Как найти тангенс половины угла

Формула тангенса половинного угла — тригонометрическая формула, связывающая тангенс половинного угла с тригонометрическими функциями полного угла:

{displaystyle operatorname {tg} {frac {theta }{2}}={frac {sin theta }{1+cos theta }}={frac {1-cos theta }{sin theta }}=(-1)^{k}{sqrt {1-cos theta  over 1+cos theta }},}

где {displaystyle kin mathbb {Z} } и определяется из условия {displaystyle kpi leq theta leq (k+1)pi }.

С этой формулой связаны также следующие соотношения:

{displaystyle {begin{aligned}operatorname {tg} {frac {alpha +beta }{2}} &={frac {sin alpha +sin beta }{cos alpha +cos beta }},\[10pt]operatorname {tg} left({frac {theta }{2}}+{frac {pi }{4}}right)&=sec theta +operatorname {tg} theta ={frac {1+operatorname {tg} (theta /2)}{1-operatorname {tg} (theta /2)}}=(-1)^{k}{sqrt {frac {1+sin theta }{1-sin theta }}},\[10pt]mathrm {ctg} left({frac {theta }{2}}+{frac {pi }{4}}right)&=sec theta -operatorname {tg} theta ={frac {1-operatorname {tg} (theta /2)}{1+operatorname {tg} (theta /2)}}=(-1)^{k}{sqrt {frac {1-sin theta }{1+sin theta }}}.end{aligned}}}

В последних двух выражениях {displaystyle kin mathbb {Z} } и определяется из условия {displaystyle left(k-{frac {1}{2}}right)pi leq theta leq left(k+{frac {1}{2}}right)pi }.

При {displaystyle theta in left(-{frac {pi }{2}},{frac {pi }{2}}right)} имеем: {displaystyle operatorname {tg} {frac {theta }{2}}={frac {operatorname {tg} theta }{1+{sqrt {1+operatorname {tg} ^{2}theta }}}}.}

Геометрическое доказательство[править | править код]

Геометрическое доказательство формулы тангенса половинного угла

Универсальная тригонометрическая подстановка[править | править код]

В различных приложениях полезно записывать тригонометрические функции (такие как синус и косинус) через рациональные функции новой переменной t, равной тангенсу половинного угла. Эти тождества полезны при вычислении первообразных.

Существование формулы тангенса половинного угла основано на том факте, что окружность является алгебраической кривой порядка 2. Поэтому можно ожидать, что ‘круговые функции’ могут быть сведены к рациональным функциям.

Геометрические построения выглядят следующим образом: на тригонометрическом круге для любой точки, имеющей координаты (cos φ, sin φ), проведём прямую, проходящую через круг и точку с координатами (−1,0). Эта прямая пересекает ось ординат (ось y) в некоторой точке с координатой y = t. Путём простых геометрических построений можно показать, что t = tg(φ/2). Уравнение проведённой прямой таково y = (1 + x)t. Уравнение для определения точек пересечения указанной прямой и окружности представляет собой квадратное уравнение относительно t. Два решения этого уравнения — это (−1, 0) и (cos φ, sin φ). Это позволяет нам записать (cos φ, sin φ) как рациональные функции от t (решения даны ниже).

Заметим также, что параметр t стереографическую проекцию точки (cos φ, sin φ) на ось y с центром проекции, расположенным в точке (−1,0). Поэтому формула тангенса половинного угла даёт нам переход от стереографической координаты t к тригонометрическому кругу и стандартной угловой координате φ.

Имеем

и

Из этих формул можно выразить арктангенс через натуральный логарифм

{displaystyle operatorname {arctg} (t)={frac {1}{2i}}ln {frac {1+it}{1-it}}.}

При нахождении первообразных от функций, содержащих sin(φ) и cos(φ), подстановка Вейерштрасса выглядит следующим образом.
Принимая

{displaystyle t=operatorname {tg} {tfrac {1}{2}}varphi .}

получаем

{displaystyle varphi =2operatorname {arctg} (t),}

и следовательно

{displaystyle dvarphi ={{2,dt} over {1+t^{2}}}.}

Гиперболические тождества[править | править код]

Можно получить полностью аналогичные выводы для гиперболических функций. Точка на гиперболе (на её правой ветви) определяется координатами (ch θ, sh θ). Проецируя её на ось y из центра (−1, 0), получаем следующее:

{displaystyle t=operatorname {th} {frac {1}{2}}theta ={frac {operatorname {sh} theta }{operatorname {ch} theta +1}}={frac {operatorname {ch} theta -1}{operatorname {sh} theta }}}

и тогда тождества для гиперболических функций таковы

и

Использование этих подстановок для нахождения первообразных было представлено Карлом Вейерштрассом.

