как найти тангенс?
  • Что такое арксинус?
  • Что такое синус а?
  • Что такое arctg?
  • Что такое arcsin?
  • Как найти синус?
  • Что такое arccos?

В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru.
Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года “О защите детей от информации, причиняющей вред их здоровью и развитию”. Обращение к пользователям 18+.

tg(0°)=tg(360°)=0 точная, но чуть более сложная таблица ( с точностью до 1′) здесь.

Углы
1° – 90°

Углы
91 ° – 180°

Углы
181° – 270°

Углы
271 ° – 360°

Угол

tg

tg= 0.0174
tg= 0.0349
tg= 0.0524
tg= 0.0699
tg= 0.0874
tg= 0.1051
tg= 0.1227
tg= 0.1405
tg= 0.1583
10° tg= 0.1763
11° tg= 0.1943
12° tg= 0.2125
13° tg= 0.2308
14° tg= 0.2493
15° tg= 0.2679
16° tg= 0.2867
17° tg= 0.3057
18° tg= 0.3249
19° tg= 0.3443
20° tg= 0.364
21° tg= 0.3839
22° tg= 0.404
23° tg= 0.4245
24° tg= 0.4452
25° tg= 0.4663
26° tg= 0.4877
27° tg= 0.5095
28° tg= 0.5317
29° tg= 0.5543
30° tg= 0.5774
31° tg= 0.6009
32° tg= 0.6249
33° tg= 0.6494
34° tg= 0.6745
35° tg= 0.7002
36° tg= 0.7265
37° tg= 0.7535
38° tg= 0.7813
39° tg= 0.8098
40° tg= 0.8390
41° tg= 0.8693
42° tg= 0.9004
43° tg= 0.9325
44° tg= 0.9657
45° tg= 1
46° tg= 1.0355
47° tg= 1.0724
48° tg= 1.1106
49° tg= 1.1504
50° tg= 1.1918
51° tg= 1.2349
52° tg= 1.2799
53° tg= 1.327
54° tg= 1.3764
55° tg= 1.4281
56° tg= 1.4826
57° tg= 1.5399
58° tg= 1.6003
59° tg= 1.6643
60° tg= 1.7321
61° tg= 1.804
62° tg= 1.8807
63° tg= 1.9626
64° tg= 2.0503
65° tg= 2.1445
66° tg= 2.2460
67° tg= 2.3559
68° tg= 2.475
69° tg= 2.605
70° tg= 2.7475
71° tg= 2.9042
72° tg= 3.0777
73° tg= 3.2709
74° tg= 3.4874
75° tg= 3.732
76° tg= 4.0108
77° tg= 4.3315
78° tg= 4.7046
79° tg= 5.1446
80° tg= 5.6713
81° tg= 6.3138
82° tg= 7.1154
83° tg= 8.1443
84° tg= 9.5144
85° tg= 11.4301
86° tg= 14.3007
87° tg= 19.0811
88° tg= 28.6363
89° tg= 57.29
90° tg не определен

Угол

tg

91° tg= -57.29
92° tg= -28.6363
93° tg= -19.0811
94° tg= -14.3007
95° tg= -11.4301
96° tg= -9.5144
97° tg= -8.1443
98° tg= -7.1154
99° tg= -6.3138
100° tg= -5.6713
101° tg= -5.1446
102° tg= -4.7046
103° tg= -4.3315
104° tg= -4.0108
105° tg= -3.732
106° tg= -3.4874
107° tg= -3.2709
108° tg= -3.0777
109° tg= -2.9042
110° tg= -2.7475
111° tg= -2.605
112° tg= -2.475
113° tg= -2.3559
114° tg= -2.2460
115° tg= -2.1445
116° tg= -2.0503
117° tg= -1.9626
118° tg= -1.8807
119° tg= -1.804
120° tg= -1.7321
121° tg= -1.6643
122° tg= -1.6003
123° tg= -1.5399
124° tg= -1.4826
125° tg= -1.4281
126° tg= -1.3764
127° tg= -1.327
128° tg= -1.2799
129° tg= -1.2349
130° tg= -1.1918
131° tg= -1.1504
132° tg= -1.1106
133° tg= -1.0724
134° tg= -1.0355
135° tg= -1
136° tg= -0.9657
137° tg= -0.9325
138° tg= -0.9004
139° tg= -0.8693
140° tg= -0.8390
141° tg= -0.8098
142° tg= -0.7813
143° tg= -0.7535
144° tg= -0.7265
145° tg= -0.7002
146° tg= -0.6745
147° tg= -0.6494
148° tg= -0.6249
149° tg= -0.6009
150° tg= -0.5774
151° tg= -0.5543
152° tg= -0.5317
153° tg= -0.5095
154° tg= -0.4877
155° tg= -0.4663
156° tg= -0.4452
157° tg= -0.4245
158° tg= -0.404
159° tg= -0.3839
160° tg= -0.364
161° tg= -0.3443
162° tg= -0.3249
163° tg= -0.3057
164° tg= -0.2867
165° tg= -0.2679
166° tg= -0.2493
167° tg= -0.2308
168° tg= -0.2125
169° tg= -0.1943
170° tg= -0.1763
171° tg= -0.1583
172° tg= -0.1405
173° tg= -0.1227
174° tg= -0.1051
175° tg= -0.0874
176° tg= -0.0699
177° tg= -0.0524
178° tg= -0.0349
179° tg= -0.0174
180° tg= 0

