Всего: 40 1–20 | 21–40
Добавить в вариант
Тип 18 № 40
i
Найдите тангенс угла AOB, изображенного на рисунке.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB.
Найдите тангенс угла AOB, в треугольнике, изображённом на рисунке.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB. Размер клетки 1 × 1.
Найдите тангенс угла AOB.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс угла AOB
Найдите тангенс угла AOB, изображённого на рисунке.
Найдите тангенс AOB
Всего: 40 1–20 | 21–40
Здравствуйте, дорогие читатели. В этом выпуске поговорим о задании, которое иногда доставляет неожиданные неприятности на экзамене. Задания довольно простые, но бывают промахи. Это задания, которые сделаны как бы на тетрадном листочке в клеточку. Итак, давайте начнем.
Задание №1. УГЛЫ
Задача №1
Запомните, чтобы найти тангенс острого угла на таких картинках, обязательно нужно достроить до прямоугольного треугольника.
Вспомним, что такое тангенс острого угла прямоугольного треугольника?
Определение тангенса острого угла:
Тангенсом острого угла прямоугольного треугольника, называется отношение противолежащего катета к прилежащему. Катет BF- противолежащий угла FОВ, OF – прилежащий к углу FOB.
Задача №2
Чтобы найти тангенс угла АОВ на этой картинке, нужно достроить до прямоугольного треугольника, и найти стороны этого треугольника.
1. Достроим до треугольника ОВН и докажем, что он прямоугольный.
2. Для этого достроим на стороне ОН, ОВ и ВН прямоугольные треугольники ОСВ, ОНК и BDH. Докажем, что треугольник АВН прямоугольный.
Найдем гипотенузу ОВ прямоугольного треугольника ОСВ, гипотенузу ОН прямоугольного треугольника ОКН и гипотенузу ВН прямоугольного треугольника ВDH через теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Теперь докажем, что треугольник ОВН прямоугольный. Воспользуемся обратной теоремой Пифагора: если квадрат одной стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Так как равенство верно, то треугольник ОВН прямоугольный.
Теперь найдем тангенс угла АОВ
Задание №2 Расстояние
Для выполнения этого задания, проведите отрезок ВС, найдите середину его и отметим точкой К. Проведите отрезок АК, который равен 4. Ответ 4
Задание №3 Площадь
Задача №1
Задание простое, но есть ошибки по невнимательности.
Задача №2
а) Площадь треугольника и параллелограмма
Запомните! Площадь треугольника от площади параллелограмма отличается только тем, что площадь треугольника нужно делить на 2, а площадь параллелограмма нет.
б) Площадь трапеции. Чтобы найти площадь трапеции, нужно сложить основания трапеции, умножить на высоту и поделить на 2.
в) Площадь ромба равна половине произведения диагоналей.
Это не все типы заданий, что встречаются на экзамене. Продолжение следует.
Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.
Объясните, пожалуйста, как можно проще, без дополнительных построений. Мы учим детей решать подобные задачи так. Нужно искать треугольники и использовать их свойства. Попробуем решать данную задачу именно таким способом. Ведь на ОГЭ нельзя пользоваться таблицами Брадиса, транспортиром, калькулятором. Да и в справочном материале имеются не все формулы, например, формулы разности тангенсов. Если рассмотреть треугольник ОАВ, то можно заметить, что это равнобедренный треугольник с вершиной в точке В. Действительно, рассчитаем длины сторон этого треугольника воспользовавшись теоремой Пифагора. Итак, ОА^2 = 2^2+8^2 = 4+64 = 68 (2 и 8 стороны прямоугольного треугольника по клеткам). Аналогично, ОВ^2 = 2^2+9^2 = 4+81 = 85, AB^2 = 6^2+7^2 = 36+49 = 85. То есть стороны АВ и ОВ равны между собой и равны соответственно корень из 85. Тогда медина ВМ проведенная к стороне ОА является одновременно и высотой. По рисунку видно, что ВМ = 2*ОМ, тогда тангенс угла АОВ равен 2 (отношению катетов треугольника ОВМ ВМ и ОМ). Ответ: 2. автор вопроса выбрал этот ответ лучшим Rafail 4 года назад Дополнительное построение потребуется, но только мысленное. Представьте, что из вершины заданного угла(О) проведён горизонтальный луч ОС (вправо). Тогда получается так: Угол АОВ равен разности углов СОВ и СОА. Вспоминаем формулу тангенса разности двух углов: tg(b-a)=[(tg(b)-tg(a)]/[1+tg(a)*tg(b)/ В данном случае, угол а – это угол СОА, а угол b – это угол СОВ. Непосредственно по рисунку находим, что tg(a)=2/8=0,25; tg(b)=9/2=4,5. Ну и осталось произвести арифметические вычисления: tg(BOA)=(4,5-0,25)/(1+4,5*0,25)=4,25/2,125=2. Но с дополнительными построениями проще. Из точки В проводим перпендикуляр к лучу ОА. Точку пересечения обозначим С. И непосредственно по чертежу видим, что отрезок ВС в 2 раза длиннее отрезка ОС. А тангенс угла АОВ как раз и есть ВС/ОС=2. Алеся Ясногорцева 4 года назад Как известно, величины тригонометрических функций – синуса, косинуса, тангенса, котангенса – зависят только от величины самого угла, несмотря на то, что представляют собой соотношения сторон прямоугольного треугольника между собой. Тангенс – это отношение противоположного углу катета к прилегающему катету. Вычислить его в данном случае можно, опустив перпендикуляр из любой точки луча ОВ на луч ОА, измерив получившиеся катеты и разделив длину противоположного катета на длину катета прилегающего. Но, если надо найти без дополнительных построений – можно просто измерить угол транспортиром и посмотреть значение тангенса для данного угла в таблице Брадиса. Знаете ответ? |
№8. Найдите тангенс угла AOB, изображенного на рисунке.