Выражение θ через t приводит к следующим соотношениям между гиперболическим арктангенсом и натуральным логарифмом:

{displaystyle operatorname {arth} (t)={frac {1}{2}}ln {frac {1+t}{1-t}}.}

См. также[править | править код]

  • Тригонометрические тождества
  • Формула половины стороны
  • Стереографическая проекция
  • Функция Гудермана

Ссылки[править | править код]

  • Тангенс половинного угла на Planetmath

Формулы половинного угла (аргумента) представляют собой противоположность формулам двойного угла , так как они выражают синус, косинус, тангенс и котангенс угла α2 при помощи тригонометрических функций угла α. В статье раскрыты формулы половинного угла и добавлены их доказательства с примерами решений.

Список формул половинного угла

Стандартные формулы половинного угла:

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы для sin и cos половинного угла справедливы при любом значении заданного угла α. Формулу для tg любого угла αопределяет tgα2, значение угла α≠π+2π·z при z равном любому целому числу ( выражение 1+cosα с таким же значением α не должно принимать значение 0). Формула ctg угла считается справедливой для любого угла α, где половинный угол имеет место быть, α≠2π·z.

Самые значимые формулы половинного угла для квадратов тригонометрических функций выводятся через положительное или отрицательное значение арифметического квадратного корня. Имеем формулы половинного угла:

sinα2=±1-cosα2, cosα2=±1+cosα2, tgα2=±1-cosα1+cosα, ctgα2=±1+cosα1-cosα

Знак «-» указывает, что тригонометрическая функция принадлежит определенной четверти угла α2.

Применим формулы на практике.

Доказательство формул половинного угла

Доказательство формул половинного угла основывается на формулах cos двойного угла cosα=1-2·sin2α2 и cosα=2·cos2α2-1. Упростив первое выражение по sin2α2, получим саму формулу половинного угла sin2α2=1-cosα2, второе выражение по cos2α2 получим cos2α2=1+cosα2.

Чтобы доказать формулы половинного угла для tg и ctg угла α2, необходимо применить основные тригонометрические тождества tgα2=sinα2cosα2 и ctgα2=cosα2sinα2, к ним необходимо добавить формулы половинного угла cos и sin, которые доказали выше. При подстановке получим выражения, имеющие вид:

tg2α2=sin2α2cos2α2=1-cosα21+cosα2=1-cosα1+cosα;ctg2α2=cos2α2sin2α2=1-cosα21+cosα2=1+cosα1-cosα;

Все формулы половинного угла были доказаны.

Примеры использования

Покажем применение формул половинного угла при решении примера.

Пример 1

Известно, что cos30°=32. Необходимо вычислить значение cos 15 градусов, используя формулы половинного угла.

Решение

Данный пример рассматривает применение формулы половинного угла для косинуса, имеющей вид cos2α2=1+cosα2.

Следуя из условия, подставляем числовые значения и получаем: cos215°=1+cos30°2=1+322=2+34. После получения значения косинуса 15 градусов, необходимо найти само значение косинуса. Для этого вспомним, что угол в 15 градусов принадлежит первой четверти. Там косинус угла имеет положительное значение ( чтобы вспомнить знаки тригонометрических функций, необходимо повторить теорию знаков синуса, косинуса, тангенса и котангенса по четвертям). Следуя из вышесказанного, имеем cos215°=2+34, тогда cos 15°=2+34=2+32. Ответ: cos 15°=2+32.

Применяя формулу половинного угла, стоит учитывать тот факт, что угол может быть не явного вида α2 и α, а потребует дальнейшего приведения к стандартному виду. Главное условие – нахождение аргумента в правой части формул половинного угла было в 2 раза больше, чем в левой. Иначе применение формулы будет невозможно.

Если формула позволит записывать данное равенство таким образом sin27α=1-cos14α2 или sin2 5α17=1-cos10α172, то формула будет применима.

Для правильного преобразования и применения формул половинного аргумента необходимо досконально изучить свойства тригонометрических функций. Не любое выражение поддается такому преобразованию в тригонометрии. Необходимо внимательно следить за значениями углов тригонометрических функций и их нахождение в четвертях для определения знака для выражения.

