Как найти тангенс угла больше 180

tg(0°)=tg(360°)=0 точная, но чуть более сложная таблица ( с точностью до 1′) здесь.

Углы
1° – 90°

Углы
91 ° – 180°

Углы
181° – 270°

Углы
271 ° – 360°

Угол

tg

tg= 0.0174
tg= 0.0349
tg= 0.0524
tg= 0.0699
tg= 0.0874
tg= 0.1051
tg= 0.1227
tg= 0.1405
tg= 0.1583
10° tg= 0.1763
11° tg= 0.1943
12° tg= 0.2125
13° tg= 0.2308
14° tg= 0.2493
15° tg= 0.2679
16° tg= 0.2867
17° tg= 0.3057
18° tg= 0.3249
19° tg= 0.3443
20° tg= 0.364
21° tg= 0.3839
22° tg= 0.404
23° tg= 0.4245
24° tg= 0.4452
25° tg= 0.4663
26° tg= 0.4877
27° tg= 0.5095
28° tg= 0.5317
29° tg= 0.5543
30° tg= 0.5774
31° tg= 0.6009
32° tg= 0.6249
33° tg= 0.6494
34° tg= 0.6745
35° tg= 0.7002
36° tg= 0.7265
37° tg= 0.7535
38° tg= 0.7813
39° tg= 0.8098
40° tg= 0.8390
41° tg= 0.8693
42° tg= 0.9004
43° tg= 0.9325
44° tg= 0.9657
45° tg= 1
46° tg= 1.0355
47° tg= 1.0724
48° tg= 1.1106
49° tg= 1.1504
50° tg= 1.1918
51° tg= 1.2349
52° tg= 1.2799
53° tg= 1.327
54° tg= 1.3764
55° tg= 1.4281
56° tg= 1.4826
57° tg= 1.5399
58° tg= 1.6003
59° tg= 1.6643
60° tg= 1.7321
61° tg= 1.804
62° tg= 1.8807
63° tg= 1.9626
64° tg= 2.0503
65° tg= 2.1445
66° tg= 2.2460
67° tg= 2.3559
68° tg= 2.475
69° tg= 2.605
70° tg= 2.7475
71° tg= 2.9042
72° tg= 3.0777
73° tg= 3.2709
74° tg= 3.4874
75° tg= 3.732
76° tg= 4.0108
77° tg= 4.3315
78° tg= 4.7046
79° tg= 5.1446
80° tg= 5.6713
81° tg= 6.3138
82° tg= 7.1154
83° tg= 8.1443
84° tg= 9.5144
85° tg= 11.4301
86° tg= 14.3007
87° tg= 19.0811
88° tg= 28.6363
89° tg= 57.29
90° tg не определен

Угол

tg

91° tg= -57.29
92° tg= -28.6363
93° tg= -19.0811
94° tg= -14.3007
95° tg= -11.4301
96° tg= -9.5144
97° tg= -8.1443
98° tg= -7.1154
99° tg= -6.3138
100° tg= -5.6713
101° tg= -5.1446
102° tg= -4.7046
103° tg= -4.3315
104° tg= -4.0108
105° tg= -3.732
106° tg= -3.4874
107° tg= -3.2709
108° tg= -3.0777
109° tg= -2.9042
110° tg= -2.7475
111° tg= -2.605
112° tg= -2.475
113° tg= -2.3559
114° tg= -2.2460
115° tg= -2.1445
116° tg= -2.0503
117° tg= -1.9626
118° tg= -1.8807
119° tg= -1.804
120° tg= -1.7321
121° tg= -1.6643
122° tg= -1.6003
123° tg= -1.5399
124° tg= -1.4826
125° tg= -1.4281
126° tg= -1.3764
127° tg= -1.327
128° tg= -1.2799
129° tg= -1.2349
130° tg= -1.1918
131° tg= -1.1504
132° tg= -1.1106
133° tg= -1.0724
134° tg= -1.0355
135° tg= -1
136° tg= -0.9657
137° tg= -0.9325
138° tg= -0.9004
139° tg= -0.8693
140° tg= -0.8390
141° tg= -0.8098
142° tg= -0.7813
143° tg= -0.7535
144° tg= -0.7265
145° tg= -0.7002
146° tg= -0.6745
147° tg= -0.6494
148° tg= -0.6249
149° tg= -0.6009
150° tg= -0.5774
151° tg= -0.5543
152° tg= -0.5317
153° tg= -0.5095
154° tg= -0.4877
155° tg= -0.4663
156° tg= -0.4452
157° tg= -0.4245
158° tg= -0.404
159° tg= -0.3839
160° tg= -0.364
161° tg= -0.3443
162° tg= -0.3249
163° tg= -0.3057
164° tg= -0.2867
165° tg= -0.2679
166° tg= -0.2493
167° tg= -0.2308
168° tg= -0.2125
169° tg= -0.1943
170° tg= -0.1763
171° tg= -0.1583
172° tg= -0.1405
173° tg= -0.1227
174° tg= -0.1051
175° tg= -0.0874
176° tg= -0.0699
177° tg= -0.0524
178° tg= -0.0349
179° tg= -0.0174
180° tg= 0

