Как найти тангенс прямоугольного треугольника через косинус

Тригонометрия – это наука, изучающая свойства тригонометрических формул (trigwnon – треугольник и метр – мера).

Тригонометрич. формулы — это элементарные функции, выражающие зависимость всех сторон прямоугольного треугольника от острых углов к гипотенузе (или зависимость хорд и высот от его центрального угла в окружности).

К прямым функциям тригонометрии относятся: sin x (синус), cos x (косинус). К производным: tg x (тангенс), ctg x (котангенс). В дополнение к другим тригонометрическим функциям: sec x (секанс) и cosec x (косеканс).

Косинус и синус в тригонометрии — бесконечно дифференцируемые и периодически непрерывные вещественные функции. Остальные, наоборот, дифференцируются в области определения, однако, как и прямые тригонометрические функции, непрерывны.

Основные тригонометрич. тождества:

Зная синус или косинус числа, можно найти его тангенс или котангенс: tg a = sin a / cos a

Вы можете найти синус числа, если известен его косинус, и наоборот: sin2 a + cos2 a = 1

Можно найти тангенс через синус с известным косинусом: 1 + tg2 a = 1 / cos2 a

Вы можете найти котангенс через синус с известным косинусом: 1 + 1 / tg2 a = 1 / sin2

sin(90o – а) = cos а

cos(90o – а) = sin а

И еще, любую формулу в математике можно применять не только слева направо, но и наоборот. В тригонометрии это же применяется при преобразовании суммы в произведение или при переходе от произведения к сумме.

Содержание:

Пусть в прямоугольном треугольнике гипотенуза равна с, один из острых углов равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определения синуса, косинуса, тангенса и котангенса острого угла

Определение. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определение. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример:

Угол К в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияравен 90° (рис. 7).
Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для угла N катет МК — противолежащий, а катет NK — прилежащий (см. рис. 7, с. 11). Поэтому согласно определениям получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Можно заметить, что синус острого угла а прямоугольного треугольника и косинус другого острого угла этого треугольника, содержащего Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равны, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Так же Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
А теперь выполните Тест 1 и Тест 2.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значение синуса острого угла, а также косинуса, тангенса и котангенса зависит только от величины угла и не зависит от размеров и расположения прямоугольного треугольника с указанным острым углом.
Это следует из того, что прямоугольные треугольники с равным острым углом подобны, а у подобных треугольников соответствующие стороны пропорциональны. Так, в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 8) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°

Рассмотрим прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 9). Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то АВ = 2. По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 9), то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Рассмотрим равнобедренный прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 10). По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Составим таблицу значений синусов, косинусов, тангенсов и котангенсов для углов 30°, 45° и 60°.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение значений тригонометрических функций

Значения синуса, косинуса, тангенса и котангенса данного угла можно приближенно находить при помощи специальных тригонометрических таблиц* либо калькулятора.

Например, с помощью калькулятора, компьютера или мобильного телефона (смартфона) находим: sin45° = 0,707106… . Приближенное значение тригонометрических функций при решении задач будем брать с округлением до четырех знаков после запятой: sin45° = 0,7071.
Итак, точное значение sin 45° равно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения . а приближенное — 0,7071.
Таблицы и калькулятор также позволяют находить величину острого угла по значению синуса, косинуса или тангенса. Например, найдем острый угол, синус которого равен 0,4175. Выбрав на компьютере вид калькулятора «инженерный», далее «градусы», нужно ввести последовательно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. На экране появится ответ: 24,676… . Округлим его до десятых долей градуса и получим 24,7°. Учитывая, что 1° содержит 60 угловых минут, получим: 0,7° = 0,7 • 60′ = 42′. Искомый угол, синус которого 0,4175, приближенно равен 24°42′.
А теперь выполните Тест 3.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тригонометрические функции острого угла

Синус, косинус, тангенс и котангенс являются функциями угла, так как каждому острому углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответствует единственное значение синуса, косинуса, тангенса и котангенса. Они называются тригонометрическими функциями и записываются так: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Поскольку в прямоугольном треугольнике катет меньше гипотенузы, то для острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливо: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения следовательно синус и косинус острого угла положительны и меньше 1.
Тангенс и котангенс острого угла могут принимать любое положительное значение. Например, tg85° ~ 11,4.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

С увеличением острого угла синус и тангенс возрастают, а косинус и котангенс убывают (рис. 11), то есть если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (cm. c. 28, задачу 2*). Это гарантирует, что синус (косинус, тангенс и котангенс) острого угла определяют этот угол однозначно.