Все формулы половинного угла в тригонометрии:

Примеры использования

Примеры использования

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

ВИДЕО УРОК

Синус, косинус, тангенс и котангенс половины угла.

Формулы деления аргумента пополам выражают тригонометрические функции
половинного аргумента 
α/2  через
тригонометрические функции аргумента 
α.

Синус половины
угла равен плюс или минус квадратному корню из полуразности между единицей и
косинусом целого числа.

Рассмотрим соотношения

В результате почленного вычитания получим:

откуда

ПРИМЕР:

Вычислите  sin α/2, если

cos α = – 4/5  и  180° < α < 270°.

РЕШЕНИЕ:

По формуле

Находим

Учитывая, что  sin α/2 ˃ 0  при 

180°
< α <
270°, то есть 

90° < α/2 < 135°, получим

ОТВЕТ

sin
α/2 0,948683.

ПРИМЕР:

Найдём  sin 15°  без таблицы:

РЕШЕНИЕ:

ОТВЕТ:

Косинус половины угла
равен плюс или минус квадратному корню из полусуммы единицы и косинуса целого
числа.

Складывая почленно равенства

будем иметь:

откуда

ПРИМЕР:

Найдём

sin
 α/2, cos
 α/2,

если

cos
α = 0,8
 
и 
0 < α < π/2.

РЕШЕНИЕ:

Угол 
α/2  находится в 
I  четверти, поэтому 

sin  α/2 ˃ 0, cos α/2 ˃ 0.

ОТВЕТ:

sin
α/2 ≈ 0,316,

cos
α/2  ≈ 0,949.

Тангенс половины угла равен плюс или минус корню квадратному из дроби,
числитель которой есть разность между единицей и косинусом целого угла, а
знаменатель есть сумма единицы и косинуса целого угла.

Разделим почленно равенство

на равенство

получим:

ПРИМЕР:

Найдём значение  tg 112°30ʹ  без
таблиц
.

РЕШЕНИЕ:

ОТВЕТ:

tg 112°30ʹ = –1 – √͞͞͞͞͞2.   


Котангенс половины угла равен плюс или минус корню квадратному из дроби,
числитель которой есть сумма между единицей и косинусом целого угла, а
знаменатель есть разность единицы и косинуса целого угла.

ПРИМЕР:

Даноcos α = 49/81.

Найтиsin  α/2, cos
 α/2.

РЕШЕНИЕ:

Имеем:

ПРИМЕР:

Найти  tg  α/2, если  

cos
α = 0,8
 
и 
0 < α < π/2.

РЕШЕНИЕ:

По формуле

находим:

tg  α/2 ˃
0, так как половина острого угла – угол острый, а тангенс острого угла
положительный
.

Если
бы, например угол 
α  находился в промежутке между  270°  и  360°, то  cos α  был бы
так же положительным, но тангенс половины этого угла уже был бы отрицательным,
так как

135° < α/2
<
180°,

то есть подвижной радиус, соответствующий углу  α/2, расположился бы во второй четверти, поэтому перед корнем в формуле

надо
взять знак минус.

Последний пример поясняет смысл двух знаков  ±  перед
радикалом в формулах

Знаки
плюс или минус берутся в соответствии с тем, в какой четверти расположится
подвижной радиус половины угла.

Если
же величина угла 
α, а
следовательно, и 
α/2  неизвестны, то перед радикалом ставим оба
знака.

Для
тангенса половинного угла можно вывести ещё две формулы.

Если в равенстве

помножить числитель и знаменатель правой части на  2 sin  α/2, то получим:

Но
так как

2 sin2 α/2 = 1
cos α, а 

2 sin α/2 cos α/2 = sin α, то

Если же числитель и знаменатель правой части равенства

помножить
на 
2 cos α/2, а
затем воспользоваться формулами

2 sin α/2 cos α/2 = sin α,

2 cos2 α/2 = 1
+
cos α

получим:

Применим полученные формулы к предыдущему примеру. Имеем:  cos α = 0,8. Пусть угол  α – острый. Тогда

откуда по формуле

находим:

По формуле

получим:

Пусть угол  α  заключён между  270°  и  360°, тогда  cos α = +0,8, но  sin α = 0,6, и для  tg  α/2  получим:

по другой формуле:

Формулы

были
выведены из таких тождеств:

2 sin2 α/2 = 1
cos α,

2 cos2 α/2 = 1
+
cos α.