Угол

tg

181° tg= 0.0174
182° tg= 0.0349
183° tg= 0.0524
184° tg= 0.0699
185° tg= 0.0874
186° tg= 0.1051
187° tg= 0.1227
188° tg= 0.1405
189° tg= 0.1583
190° tg= 0.1763
191° tg= 0.1943
192° tg= 0.2125
193° tg= 0.2308
194° tg= 0.2493
195° tg= 0.2679
196° tg= 0.2867
197° tg= 0.3057
198° tg= 0.3249
199° tg= 0.3443
200° tg= 0.364
201° tg= 0.3839
202° tg= 0.404
203° tg= 0.4245
204° tg= 0.4452
205° tg= 0.4663
206° tg= 0.4877
207° tg= 0.5095
208° tg= 0.5317
209° tg= 0.5543
210° tg= 0.5774
211° tg= 0.6009
212° tg= 0.6249
213° tg= 0.6494
214° tg= 0.6745
215° tg= 0.7002
216° tg= 0.7265
217° tg= 0.7535
218° tg= 0.7813
219° tg= 0.8098
220° tg= 0.8390
221° tg= 0.8693
222° tg= 0.9004
223° tg= 0.9325
224° tg= 0.9657
225° tg= 1
226° tg= 1.0355
227° tg= 1.0724
228° tg= 1.1106
229° tg= 1.1504
230° tg= 1.1918
231° tg= 1.2349
232° tg= 1.2799
233° tg= 1.327
234° tg= 1.3764
235° tg= 1.4281
236° tg= 1.4826
237° tg= 1.5399
238° tg= 1.6003
239° tg= 1.6643
240° tg= 1.7321
241° tg= 1.804
242° tg= 1.8807
243° tg= 1.9626
244° tg= 2.0503
245° tg= 2.1445
246° tg= 2.2460
247° tg= 2.3559
248° tg= 2.475
249° tg= 2.605
250° tg= 2.7475
251° tg= 2.9042
252° tg= 3.0777
253° tg= 3.2709
254° tg= 3.4874
255° tg= 3.732
256° tg= 4.0108
257° tg= 4.3315
258° tg= 4.7046
259° tg= 5.1446
260° tg= 5.6713
261° tg= 6.3138
262° tg= 7.1154
263° tg= 8.1443
264° tg= 9.5144
265° tg= 11.4301
266° tg= 14.3007
267° tg= 19.0811
268° tg= 28.6363
269° tg= 57.29
270° tg не определен

Угол

tg

271° tg= -57.29
272° tg= -28.6363
273° tg= -19.0811
274° tg= -14.3007
275° tg= -11.4301
276° tg= -9.5144
277° tg= -8.1443
278° tg= -7.1154
279° tg= -6.3138
280° tg= -5.6713
281° tg= -5.1446
282° tg= -4.7046
283° tg= -4.3315
284° tg= -4.0108
285° tg= -3.732
286° tg= -3.4874
287° tg= -3.2709
288° tg= -3.0777
289° tg= -2.9042
290° tg= -2.7475
291° tg= -2.605
292° tg= -2.475
293° tg= -2.3559
294° tg= -2.2460
295° tg= -2.1445
296° tg= -2.0503
297° tg= -1.9626
298° tg= -1.8807
299° tg= -1.804
300° tg= -1.7321
301° tg= -1.6643
302° tg= -1.6003
303° tg= -1.5399
304° tg= -1.4826
305° tg= -1.4281
306° tg= -1.3764
307° tg= -1.327
308° tg= -1.2799
309° tg= -1.2349
310° tg= -1.1918
311° tg= -1.1504
312° tg= -1.1106
313° tg= -1.0724
314° tg= -1.0355
315° tg= -1
316° tg= -0.9657
317° tg= -0.9325
318° tg= -0.9004
319° tg= -0.8693
320° tg= -0.8390
321° tg= -0.8098
322° tg= -0.7813
323° tg= -0.7535
324° tg= -0.7265
325° tg= -0.7002
326° tg= -0.6745
327° tg= -0.6494
328° tg= -0.6249
329° tg= -0.6009
330° tg= -0.5774
331° tg= -0.5543
332° tg= -0.5317
333° tg= -0.5095
334° tg= -0.4877
335° tg= -0.4663
336° tg= -0.4452
337° tg= -0.4245
338° tg= -0.404
339° tg= -0.3839
340° tg= -0.364
341° tg= -0.3443
342° tg= -0.3249
343° tg= -0.3057
344° tg= -0.2867
345° tg= -0.2679
346° tg= -0.2493
347° tg= -0.2308
348° tg= -0.2125
349° tg= -0.1943
350° tg= -0.1763
351° tg= -0.1583
352° tg= -0.1405
353° tg= -0.1227
354° tg= -0.1051
355° tg= -0.0874
356° tg= -0.0699
357° tg= -0.0524
358° tg= -0.0349
359° tg= -0.0174
360° tg= 0

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.

Доп. Инфо:

  1. Таблица косинусов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений косинусов.
  2. Таблица синусов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений синусов.
  3. Таблица синусов, она-же косинусов точная.
  4. Таблица тангенсов углов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений тангенса, tg
  5. Таблица котангенсов углов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений котангенса, ctg
  6. Таблица тангенсов, она же котангенсов точная.
  7. Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
    Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.
  8. Знаки тригонометрических функций синус, косинус, тангенс и котангенс по четвертям в тригонометрическом круге.
  9. Определение и численные соотношения между единицами измерения углов в РФ.
    Тысячные, угловые градусы, минуты, секунды, радианы, обороты.
  10. Таблица соответствия угловых градусов, радиан, оборотов, тысячных (артиллерийских РФ). 0-360 градусов, 0-2π радиан.

Добавить комментарий