Угол

tg

181° tg= 0.0174
182° tg= 0.0349
183° tg= 0.0524
184° tg= 0.0699
185° tg= 0.0874
186° tg= 0.1051
187° tg= 0.1227
188° tg= 0.1405
189° tg= 0.1583
190° tg= 0.1763
191° tg= 0.1943
192° tg= 0.2125
193° tg= 0.2308
194° tg= 0.2493
195° tg= 0.2679
196° tg= 0.2867
197° tg= 0.3057
198° tg= 0.3249
199° tg= 0.3443
200° tg= 0.364
201° tg= 0.3839
202° tg= 0.404
203° tg= 0.4245
204° tg= 0.4452
205° tg= 0.4663
206° tg= 0.4877
207° tg= 0.5095
208° tg= 0.5317
209° tg= 0.5543
210° tg= 0.5774
211° tg= 0.6009
212° tg= 0.6249
213° tg= 0.6494
214° tg= 0.6745
215° tg= 0.7002
216° tg= 0.7265
217° tg= 0.7535
218° tg= 0.7813
219° tg= 0.8098
220° tg= 0.8390
221° tg= 0.8693
222° tg= 0.9004
223° tg= 0.9325
224° tg= 0.9657
225° tg= 1
226° tg= 1.0355
227° tg= 1.0724
228° tg= 1.1106
229° tg= 1.1504
230° tg= 1.1918
231° tg= 1.2349
232° tg= 1.2799
233° tg= 1.327
234° tg= 1.3764
235° tg= 1.4281
236° tg= 1.4826
237° tg= 1.5399
238° tg= 1.6003
239° tg= 1.6643
240° tg= 1.7321
241° tg= 1.804
242° tg= 1.8807
243° tg= 1.9626
244° tg= 2.0503
245° tg= 2.1445
246° tg= 2.2460
247° tg= 2.3559
248° tg= 2.475
249° tg= 2.605
250° tg= 2.7475
251° tg= 2.9042
252° tg= 3.0777
253° tg= 3.2709
254° tg= 3.4874
255° tg= 3.732
256° tg= 4.0108
257° tg= 4.3315
258° tg= 4.7046
259° tg= 5.1446
260° tg= 5.6713
261° tg= 6.3138
262° tg= 7.1154
263° tg= 8.1443
264° tg= 9.5144
265° tg= 11.4301
266° tg= 14.3007
267° tg= 19.0811
268° tg= 28.6363
269° tg= 57.29
270° tg не определен