Эти
тождества

1 – cos α = 2
sin2 α/2,

1 + cos α = 2
cos2 α/2.

полезно
помнить, так как ими часто приходится пользоваться при различных
преобразованиях. Эти формулы связывают тригонометрические функции углов, из
которых один вдвое больше другого.

ПРИМЕР:

Привести к простейшему
виду выражение

РЕШЕНИЕ:

Пользуясь формулой

1 + cos 2α = 2 cos2 α

имеем:

ПРИМЕР:


Привести к простейшему
виду выражение

РЕШЕНИЕ:

Пользуясь формулой

sin 2α = 2
sin α cos α

имеем:

ПРИМЕР:


Доказать справедливость
равенства

РЕШЕНИЕ:


Преобразуем левую часть:

а это – правая часть.


Аналогично можно вывести
формулы и для 
ctg  α/2.

Выражение тригонометрических функций угла через тангенс половины этого угла.

Все тригонометрические функции любого угла выражаются
рационально
(с
помощью действий сложения, вычитания, умножения, деления и возведения в целую
степень
) через тангенс половины этого
угла
.

Имеем:

sin α = 2 sin α/2 cos α/2.

Разделим правую часть на

sin2 α/2 + cos2 α/2,

получим:

Числитель и знаменатель правой части делим
на 
cos2 α/2, получим:

Точно
так же, разделив правую часть тождества

cos
α
= cos
2
α/2sin2
α/2

на  sin2 α/2 + cos2 α/2, получим:

Разделим числитель и знаменатель правой части
на 
cos2 α/2, будем иметь:

и, наконец,

Так как значения функций  sес α  и  cosес α  обратны
по величине соответственным значениям функций 
cos α  и  sin α, то они также рационально
выражаются через 
tg  α/2.

Задания к уроку 23

  • Задание 1
  • Задание 2
  • Задание 3

ДРУГИЕ УРОКИ

  • Урок 1. Градусное измерение угловых величин
  • Урок 2. Радианное измерение угловых величин
  • Урок 3. Основные тригонометрические функции
  • Урок 4. Натуральные тригонометрические таблицы
  • Урок 5. Периодичность тригонометрических функций
  • Урок 6. Область определения и область значения тригонометрических функций
  • Урок 7. Знаки тригонометрических функций
  • Урок 8. Чётность и нечётность тригонометрических функций
  • Урок 9. Тригонометрические функции некоторых углов
  • Урок 10. Построение угла по данному значению его тригонометрической функции
  • Урок 11. Основные тригонометрические тождества
  • Урок 12. Выражение всех тригонометрических функций через одну из них
  • Урок 13. Решение прямоугольных и равнобедренных треугольников с помощью тригонометрических функций
  • Урок 14. Теорема синусов
  • Урок 15. Теорема косинусов
  • Урок 16. Решение косоугольных треугольников
  • Урок 17. Примеры решения задач по планиметрии с применением тригонометрии
  • Урок 18. Решение практических задач с помощью тригонометрии
  • Урок 19. Формулы приведения (1)
  • Урок 20. Формулы приведения (2)
  • Урок 21. Формулы сложения и вычитания аргументов тригонометрических функций
  • Урок 22. Формулы двойных и тройных углов (аргументов)
  • Урок 24. Формулы преобразования суммы тригонометрических функций в произведение  
  • Урок 25. Графики функций  y = sin x и y = cos x
  • Урок 26. Графики функций y = tg x и y = ctg x
  • Урок 27. Обратные тригонометрические функции
  • Урок 28. Основные тождества обратных тригонометрических функций
  • Урок 29. Выражение одной из аркфункций через другие
  • Урок 30. Графики обратных тригонометрических функций
  • Урок 31. Построение графиков тригонометрических функций методом геометрических преобразований

Алгебра и начала математического анализа, 10 класс

Урок №36. Формулы половинного аргумента.

Перечень вопросов, рассматриваемых в теме

1) Формулы синуса, косинуса, тангенса и котангенса половинного аргумента;

2) Преобразовывать тригонометрические выражений на основе использования формулы синуса, косинуса, тангенса и котангенса половинного аргумента;

3) Решение уравнения с использованием формулы синуса, косинуса половинного аргумента.

Глоссарий по теме

Формулы половинного угла (аргумента) представляют собой противоположность формулам двойного угла, так как они выражают синус, косинус, тангенс и котангенс угла  при помощи тригонометрических функций угла α. 