Пример №1

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, катет ВС равен 8 см, гипотенуза АВ равна 17 см. Найти косинус угла А (рис. 12).

Решение:

По теореме Пифагора найдем катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см). Косинус острого угла прямоугольного треугольника равен от ношению прилежащего катета к гипотенузе. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №2

Гипотенуза АВ прямоугольного треугольника АВС равна 20 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 13). Найти площадь треугольника.

Решение:

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения ВС = 4 • 4 = 16(см), Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 96 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №3

При помощи циркуля и линейки построить угол, синус которого равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Идея решения. Построим прямоугольный треугольник с катетом, равным 4 единицы, и ги­потенузой, равной 5 единиц. Синус угла, противолежащего указанному катету, будет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение. 1) Строим прямой угол С (рис. 14), для чего проводим произвольную прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения отмечаем на ней точку С и строим прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проходящую через точку С перпендикулярно прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (вспомните по рисунку алгоритм построения). 2) На прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от точки С откладываем последова­тельно четыре равных отрезка. Получаем отрезок ВС, который содержит 4 единицы. 3) Строим окружность с центром в точке В радиусом, равным пяти единицам. В пересечении этой окружности и прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получаем точку А.
Угол ВАС — искомый.

Доказательство:

Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгоритм решения прямоугольного треугольника

Под решением прямоугольного треугольника понимают нахождение его неизвестных сторон и углов по некоторым элементам, определяющим этот треугольник. Рассмотрим три задачи:

  1. нахождение катета по гипотенузе и острому углу;
  2. нахождение катета по другому катету и острому углу;
  3. нахождение гипотенузы по катету и острому углу.

Пример №4

Гипотенуза прямоугольного треугольника равна 6, острый угол равен 32° (рис. 23). Найти катет, прилежащий к данному углу. Ответ округлить до 0,1.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Примем длину искомого катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 5,1.

Пример №5

Катет прямоугольного треугольника равен 2,5, а прилежащий к нему угол равен 68° (рис. 24). Найти другой катет. Ответ округлить до 0,1.
 

Решение:

Примем длину неизвестного катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 6,2.

Пример №6

Катет прямоугольного треугольника равен 4,2, противолежа­щий ему угол равен 29° (рис. 25). Найти гипотенузу треугольника. Ответ округлить до 0,1.

Решение:

Примем длину гипотенузы за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 8,7.

Правила решения прямоугольного треугольника

Преобразуем формулы синуса, косинуса, тангенса и котангенса и запишем результаты для треугольника на рисунке 26:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Удобно пользоваться следующими правилами:

  • Катет равен гипотенузе, умноженной на синус противолежащего или на косинус прилежащего угла (рис. 27, а).
  • Гипотенуза равна катету, деленному на синус противолежащего или на косинус прилежащего угла (рис. 27, б).
  • Катет равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к первому катету угла (рис. 27, в).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №7

В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 28).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Полезно запомнить!
Если в прямоугольном треугольнике с углом 30° (или 60°) дан меньший катет а, то больший
катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
 (рис. 29, а). А если дан больший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то меньший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 29, б).
Если в прямоугольном треугольнике с углом 45° дан катет а,

то гипотенуза Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 30, а), а если дана гипотенуза с, то ка­тет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 30, б).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №8

В прямоугольном треугольнике АВС известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота, проведенная к гипотенузе (рис. 31). Найти проекцию НВ катета ВС на гипотенузу.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Заметим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №9

В равнобедренной трапеции ABCD меньшее основание ВС равно 7, боковая сторона АВ равна 10, sinA = 0,8. Найти площадь трапеции.