Угол

tg

271° tg= -57.29
272° tg= -28.6363
273° tg= -19.0811
274° tg= -14.3007
275° tg= -11.4301
276° tg= -9.5144
277° tg= -8.1443
278° tg= -7.1154
279° tg= -6.3138
280° tg= -5.6713
281° tg= -5.1446
282° tg= -4.7046
283° tg= -4.3315
284° tg= -4.0108
285° tg= -3.732
286° tg= -3.4874
287° tg= -3.2709
288° tg= -3.0777
289° tg= -2.9042
290° tg= -2.7475
291° tg= -2.605
292° tg= -2.475
293° tg= -2.3559
294° tg= -2.2460
295° tg= -2.1445
296° tg= -2.0503
297° tg= -1.9626
298° tg= -1.8807
299° tg= -1.804
300° tg= -1.7321
301° tg= -1.6643
302° tg= -1.6003
303° tg= -1.5399
304° tg= -1.4826
305° tg= -1.4281
306° tg= -1.3764
307° tg= -1.327
308° tg= -1.2799
309° tg= -1.2349
310° tg= -1.1918
311° tg= -1.1504
312° tg= -1.1106
313° tg= -1.0724
314° tg= -1.0355
315° tg= -1
316° tg= -0.9657
317° tg= -0.9325
318° tg= -0.9004
319° tg= -0.8693
320° tg= -0.8390
321° tg= -0.8098
322° tg= -0.7813
323° tg= -0.7535
324° tg= -0.7265
325° tg= -0.7002
326° tg= -0.6745
327° tg= -0.6494
328° tg= -0.6249
329° tg= -0.6009
330° tg= -0.5774
331° tg= -0.5543
332° tg= -0.5317
333° tg= -0.5095
334° tg= -0.4877
335° tg= -0.4663
336° tg= -0.4452
337° tg= -0.4245
338° tg= -0.404
339° tg= -0.3839
340° tg= -0.364
341° tg= -0.3443
342° tg= -0.3249
343° tg= -0.3057
344° tg= -0.2867
345° tg= -0.2679
346° tg= -0.2493
347° tg= -0.2308
348° tg= -0.2125
349° tg= -0.1943
350° tg= -0.1763
351° tg= -0.1583
352° tg= -0.1405
353° tg= -0.1227
354° tg= -0.1051
355° tg= -0.0874
356° tg= -0.0699
357° tg= -0.0524
358° tg= -0.0349
359° tg= -0.0174
360° tg= 0

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.

Доп. Инфо:

  1. Таблица косинусов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений косинусов.
  2. Таблица синусов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений синусов.
  3. Таблица синусов, она-же косинусов точная.
  4. Таблица тангенсов углов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений тангенса, tg
  5. Таблица котангенсов углов углов от 0° – 360°. Углы с шагом в 1°. Таблица значений котангенса, ctg
  6. Таблица тангенсов, она же котангенсов точная.
  7. Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
    Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.
  8. Знаки тригонометрических функций синус, косинус, тангенс и котангенс по четвертям в тригонометрическом круге.
  9. Определение и численные соотношения между единицами измерения углов в РФ.
    Тысячные, угловые градусы, минуты, секунды, радианы, обороты.
  10. Таблица соответствия угловых градусов, радиан, оборотов, тысячных (артиллерийских РФ). 0-360 градусов, 0-2π радиан.

Свойства тригонометрических функций

Отсюда вытекает много интересных свойств и тригонометрических формул.
Во-первых, надеюсь, все знают, что в прямоугольном треугольнике самая большая сторона – это гипотенуза.
Поэтому из определения синуса и косинуса ((sin(alpha)=frac{a}{c}; quad cos(alpha)=frac{b}{c})) следует, что они всегда меньше единицы, ведь мы катет (меньшую сторону) делим на гипотенузу (большую сторону треугольника). И как мы узнаем позже, синус и косинус всегда больше минус единицы. То есть синус и косинус могут принимать только значения из промежутка:

$$ sin(alpha) in [-1;1];$$
$$ cos(alpha) in [-1;1];$$

Для тангенса и котангенса никаких ограничений нет, они могут принимать абсолютно любые значения.