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.

Теоретический материал для самостоятельного изучения

Сегодня мы узнаем формулы, позволяющие нам по известным значениям ; находить ; ; . Их называют формулы половинного аргумента.

Повторим формулу косинуса двойного аргумента .

А если учесть, что и , то получим ещё две формулы, которые нам сегодня понадобятся:

и

Пример. а) Найти , если .

Вычислим по формуле

б) Найти , если .

Вычислим по формуле .

, получаем

(1) формула синуса половинного аргумента.

Запишем формулу косинуса двойного угла, где в виде

(2) формула косинуса половинного угла.

По формулам (1) и (2) можно найти или , если известны значения и положение угла , т.е. в какой координатной четверти он находится, чтобы определить знак выражения или .

Эти формулы ещё имеют название «формулы понижения степени», так как в левой части находится вторая степень синуса и косинуса, а в правой – первая, т.е. степень понизилась. Но будьте внимательны: степень понижается, а аргумент удваивается.

Например, .

Пример. Известно, что . Найдите ; ;

1) найдём по формуле: ; .

По условию . Разделив обе части неравенства на 2, получаем , значит угол во второй четверти, здесь синус положительный. .

2) ; найдём по формуле ,

Мы уже выяснили, что угол во второй четверти, косинус отрицательный.

3) Так как тангенс это отношение синуса на косинус, то

  • Выведем формулу для тангенса половинного аргумента. Для этого разделим левую часть формулы (1) на левую часть формулы (2) и правую часть формулы (1) на правую часть формулы (2).

сократим на 2 , и учитывая, что , получим:

формула тангенса половинного аргумента (3).

Так как котангенс это число, взаимообратное тангенсу, то

Пример. Найти и , если известно, что и .

По формуле (3) находим , а Найдём положение угла

По условию ,( разделим на 2)

, угол в первой четверти, тангенс положительный, , а .

Для этого используем формулу синуса двойного угла , заменив в ней х на . Получаем , учтём, что , то

, разделим числитель и знаменатель на , получаем:

(4)

(5)

Пример. Найти , если .

По формуле (5) .

С помощью доказанных на этом уроке формул можно не только вычислять значения выражений, но и упрощать выражения, доказывать тождества и решать тригонометрических уравнений.

Пример. Доказать тождество .

Представим , а , преобразуем левую часть тождества

, но , то

Левая часть равна правой части, тождество доказано.

Примеры и разбор решения заданий тренировочного модуля

№1.Известно, что и . Найдите ; ;

Установите соответствие между множествами значений А и В:

А В

а) 1)

б) cos 2)

в) tg 3)

г) ctg 4)3

5)

Ответ:

Подсказка: используйте формулы половинного аргумента и определение тангенса и котангенса.

№2. Известно, что . Найти ;

Установите соответствие между множествами значений А и В:

А В

а) 1)

б) ; 2)

в) 3)

г) ; 4)

Ответ:

Подсказка: используйте формулы половинного аргумента.

№3.Вычислите

Ответ:12.

Подсказка: используйте формулу синуса двойного угла, где .

№4. Известно, что , Найти ;

Установите соответствие между множествами значений А и В:

А В

а) 1)

б) ; 2)

в) 3)

г) ; 4)

Ответ:

Подсказка: используйте формулы половинного аргумента, зависимость синуса от косинуса, определения тангенса и котангенса.

№5.Вычислите .

Ответ: 0,5.

Подсказка: используйте формулу половинного аргумента.

№6. Известно, что. Найти ;

Установите соответствие между множествами значений А и В:

А В

а) 1)

б) ; 2)

в) 3)-

г) ; 4)

Ответ:

Подсказка: используйте формулы половинного аргумента, определения тангенса и котангенса.

№7. Вычислите и установите соответствие между множествами значений А и В:

А В

а) ; 1)

б) ; 2)

в) ; 3) 0,25

Ответ:

Подсказка: используйте формулу синуса и косинуса двойного угла, где .

№8.Упростите выражения и установите соответствие между множествами выражений А и В:

А В

а); 1)

б); 2)

в) ; 3)

Ответ:

Подсказка: используйте формулу синуса и косинуса двойного угла, где и определение тангенса.

№9*. Упростите выражение .

Выберите правильный ответ:1)2)3)2.

Ответ:2)

Подсказка: используйте формулу синуса двойного угла, где .