Решение:

Площадь трапеции находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияНайдем большее основание и высоту трапеции. Проведем в трапеции высоты ВН и СК (рис. 32). Так как НВСК — прямоугольник (все углы — прямые), то НК = ВС = 7. Из равенства прямоугольных треугольников АНВ и DKC (по катету и гипотенузе) АН = KD. Из прямоугольного треугольника АНВ находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда АН = 6 (пифагорова тройка 6, 8, 10). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 104.

Тригонометрические формулы

Используя формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениягде Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — катеты, с — гипотенуза прямоугольного треугольника, можно по­лучить формулы, связывающие значения тригонометрических функций острого угла.

1. Основное тригонометрическое тождество

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

По теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

Так как синус и косинус острого угла а положительны, то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Выражение тангенса и котангенса через синус и косинус

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

a)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения б)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Проверим справедливость основного тригонометрического тождества.
Верно ли, например, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Да, это верно, так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Основная задача

ДаноСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый угол.

Найти: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. Используем основное тригонометрическое тождество: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как косинус острого угла больше нуля, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Изобразим прямоугольный треугольник с катетом 5 и гипотенузой 13 (рис. 41). Синус угла, противолежащего данному катету, равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поэтому этот угол равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора другой катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 3. Пусть катет, противолежащий углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен 5х, тогда гипотенуза равна Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора прилежащий катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияОтсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №10

В параллелограмме ABCD (рис. 42) сторона ВС = 50 см, высота ВК = 30 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Найти периметр параллелограмма.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Из треугольника АВК находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз основного тригонометрического тождества следует: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (так как угол А — острый, то sinA > 0). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(см ) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Ответ: 168 см.

Пример №11

Доказать, что при увеличении угла от 0° до 90°:

а) синус угла увеличивается от 0 до 1, а косинус — уменьшается от 1 до 0;

б) тангенс угла увеличивается от О до бесконечности.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

а) Рассмотрим прямоугольные треугольники с гипотенузой, равной 1. Для этого опишем радиусом ОМ, равным 1, четверть окружности — ду­гу МК (рис. 43). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Опустим из точки А перпендикуляр АВ на ОМ. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При повороте радиуса ОМ вокруг центра О против часовой стрелки, начиная от ОМ и заканчивая ОК, угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0° до 90° (образуя указанные на чертеже углы: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д.). Величина катета АВ, противолежащего углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0 до 1. А величина катета ОВ, наоборот, будет уменьшаться от 1 до 0. Таким образом, при увеличении угла от 0° до 90° его синус увеличивается от 0 до 1, а косинус уменьшается от 1 до 0.
Из формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения также следует (учитывая положительность синуса и косинуса острого угла), что с увеличением синуса от 0 до 1 косинус уменьшается от 1 до 0. 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения 

б) Для определения изменения тангенса угла удобно рассматривать треугольники, у которых при­лежащий катет не изменяется и остается равным 1, а противолежащий катет изменяется. Рассмотрим прямоугольный треугольник АОМ, у которого отре­зок ОМ = 1, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 44). По определению Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения станем изменять, перемещая точку А по прямой MN, начиная от точки М и проходя через точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д. При этом угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и его тангенс начнут возрастать. Таким образом, когда угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения при движении точки А вверх будет стремиться к углу КОМ, равному 90°, то тангенс этого угла будет неограниченно возрастать.
К такому же выводу можно прийти, рассматривая формулу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При увеличении угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от 0° до 90° числитель дроби будет увеличиваться от 0 до 1, а знаменатель — уменьшаться от 1 до 0, значит, вся дробь будет увеличиваться от 0 до бесконечности. Таким образом, при увеличении угла от 0° до 90° его тангенс увеличивается от 0 до бес­конечности.

Пример №12

В основании прямоугольного параллелепипеда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения лежит квадрат, диагональ которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см. Диагональ Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения боковой грани составляет с ребром основания Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 46). Найдите объем параллелепипеда.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Объем прямоугольного параллелепипеда находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, где а, b и с — его измерения. Так как ABCD — квадрат, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Искомый объем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения.
Ответ: 576 см3.