Теперь выведем несколько формул, без которых нам точно потом не обойтись. Например, можно обратить внимание, что тангенс выражается через деление синуса на косинус, просто расписав их по определению:

$$frac{sin(alpha)}{cos(alpha)}=frac{frac{a}{c}}{frac{b}{c}}=frac{a}{c}*frac{c}{b}=frac{a}{b};$$

А последняя формула есть ни что иное, как определение тангенса:
$$ tg(alpha)=frac{a}{b};$$
Значит
$$ tg(alpha)=frac{sin(alpha)}{cos(alpha)}.$$

Аналогичные рассуждения можно провести для котангенса:
$$frac{cos(alpha)}{sin(alpha)}=frac{frac{b}{c}}{frac{a}{c}}=frac{b}{c}*frac{c}{a}=frac{b}{a};$$
А котангенс по определению:
$$ctg(alpha)=frac{b}{a};$$
Значит
$$ctg(alpha)=frac{cos(alpha)}{sin(alpha)}.$$

Кроме этого, легко заметить, что функции тангенса и котангенса взаимно обратны:
$$tg(alpha)*ctg(alpha)=frac{a}{b}*frac{b}{a}=1.$$

А теперь мы подобрались к не самой очевидной тригонометрической формуле, но одной из самых главных во всей тригонометрии. Основное тригонометрическое тождество:

$$sin^2(alpha)+cos^2(alpha)=1. qquad (1)$$

Выводится оно тоже из определений синуса и косинуса с использованием теоремы Пифагора (гипотенуза в прямоугольном треугольнике равна сумме квадратов катетов (c^2=a^2+b^2;)):
$$sin^2(alpha)+cos^2(alpha)=left(frac{a}{c}right)^2+left(frac{b}{c}right)^2=left(frac{a^2}{c^2}right)+left(frac{b^2}{c^2}right)=frac{a^2+b^2}{c^2}=frac{c^2}{c^2}=1.$$
С основным тригонометрическим тождеством вы будете сталкиваться постоянно и в 9-м и в 10-м классах.

И разберем еще две важные формулы:
$$1+tg^2(alpha)=frac{1}{cos^2(alpha)};$$
Выводится она очень легко, опять же, используя определения тангенса и косинуса. Рекомендую потренироваться и сделать это самим.
$$1+left(frac{a}{b}right)^2=frac{1}{frac{b^2}{c^2}};$$
$$left(frac{b^2}{b^2}right)+left(frac{a^2}{b^2}right)=1*frac{c^2}{b^2};$$
$$frac{b^2+a^2}{b^2}=frac{c^2}{b^2};$$
Используем теорему Пифагора:
$$frac{c^2}{b^2}=frac{c^2}{b^2};$$
Получили верное равенство, значит формула верна.

И вторая аналогичная формула для котангенса:
$$1+сtg^2(alpha)=frac{1}{sin^2(alpha)};$$
Вывод один в один, сделайте сами.

Для удобства соберем все формулы вместе.
$$sin^2(alpha)+cos^2(alpha)=1. qquad(1)$$
$$ tg(alpha)=frac{sin(alpha)}{cos(alpha)}. qquad(2)$$
$$ctg(alpha)=frac{cos(alpha)}{sin(alpha)}. qquad(3)$$
$$tg(alpha)*ctg(alpha)=1.qquad(4)$$
$$1+tg^2(alpha)=frac{1}{cos^2(alpha)}. qquad(5)$$
$$1+сtg^2(alpha)=frac{1}{sin^2(alpha)}. qquad(6)$$

Это далеко не все тригонометрические формулы, их гораздо больше. Но для начала и для 9-го класса этого вполне достаточно.

Зачем же они нужны? Оказывается, эти формулы помогают связать тригонометрические функции между собой. Посмотрите внимательно на первую формулу (1): зная, например, чему равен косинус, можно легко найти синус, и наоборот.

Пример 1
Пусть (cos(alpha) =frac{1}{2}), найдите (sin(alpha)=?)

Берем основное тригонометрическое тождество (формула (1)) и подставляем в него известный по условию задачи (cos(alpha)=frac{1}{2}:)
$$sin^2(alpha)+cos^2(alpha)=1;$$
$$sin^2(alpha)+left(frac{1}{2}right)^2=1;$$
А дальше просто решаем получившееся уравнение относительно синуса:
$$sin^2(alpha)=1-left(frac{1}{2}right)^2;$$
$$sin^2(alpha)=1-frac{1}{4};$$
Приводим к общему знаменателю:

$$sin^2(alpha)=frac{4}{4}-frac{1}{4};$$
$$sin^2(alpha)=frac{3}{4};$$
И здесь внимательно решаем квадратное уравнение:
$$sin(alpha)=pmfrac{sqrt{3}}{2};$$
Обратите внимание на (pm). Синус может быть как положительным, так и отрицательным, так как при подстановке и возведении в квадрат минус сгорает. Значит здесь получается два ответа.