№10*. Известно, что . Найти ;

Установите соответствие между множествами значений А и В:

А В

а) 1)

б) ; 2)

в) 3)

г) ; 4)

Ответ:

Подсказка: используйте формулы половинного аргумента, зависимость синуса от косинуса, определения тангенса и котангенса.

№11*.Вычислите .

Ответ:1,5.

Подсказка: используйте формулы синуса двойного угла, где ; квадрата суммы и основное тригонометрическое тождество.

№12*.Известно, что , Найти ;

Установите соответствие между множествами значений А и В:

А В

а) 1)

б) ; 2)

в) 3)

г) ; 4)

Ответ:

Подсказка: используйте формулы половинного аргумента, зависимость синуса от косинуса, определения тангенса и котангенса.

№13*.Вычислите. Установите соответствие между множествами значений А и В:

А В

а) 1)

б) ; 2)

в) 3)

г) ; 4)

Ответ:

Подсказка: используйте формулу синуса и косинуса двойного угла, где и определение тангенса и котангенса.

№14*.Решите уравнения и выберите верный ответ:

1); 2);3)

Ответ: 2)

Подсказка: используйте формулу половинного аргумента, разделив предварительно обе части уравнения на 2.

Проверочная работа:

№1.

а) Известно, что , ,

Вычислите и установите соответствие между множествами А и В:

А В

а) ; 1)

б) cos; 2)

в) ; 3)

г) ; 4)

5)2

Ответ:

Подсказка: используй формулы половинного аргумента и определение тангенса и котангенса.

б) Известно, что , ,

Вычислите и установите соответствие между множествами А и В:

А В

а) ; 1)

б) cos; 2)

в) ; 3)

г) ; 4)

5)

Ответ:

Подсказка: используй формулы половинного аргумента и определение тангенса и котангенса.

№2.Вычислите: а); б)

Ответ: а) 5; б) 6

Подсказка: используйте формулу тангенса двойного угла, где .

№3.

а)Упростите выражение:

Выберите верный ответ:1)

Ответ: 1)

б) Упростите выражение:

Выберите верный ответ:1)

Ответ: 1)

Подсказка: используйте определение тангенса и котангенса, основное тригонометрическое тождество, формулу синуса и косинуса двойного угла, где .

Формулы половинного угла (половинного аргумента) – это часть от всех основных тригонометрических формул. Они выражают функции синус, косинус, тангенс, котангенс угла `frac{alpha}2` через эти ж функции аргумента `alpha`. Они, можно сказать, противоположны формулам двойного угла. Ниже приведены все формулы половинных углов, их вывод, а также примеры решения задач с их использованием.

Список всех формул половинного угла

Их можно встретить записанными в двух видах. В первом каждая из тригонометрических функций выражается через радикал:

`sin frac alpha 2=pm sqrt{frac {1-cos alpha}2}`
`cos frac alpha 2=pm sqrt{frac {1+cos alpha}2}`
`tg frac alpha 2=pm sqrt{frac {1-cos alpha}{1+cos alpha}}=` `frac {sin alpha}{1+cos alpha}=frac {1-cos alpha}{sin alpha}`
`ctg frac alpha 2=pm sqrt{frac {1+cos alpha}{1-cos alpha}}=` `frac {sin alpha}{1-cos alpha}=frac {1+cos alpha}{sin alpha}`

Знак «+» или «-» перед корнями зависит от того, в какую из координатных четвертей попадает угол `frac{alpha}2`.

Во втором варианте имеем дело с квадратами тригонометрических функций половинного угла:

`sin^2 frac alpha 2=frac {1-cos alpha}2`
`cos^2 frac alpha 2=frac {1+cos alpha}2`
`tg^2 frac alpha 2=frac {1-cos alpha}{1+cos alpha}`
`ctg^2 frac alpha 2=frac {1+cos alpha}{1-cos alpha}`

Формула синуса и косинуса половинного угла имеет место при любом угле `alpha`.

Формула тангенса половинного угла справедлива для тех углов `alpha`, при которых определен `tg frac alpha 2`, то есть при ` alphanepi+2pi n, n in Z`.

Формула котангенса выполняется для тех `alpha`, при которых определен `ctg frac alpha 2`, то есть при ` alphane 2pi n, n in Z`.

С помощью следующего набора формул можно выразить каждую из тригонометрических функций угла `alpha` через тангенс половинного угла.