Синус, косинус, тангенс и котангенс тупого угла

1. Определение значений Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а от 0° до 180°

Ранее мы дали определения синуса, косинуса, тангенса и котангенса острого угла через отношение сторон прямоугольного треугольника. Сделаем теперь это для углов от 0° до 180°.

Рассмотрим полуокружность с центром в начале координат и радиусом, равным 1 (рис. 48). От положительной полуоси Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения против часовой стрелки отложим острый угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения сторона которого пересекает полуокружность в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника OMN, где ОМ = 1, ON = х, MN = у, получаем: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то есть синус, косинус,

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

тангенс и котангенс острого угла а выражаются через координаты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Точно так же определяются значения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а из промежутка Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, синусом угла а называется ордината Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения косинусом — абсцисса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тангенсом — отношение ординаты к абсциссе Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения  а котангенсом — отношение абсциссы к ординате Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки М единичной полуокружности.

Например, для тупого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 48), где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для любого положения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения на единичной полуокружности верно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (докажите самостоятельно). Поэтому для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно основное тригонометрическое тождество Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Также верны тождества: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение синуса, косинуса, тангенса и котангенса тупых углов

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 49). Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по гипотенузе и острому углу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТочки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения имеют координаты: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято есть для углов от 0° до 180° справедливы равенства: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
 

Синус тупого угла равен синусу смежного с ним острого угла.
Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».

 

Пример 1. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Разделив почленно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияна равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения а затем наоборот, получим равенства:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».

Пример 2. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Указанные формулы и правила позволяют находить значения триго­нометрических функций тупого угла через значения тригонометрических функций острого угла, который дополняет данный тупой угол до 180°: синусы углов, дополняющих друг друга до 180°, равны между собой, а косинусы, тангенсы и котангенсы — противоположны. Так как синус, косинус, тангенс и котангенс острого угла по­ложительные, то синус тупого угла положительный, а косинус, тангенс и котангенс — отрицательные.

Значения тригонометрических функций для углов 0°, 90°, 180°

Если луч ОМ совпадет с лучом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 50), то будем считать, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

а) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияне определено, так как деление на нуль невозможно; 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениязначение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно; в) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значе­ние Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно.
Поскольку проекции радиуса, равного 1, на оси координат меньше либо равны 1, то для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливы неравенства: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №13

Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения – тупой угол.

Решение:

Способ 1. Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поскольку угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — тупой, то его косинус отрицательный. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТогдаСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Синус острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения смежного с данным тупым углом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен также Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Построим прямоугольный треугольник со сторонами 3, 4 и 5 (рис. 52). В нем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТак как косинусы смежных углов противоположны, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Аналогично, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ:Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Формулы площади треугольника и площади параллелограмма

Тригонометрические функции позволяют получить формулы для вычисления площади треугольника и площади параллелограмма. Сформулируем их в виде двух теорем.

Теорема. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть в треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота (рис. 56, а).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Из  прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тупой (рис. 56, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый. Из прямоугольно­го треугольника АКС следует, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — прямоугольный с катетами Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Учитывая, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Теорема доказана.

Теорема. Площадь параллелограмма равна произведению двух его соседних сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Используя рисунок 57, докажите эту теорему самостоятельно.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Замечание. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то параллелограмм является прямоугольником. Его площадь Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, формула площади прямоугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — частный случай формулы площади параллелограмма Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Известно, что слово «синус» в переводе с латинского имеет множество значений: изгиб, дуга, пазуха, бухта, впадина, залив, хорда, забота и нежная любовь. При помощи Интернета выясните:

а) какое из значений подходит к математическому понятию «синуса»;

б) какие из значений относятся к медицине и почему насморк врачи иногда называют синуситом.

Пример №14

Дан параллелограмм ABCD, площадь которого 40 см2, а периметр 36 см. Найти стороны параллелограмма, если его угол D равен 150° (рис. 58).
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Полупериметр параллелограмма ра­вен 18 см. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениясм, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Тогда

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
По условию Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Составим и решим уравнение: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— корни.
Если CD = 8 см, то AD = 10 см, если CD = 10 см, то AD = 8 см.
Ответ: 8 см, 10 см.