Ответ:(sin(alpha)=pmfrac{sqrt{3}}{2}.)

Аналогично, зная хотя бы одну тригонометрическую функцию, можно найти все остальные, используя тригонометрические формулы. Рассмотрим еще пример:

Пример 2
Пусть (sin(alpha) =frac{1}{3}), найдите (ctg(alpha)=?)

Смотрим на наш список формул и находим такую, в которой есть и синус и котангенс – это формула (6):
$$1+сtg^2(alpha)=frac{1}{sin^2(alpha)}.$$
Подставляем известный из условия синус (sin(alpha) =frac{1}{3}):
$$1+сtg^2(alpha)=frac{1}{left(frac{1}{3}right)^2}.$$
Перевернем правую часть:
$$1+сtg^2(alpha)=left(frac{3}{1}right)^2.$$
$$1+сtg^2(alpha)=9.$$
Теперь решим уравнение и найдем котангенс:
$$сtg^2(alpha)=8.$$
$$сtg(alpha)=pmsqrt{8}=pmsqrt{4}*sqrt{2}=pm2sqrt{2}.$$

Ответ:(сtg(alpha)=pm2sqrt{2}).

Выглядит пугающе, но учить вам это НЕ НУЖНО! В некоторых школах есть изверги, которые заставляют учить такую таблицу, но в этом совершенно нет необходимости. В дальнейшем мы научимся сами выводить все значения тригонометрических функций только из маленькой таблицы.

Обратите внимание, что синус некоторого угла в треугольнике всегда положителен, неважно, тупой или острый угол. А вот косинус, тангенс и котангенс в треугольнике положительны только от острых углов и отрицательны от тупых.

Тут может возникнуть вопрос, как может существовать синус, косинус, тангенс или котангенс от тупого угла, большего чем (90^o), если мы давали определение всех тригонометрических функций через прямоугольный треугольник, в котором нет углов больших (90^o). Ну что ж, да тригонометрические функции существуют для любых углов и острых, и тупых, но для самого начала тригонометрии определения через прямоугольный треугольник нам более чем достаточно. Просто запомните выводы, которые мы сделали в предыдущем абзаце.

Рассмотрим пример на тригонометрию по типу схожий с заданиями ОГЭ. Обычно задачи сводятся просто к нахождению тригонометрической функции некоторого угла, нарисованного на рисунке:

Пример 2
По рисунку определить значение (sin(alpha)=?)

По определению синус в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе. Первым делом достроим наш синий угол (angle{ABC}) до прямоугольного треугольника, для этого опустим из точки (A) высоту (AH) к (BC). Получили прямоугольный треугольник (AHB). Теперь можем воспользоваться определением синуса:
$$sin(alpha)=frac{AH}{AB};$$
По клеточкам на рисунке найдем длину отрезка (AH=15). А гипотенузу (AB) найти по клеточкам не выйдет, так как она идет по диагонали. Но мы можем найти опять по клеточкам второй катет в прямоугольном треугольнике (BH=12) и применить теорему Пифагора:
$$AB^2=AH^2+BH^2;$$
$$AB^2=15^2+12^2=225+144=369;$$
$$AB=sqrt{369}=3sqrt{41};$$
Подставим в формулу для синуса и найдем его:
$$sin(alpha)=frac{AH}{AB}=frac{15}{3sqrt{41}};$$

Ответ: (sin(alpha)= frac{15}{3sqrt{41}}.)

Разберем еще примеры посложнее на нахождение тригонометрических функций друг через друга. Некоторые даже будут из реального ЕГЭ:

Пример 3
Пусть (tg(alpha)=sqrt{3}), найти (cos(alpha)=?), если известно, что (alpha<90^o).
Задание из ЕГЭ по профильной математике.