`sin alpha= frac{2tgfrac{alpha}{2}}{1 + tg^{2}frac{alpha}{2}},` ` alphane pi +2pi n, n in Z`
`cos alpha= frac{1 — tg^{2}frac{alpha}{2}}{1 + tg^{2}frac{alpha}{2}},` ` alpha ne pi +2pi n, n in Z`
`tg alpha= frac{2tgfrac{alpha}{2}}{1 — tg^{2}frac{alpha}{2}},` ` alpha ne pi +2pi n, n in Z,` ` alpha ne frac{pi}{2}+ pi n, n in Z`
`ctg alpha = frac{1 — tg^{2}frac{alpha}{2}}{2tgfrac{alpha}{2}},` ` alpha ne pi n, n in Z,` `alpha ne pi + 2pi n, n in Z`

Вывод формул половинного угла

Формула косинуса и синуса половинного угла выводится из формул косинуса двойного угла `cos 2alpha=1-2 sin^2 alpha` и `cos 2alpha=2 cos^2 alpha-1`. Запишем их в следующем виде: `cos alpha=1-2 sin^2 frac alpha 2` и `cos alpha=2 cos^2 frac alpha 2-1`. Выразив из первого равенства ` sin frac alpha 2` получим `sin frac alpha 2=pm sqrt{frac {1-cos alpha}2}`. Аналогично разрешив второе равенство относительно ` cos frac alpha 2` в результате будем иметь `cos frac alpha 2=pm sqrt{frac {1+cos alpha}2}`.

Формулы тангенса и котангенса половинного угла можно вывести, используя определения этих функций в виде `tg frac alpha 2=frac{sinfrac alpha 2}{cos frac alpha 2}` и `ctg frac alpha 2=frac{cos frac alpha 2}{sin frac alpha 2}`, а также две уже доказанные выше формулы для синуса и косинуса.

В результате будем иметь: `tg frac alpha 2=frac{sinfrac alpha 2}{cos frac alpha 2}=` `frac{pm sqrt{frac {1-cos alpha}2}}{pm sqrt{frac {1+cos alpha}2}}=` `pm sqrt{frac {1-cos alpha}{1+cos alpha}}` и `ctg frac alpha 2=frac{cosfrac alpha 2}{sin frac alpha 2}=` `frac{pm sqrt{frac {1+cos alpha}2}}{pm sqrt{frac {1-cos alpha}2}}=` `pm sqrt{frac {1+cos alpha}{1-cos alpha}}`.

Примеры использования при решении задач

Пример 1. Найти `cos 15^circ`, если известно, что `cos 30^circ=frac{sqrt3}2`.

Решение. Формула половинного угла для тригонометрической функции косинус имеет вид `cos^2 frac alpha 2=frac {1+cos alpha}2`. Подставив известные значения, имеем `cos^2 15^circ=frac {1+cos 30^circ}2=` `frac{1+frac{sqrt3}2}2=frac{2+sqrt3}4`. Имея значение `cos^2 15^circ`, найдем `cos 15^circ`. Поскольку угол 15 градусов лежит в первой координатной четверти, а косинус в этой четверти имеет знак «+», то `cos 15^circ=sqrt{frac{2+sqrt3}4}=` `frac{sqrt{2+sqrt3}}2`.

Ответ. `cos 15^circ=frac{sqrt{2+sqrt3}}2`.

Пример 2. Вычислить значение выражения `4cos frac {alpha}2+2cos alpha+5`, если `cos alpha=frac {1}8`.

Решение. Используя ту же формулу, что и в первом примере (`cos frac alpha 2=pm sqrt{frac {1+cos alpha}2}`) и известное значение косинуса, упростим выражение: `4sqrt{frac {1+cos alpha}2}+2cos alpha+5=4sqrt{frac {1+frac {1}8}2}+2 cdot frac {1}8+5=` `4sqrt{frac {9}16}+frac{1}4+5=8frac{1}4`.

Ответ. `4cos frac {alpha}2+2cos alpha+5=8frac{1}4`.

Еще несколько примеров с подробным объяснением посмотрите на видео:

В большинстве случаев формулы половинного угла используются при преобразовании тригонометрических выражений.

Материалы по теме:

  • Тригонометрические формулы: косинус, синус и тангенс двойного угла
  • Формулы понижения степени в тригонометрии: вывод и примеры
  • Все формулы по тригонометрии
  • Формулы приведения тригонометрических функций

Загрузка…

Добавить комментарий