Пример №15

Доказать, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними, т.е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть диагонали Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения четырехугольника ABCD (рис. 59) пересекаются в точке О, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Докажем, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Заме­тим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениякак вертикальные, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по свойству смежных углов. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По фор­муле площади треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения у получим:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Утверждение доказано

Среднее пропорциональное (среднее геометрическое) в прямоугольном треугольнике

Если для положительных чисел Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения выполняется пропорция Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется средним пропорциональным чисел а и с (между чис­лами а и с). Из указанной пропорции Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения В такой форме записи число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения еще называют средним геометрическим чисел а и с.
 

Пример №16

Число 4 является средним пропорциональным, или средним геометрическим чисел 2 и 8, так как = Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения или Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, проведем высоту СК (рис. 61). Отрезок АК является проекцией катета АС на гипотенузу, а отрезок ВК — проекцией катета ВС на гипотенузу. Катеты, гипотенуза, высота и проекции катетов на гипотенузу связаны отношениями, которые мы сформулируем в виде следующей теоремы.

Теорема (о среднем пропорциональном в прямоугольном треугольнике).

а) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 61).

б) Катет есть среднее пропорциональное между гипотенузой и проек­цией этого катета на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

а)3аметим, что если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения до 90°) (рис. 62). Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Аналогично доказывается, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Теорема доказана.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Обозначив катеты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения гипотенузу с, высо­ту Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проекции катетов на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 63), получим следующие формулы: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №17

Найти площадь прямоугольного треугольника, если проекции катетов на гипотенузу равны 2 см и 8 см.

Решение:

Пусть СН — высота прямоугольного треугольника АВС  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения АН = 2 см — проекция катета АС на гипотенузу, НВ = 8 см —

проекция катета СВ на гипотенузу (рис. 64). Так как высота СН есть среднее геометрическое между проекциями катетов на гипотенузу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 20 см2.

Пример №18

В прямоугольном треугольнике АВС из вершины прямого угла С проведена высота Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, АК = 12 см (рис. 65). Найти гипотенузу АВ.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо смыслу задачи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Значит, КВ = 3 см, АВ = 15 см.
Ответ: 15 см.

Пример №19

При помощи циркуля и линейки построить отрезок, равный среднему геометрическому отрезков т и п .

Решение:

Пусть даны отрезки т и п . Необходимо построить отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение.
1) На произвольной прямой откладываем данные отрезки: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2) На отрезке АВ как на диаметре строим полуокружность, для чего находим середину О отрезка АВ, откуда ОА — радиус данной окружности.

3) Из точки К восстанавливаем перпендикуляр к прямой АВ до пересечения с полуокружностью в точке М (рис. 66).
Отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— среднее пропорциональное отрезков Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— прямой как вписанный угол, опирающийся на диаметр. В прямоугольном треугольнике АМВ высота МК является средним пропорциональным проекций катетов AM и МВ на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Повторение*
В 8-м классе мы доказали следующую теорему:

Теорема (о касательной и секущей). Если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной, соединяющего данную точку и точку касания, равен произведению отрезков се­ кущей, соединяющих данную точку и точки пересечения секущей с окружностью, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 70).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Как видим, отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения является средним пропорциональным между отрезками Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения секущей. Глядя на рисунок 70, вспомните идею доказательства теоремы.

Теорема о площадях треугольников с общим (равным) углом

Площади треугольников, имеющих общий угол (или равный угол), относятся как произведения сторон, заключающих этот угол (рис. 75),
т.е.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие: Верно:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №20

Площадь треугольника АВС равна 16, АК : КС = 3 :1 , AM : МВ = 1 :2 (рис. 76). Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. По следствию из теоремы о площадях треугольников с общим углом получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2.  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 4.