Условие аналогично условию в примерах №1 и 2, но появилось еще какое-то ограничение на угол (alpha), пока не будем обращать на него внимания, и решаем как обычно. Воспользуемся формулой (5), в ней есть и косинус, и тангенс, как раз одна из функций нам дана, а другую надо найти:
$$1+tg^2(alpha)=frac{1}{cos^2(alpha)};$$
$$1+(sqrt{3})^2=frac{1}{cos^2(alpha)};$$
$$1+3=frac{1}{cos^2(alpha)};$$
$$4=frac{1}{cos^2(alpha)};$$
$$cos^2(alpha)=frac{1}{4};$$
$$cos(alpha)=pmfrac{1}{2}.$$

У нас опять получилось два ответа из-за квадрата. В условии сказано, что задание из первой части ЕГЭ, а значит два ответа быть не может. Для этого нам и дано, что (alpha<90^o). Это означает, что угол (alpha) острый, а значит косинус у острого угла обязательно должен быть положительный.

Ответ: (cos(alpha)=frac{1}{2}.)

Пример 4
Пусть (tg(alpha) =-2), найти (sin(alpha)=?), при (90^o<alpha<180^o).

Опять обратимся к нашим формулам (1-6) и пытаемся найти такую, в которой есть и синус и тангенс. И тут оказывается, что такой формулы нет. Но нам никто не запрещает, зная тангенс и используя формулу (5), найти косинус:
$$1+tg^2(alpha)=frac{1}{cos^2(alpha)};$$
$$1+(-2)^2=frac{1}{cos^2(alpha)};$$
$$5=frac{1}{cos^2(alpha)};$$
$$cos^2(alpha)=frac{1}{5};$$
$$cos^2(alpha)=pmsqrt{frac{1}{5}};$$
Так как согласно условию (alpha>90^o), то значение косинуса должно быть отрицательным:
$$cos(alpha)=-sqrt{frac{1}{5}};$$

А потом, уже зная косинус, по основному тригонометрическому тождеству (1) можно найти требуемый в задаче синус:
$$sin^2(alpha)+cos^2(alpha)=1;$$
$$sin^2(alpha)+left(-sqrt{frac{1}{5}}right)^2=1;$$
$$sin^2(alpha)+frac{1}{5}=1;$$
$$sin^2(alpha)=-frac{1}{5}+1;$$
$$sin^2(alpha)=frac{4}{5};$$
$$sin(alpha)=pmsqrt{frac{4}{5}};$$
Синус у нас положительный и при острых ((alpha<90^o)) и при тупых углах ( (90<alpha<180) ):
$$sin(alpha)=sqrt{frac{4}{5}};$$

Ответ: (sin(alpha)=sqrt{frac{4}{5}}.)

Итак, зная значение хотя бы одной из четырех тригонометрических функций, при помощи формул (1-6) можно найти три оставшихся, именно для этого формулы и нужны.

Зная угол (angle{A}=60^o), мы знаем все тригонометрические функции от этого угла. Смотрите в таблицу (1):
$$sin(60^o)=frac{sqrt{3}}{2};$$
$$cos(60^o)=frac{1}{2};$$
$$tg(60^o)=sqrt{3};$$
$$ctg(60^o)=frac{1}{sqrt{3}};$$
С другой стороны, можно расписать функции по определению через отношение сторон в прямоугольном треугольнике:
$$sin(angle{A})=frac{BC}{AB};$$
$$cos(angle{A})=frac{AC}{AB};$$
$$tg(angle{A})=frac{BC}{AC};$$
$$ctg(angle{A})=frac{AC}{BC};$$

Не пугайтесь, все нам не понадобится. Воспользуемся пока формулами:
$$cos(60^o)=frac{1}{2};$$
$$cos(angle{A}=60^o)=frac{AC}{AB};$$
Нам известны косинус (angle{A}) и сторона (AC), а значит, мы можем найти гипотенузу (AB):
$$frac{1}{2}=frac{5}{AB};$$
$$AB=frac{5}{frac{1}{2}}=5*frac{2}{1}=10;$$
Нашли гипотенузу, теперь найдем последнюю сторону (BC). Для этого нам нужна любая формула с (BC), например:
$$sin(angle{A})=frac{BC}{AB};$$
Синус знаем, (AB) только что нашли – выражаем (BC):
$$BC=AB*sin(60^o)=10*frac{sqrt{3}}{2}=5*sqrt{3}.$$

Ответ: (AB=10;) (BC=5*sqrt{3}.)