Решение:
Опустим перпендикуляр AH на сторону OB.
Рассмотрим прямоугольный △ A O H :
Тангенс угла – отношение противолежащего катета к прилежащему.
tg ∠ A O H = A H O H = 4 2 = 2
Ответ: 2
№9. Найдите тангенс угла A треугольника ABCб изображённого на рисунке.
Решение:
Тангенс угла – это отношение противолежащего катета к прилежащему.
tg ∠ B A C = B C A C = 2 5 = 0,4
Ответ: 0,4
№10. На рисунке изображена трапеция ABCD. Используя рисунок, найдите sin ∠ B A H .
Решение:
Рассмотрим прямоугольный △ A B H :
Синус угла – отношение противолежащего катета к гипотенузе.
sin ∠ A = B H A B
Найдем AB по теореме Пифагора:
A B 2 = A H 2 + B H 2
A B 2 = 3 2 + 4 2
A B 2 = 9 + 16 = 25
A B = ± 25 = [ − 5 не подходит 5 подходит
A B = 5
sin ∠ A = B H A B = 4 5 = 0,8
Ответ: 0,8
№11. На рисунке изображен ромб ABCD. Используя рисунок, найдите tg ∠ O B C .
Решение:
Тангенс угла – это отношение противолежащего катета к прилежащему.
tg ∠ O B C = O C B O = 3 4 = 0,75
Ответ: 0,75
№12. На рисунке изображена трапеция ABCD. Используя рисунок, найдите cos ∠ H B A .
Решение:
Рассмотрим прямоугольный △ A B H :
Косинус угла – отношение прилежащего катета к гипотенузе.
cos ∠ A B H = B H A B
Найдем A B по теореме Пифагора:
A B 2 = A H 2 + B H 2
A B 2 = 6 2 + 8 2
A B 2 = 36 + 64 = 100
A B = ± 100 = [ − 10 не подходит 10 подходит
A B = 10
cos ∠ A B H = B H A B = 8 10 = 0,8
Ответ: 0,8
№13. Найдите тангенс угла, изображенного на рисунке.
Решение:
tg β = tg ( 180 ° − α ) = − tg α
Рассмотрим прямоугольный △ B C H .
Тангенс угла – отношение противолежащего катета к прилежащему.
tg α = C H B H = 3 1
tg β = − tg α = − 3
Ответ: -3
№14. Найдите тангенс угла AOB.
Решение:
Опустим высоту BH на сторону OA.
Рассмотрим прямоугольный △ O B H :
tg ∠ O = B H O H
Найдем B H и O H по теореме Пифагора:
B H 2 = 2 2 + 8 2 = = 4 + 64 = 68
B H = ± 68 = ± 4 ⋅ 17 = ± 4 ⋅ 17 = ± 2 17 = [ − 2 17 не подходит 2 17 подходит
B H = 2 17
O H 2 = 1 2 + 4 2 = 1 + 16 = 17
O H = ± 17 = [ − 17 не подходит 17 подходит
O H = 17
tg ∠ O = B H O H = 2 17 17 = 2
Ответ: 2
Геометрия помогите пж
Некит Волков
Знаток
(293),
закрыт
3 года назад
Найдите тангенс угла AOB.Размер клетки 1 на 1
ДВ
Высший разум
(129866)
3 года назад
Тангенс — отношение противолежащего катета к прилежащему, то есть АВ : АО (Легко увидеть, что ВАО – прямой угол)
Из прямоугольных треугольников АВ = 5, АО = 10
tg АОВ = 0,5