Теорема Менелая

Если дан треугольник АВС и прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает стороны ВС, АВ и продолжение стороны АС в точках Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответственно (рис. 79), тоСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Проведем отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(по двум углам), то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Перемножив почленно указанные пропорции, получим

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Замечание. При составлении произведения трех отношений теоремы Менелая можно начинать с любой из шести точек (трех вершин треугольника и трех точек пересечения прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения с прямыми, содержащими стороны треугольника) и двигаться по контуру либо по часовой, либо против часовой стрелки. При этом вершины треугольника и точки пересечения должны чередоваться.

Пример №21

В треугольнике АВС на сторонах АВ и АС взяты соответственно точки М и К, такие, что AM : МВ = 2 :1 , АК : КС = 3 :2 . Отрезки СМ и ВК пересекаются в точке О. Найти ВО : ОК.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1 (теорема Менелая). Рассмотрим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 80). Прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает две его стороны АВ и ВК соответственно в точках М и О и продолжение тре­тьей стороны АК в точке С. По теореме Менелая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2 (теорема Фалеса обобщенная). Проведем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 81). По теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда АЕ — три части, ЕМ — две части, AM — пять частей, откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Для Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
по теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №22

Дан равнобедренный треугольник АВС (АВ = ВС), площадь которого равна 80. Точка К делит высоту ВН в отношении 1 : 3, считая от основания. Прямая АК пересекает сторону ВС в точке М. Найти площадь четырехугольника НКМС (рис. 82).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

1) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (ВН — высота и медиана треугольника АВС).

2) Применим теорему Менелая к треугольнику НВС.
Прямая AM пересекает его стороны ВН и ВС соответственно в точках К и М и продолжение стороны НС в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 22.

Неравенство Коши

Среднее арифметическое двух неотрицательных чисел больше либо равно их среднему геометрическому, т. е.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Действительно, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгебраическое доказательство указанного неравенства таково. Рассмотрим разность левой и правой частей неравенства Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияпри всех допустимых Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Следовательно, неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно.
Неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется неравенством Коши по имени известного французского математика и часто используется при решении олимпиадных задач.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Приведем геометрическое доказательство указанного неравенства. Изобразим окружность с диаметром АВ и центром в точке О (рис. 87). На диаметре возьмем точку К (для определенности левее центра О). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из точки К вос­становим перпендикуляр КС, где точка С принад­лежит окружности. Проведем радиус ОС. Так как вписанный угол, опирающийся на диаметр, прямой, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения прямоугольный, СК — его высота, проведенная к гипотенузе. По теореме о среднем пропорциональном в прямоугольном треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Но радиус ОС равен половине диаметра АВ, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения катет меньше гипотенузы, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как катет меньше гипотенузы. Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Равенство левой и правой частей неравенства достигается, когда точ­ка К совпадает с точкой О и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения становится равнобедренным и прямоугольным. Поэтому справедливо неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решеният. е Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

ЗАПОМИНАЕМ

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Значения тригонометрических функций углов 30 45°, 60°: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Тригонометрические формулы (тождества): 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Примеры:  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4. Формулы площади треугольника и параллелограмма: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

5. Среднее пропорциональное в прямоугольном треугольнике: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

  • Сумма углов треугольника
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Угол – определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников

Как найти тангенс, если известен косинус

Понятие тангенса является одним из основных в тригонометрии. Оно обозначает некую тригонометрическую функцию, которая является периодической, но не непрерывной в области определения, как синус и косинус. И имеет разрывы в точках (+,-)Пи*n+Пи/2, где n – это период функции. В России он обозначается как tg(x). Его можно представить через любую тригонометрическую функцию, так как все они тесно взаимосвязаны между собой.

Как найти тангенс, если известен косинус

Вам понадобится

  • Учебник по тригонометрии.

Инструкция

Для того, чтобы выразить тангенс угла через синус, нужно вспомнить геометрическое определение тангенса. Итак, тангенсом острого угла в прямоугольном треугольнике, называют отношение противолежащего катета к прилежащему.

С другой стороны, рассмотрите декартову систему координат, на которой начерчена единичная окружность с радиусом R=1, и центром О в начале координат. Примите поворот против часовой стрелки, как положительный, а в обратную сторону отрицательный.

Отметьте некую точку M на окружности. Из нее опустите перпендикуляр на ось Ох, назовите ее точкой N. Получился треугольник OMN, у которого угол ONM является прямым.

Теперь рассмотрите острый угол MON, по определению синуса и косинуса острого угла в прямоугольном треугольнике
sin(MON) = MN/OM, cos(MON) = ON/OM. Тогда MN= sin(MON)*OM, а ON = cos(MON)*OM.

Вернувшись к геометрическому определению тангенса (tg(MON) = MN/ON), подставьте полученные выше выражения. Тогда:
tg(MON) = sin(MON)*OM/cos(MON)*OM, сократите OM, тогда tg(MON) = sin(MON)/cos(MON).

Как найти тангенс, если известен <b>косинус</b>

Из основного тригонометрического тождества (sin^2(x)+cos^2(x)=1) выразите косинус, через синус: cos(x)=(1-sin^2(x))^0,5 Подставьте это выражение в полученное на шаге 5. Тогда tg(MON) = sin(MON)/(1-sin^2(MON))^0,5.

Иногда существует потребность в вычисление тангенса двойного и половинчатого угла. Тут тоже выведены соотношения:tg(x/2) = (1-cos(x))/sin(x) = (1-(1-sin^2(x))^0,5)/sin(x);tg(2x) = 2*tg(x)/(1-tg^2(x)) = 2*sin(x)/(1-sin^2(x))^0,5/(1-sin(x)/(1-sin^2(x))^0,5)^2) =
= 2*sin(x)/(1-sin^2(x))^0,5/(1-sin^2(x)/(1-sin^2(x)).

Также возможно выразить квадрат тангенса через двойной угол косинуса, либо синус. tg^2(x) = (1-cos(2x))/(1+cos(2x)) = (1-1+2*sin^2(x))/(1+1-2*sin^2(x)) = (sin^2(x))/(1-sin^2(x)).

Обратите внимание

Обратите внимание на области допустимых значений при решение уравнений и неравенств.

Полезный совет

Знание наизусть основных тождеств, поможет быстро переходить от одних тригонометрических функций к другим.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Тангенс в прямоугольном треугольнике

Что такое тангенс в прямоугольном треугольнике? Как найти тангенс? От чего зависит значение тангенса?

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Например, для угла A треугольника ABC

Поэтому тангенс угла A в треугольнике ABC — это

Для угла B треугольника ABC

противолежащим является катет AC,

Соответственно, тангенс угла B в треугольнике ABC

равен отношению AC к BC:

Таким образом, тангенс острого угла прямоугольного треугольника — это некоторое число, получаемое при делении длины противолежащего катета на длину прилежащего катета.

Так как длины катетов — положительные числа, то и тангенс острого угла прямоугольного треугольника является положительным числом.

Тангенс угла треугольника зависит от величины угла, но не зависит от катетов (важно лишь их отношение).

Если в треугольнике изменить длины катетов, не меняя угол, то величина тангенса не изменится.

Тангенс в прямоугольном треугольнике – свойства, формула и примеры нахождения

Геометрические фигуры завораживают количеством своих свойств и функций, таких как тангенс в прямоугольном треугольнике. Это происходит в основном из-за двух факторов.

Во-первых, нам уже известен один из углов, который равен 90 градусам. Во-вторых, есть много свойств с применением прямоугольников. А из двух прямоугольных треугольников как раз получается именно такая фигура.

Из этого вытекает многое, но сегодня мы поговорим об одном очень интересном свойстве такого треугольника, как тангенс. В данной статье мы подробно рассмотрим определение тангенса, узнаем, как его можно найти и как его можно использовать.

Если вы уже что-то слышали про отношения одной из сторон к гипотенузе, то здесь все просто. Если же нет – то ниже дано краткое объяснение.

Что такое тангенс в прямоугольном треугольнике

Синусом угла в треугольнике называют отношение противолежащей данному углу стороны к гипотенузе треугольника, а косинусом – прилежащего к гипотенузе.

И если мы поделим синус угла на косинус, то получим тангенс (обозначается как tg), а если косинус на синус – то котангенс. Здесь все очень просто, главное знать катеты и гипотенузу треугольника.

Также бывают и тригонометрические тангенсы на окружности со своими графиками, разностью показателей числа π, но в данной статье мы их не рассматриваем, так как к треугольнику они имеют лишь косвенное отношение.

Таблица тангенсов углов от 0° до 360°

Ниже представлена таблица значений, которая пригодится для быстрого нахождения необходимых значений.

В качестве альтернативы предлагаем либо искать значения онлайн, либо запоминать их. Самым же эффективным способом математики считают вывод этих значений, но это будет удобно далеко не для всех.

Примеры вычислений тангенса в прямоугольном треугольнике

Существует довольно много способов и несложных формул для нахождения тангенса в прямоугольном треугольнике. Мы же рассмотрим только некоторые из них.

Все способы упираются в нахождение сторон, поэтому здесь секрет прост – если вы знаете значения всех сторон, то тангенс угла A в треугольнике находится по следующему правилу: tgA = BC : AC, что означает, что tg A равен отношению противолежащей стороны углу к прилежайщей.

Легче всего найти тангенс именно острого угла. Если даже это не угол прямоугольного треугольника, то дополнить его до прямоугольного не составит труда.

Это то, на чем построена сама сущность тангенса, но если нужно найти стороны, то это уже точно задача не про тангенсы.

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение.

Итак, есть два определения:

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

Тангенс – это отношение синуса к косинусу.

Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

” alt=””>

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Так как тангенс – это отношение катетов, то

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти тангенс угла по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Из формулы тангенсов, записывающей кратко второе определение

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится зависимость тангенса и косинуса:

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (5)

Я Очень Люблю Правила, Теоремы, Формулы по Предмету «Математика», «Алгебра».

Прочитал статью и остался один главный вопрос, а собственно без вспомогательных таблиц найти угол В ГРАДУСАХ вообще возможно и есть ли у вас статья, где рассказыввается как это сделать? Спасибо.

Я ни разу не математик, но почему у вас сумма углов прямоугольного треугольника равна 90 градусов. А так все хорошо начиналось. Объясняете хорошо, но после таких ошибок у меня сомнения что информация верная.

Спасибо. Уточнил в тексте, что это сумма двух непрямых углов прямоугольного треугольника.

Пишу стихи. Востребован тангенс для решения жизненных ситуаций поскольку состоит из тех же функций,как-то, касающийся,прилежащий, трогающий. Куда без них денешься.

[spoiler title=”источники:”]

http://nauka.club/matematika/geometriya/tangens.html

http://ktonanovenkogo.ru/voprosy-i-otvety/tangens-chto-ehto-takoe-otnoshenie-najti-formulam-kletochkam.html

[/spoiler]

Ответы Mail.ru


Образование


ВУЗы, Колледжи
Детские сады

Школы


Дополнительное образование
Образование за рубежом
Прочее образование

Вопросы – лидеры.

frenky

Где найти ответы на ОГЭ 2023?


1 ставка

frenky

Написать экологическое обоснование изделия из кольца


1 ставка

frenky

Помогите с английским 21 упражнением, расставить a,an,the.


1 ставка

frenky

Чем на ваш взгляд лучше заменить ЕГЭ?


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

Как найти Тангенс числа, зная косинус? Напишите формулу, пожалуйста.!!!

Митяй



Мудрец

(16354),
закрыт



12 лет назад

Лучший ответ

Vlad Boikov

Профи

(739)


12 лет назад

sin^2+Cos^2=1
а дальше сам

Остальные ответы

BuHT

Мастер

(1169)


12 лет назад

tg=sin/cos=((1-cos^2)^1/2)/cos

Екатерина Максимова

Мыслитель

(5442)


12 лет назад

Роза Марковна

Просветленный

(35806)


12 лет назад

Пожалуй вот так
tg=sin/cos
sin^2+cos^2=1
sin= корень (1-cos^2)
тогда tg=(корень (1-cos^2))/cos

Похожие вопросы

Добавить комментарий