Подведем итоги. Зная любую сторону в прямоугольном треугольнике и хотя бы один из острых углов, можно найти все остальные стороны при помощи тригонометрии.

Рассмотрим задачу посложнее.

Пример 6
Дан прямоугольный треугольник (bigtriangleup{ABC}), в котором угол (angle{C}=90^o), угол (tg(angle{A})=frac{1}{5}), сторона (AB=13). В треугольнике из прямого угла (angle{C}) проведена высота (CH). Найти (AH).

Первым делом обратите внимание на один очень важный факт. Если провести высоту в прямоугольном треугольнике из прямого угла, то она поделит треугольник еще на два прямоугольных. В нашем случае (bigtriangleup{ACH}) и (bigtriangleup{CHB}) тоже будут прямоугольными. А значит в них выполняются все соотношения для тригонометрических функций.
Например, в (bigtriangleup{ACH}) для угла (angle{A}) противолежащим катетом будет (CH), а прилежащим – сторона (AH), гипотенуза будет соответственно (AC). А значит можно записать формулы, следующие из определения тригонометрических функций:

$$sin(angle{A})=frac{CH}{AC};$$
$$cos(angle{A})=frac{AH}{AC};$$
$$tg(angle{A})=frac{CH}{AH};$$
$$ctg(angle{A})=frac{AH}{CH};$$

Аналогичные соотношения можно записать и для (bigtriangleup{CHB}) и (bigtriangleup{ABC}). Не буду нагромождать, запишите эти соотношения сами в качестве тренировки.

Следующий важный момент, на который следует обратить внимание – это углы в получившихся треугольниках. Обозначим угол (angle{CAB}=alpha). Тогда, так как (angle{CHA}=90^o), можно выразить угол:
$$angle{ACH}=180-angle{CAB}-angle{CHA}=180-alpha-90=90-alpha;$$
Напомню, что треугольник (bigtriangleup{ABC}) прямоугольный с прямым углом (angle{ACB}=90^o).
Значит
$$angle{HCB}=angle{ACB}-angle{ACH}=90-(90-alpha)=alpha=angle{CAB};$$

Важный факт: (angle{HCB}=angle{CAB})! А равенство этих углов само собой означает и равенство всех тригонометрических функций. То есть, например, (sin(angle{HCB})=sin(angle{ACB})). Точно так же у них равны и косинусы, и тангенсы, и даже котангенсы!

Аналогичные рассуждения можно провести для углов (angle{ACH}=angle{CBA}).
Запомните это!

А теперь приступим непосредственно к решению задачи. Нам известна гипотенуза (AB) и (tg(alpha)). По определению тангенса в (bigtriangleup{ABC}):
$$tg(angle{A})=frac{CB}{AC};$$
Либо из (bigtriangleup{ACH}):
$$tg(angle{A})=frac{CH}{AH};$$

В этих формулах есть проблема: нет известной нам стороны, гипотенузы (AB). А значит, у нас две неизвестные, и решить мы не можем.

Но зная тангенс, мы легко можем найти косинус по формуле:
$$1+tg(alpha)^2=frac{1}{cos^2(alpha)};$$
$$1+left(frac{1}{5}right)^2=frac{1}{cos^2(alpha)};$$
$$1+frac{1}{25}=frac{1}{cos^2(alpha)};$$
$$frac{26}{25}=frac{1}{cos^2(alpha)};$$
$$cos^2(alpha)=frac{1}{frac{26}{25}}=1*frac{25}{26}=frac{25}{26};$$
$$cos(alpha)=pmsqrt{frac{25}{26}}=pmfrac{5}{sqrt{26}};$$
Так как (anglealpha) это острый угол из прямоугольного треугольника, то его косинус точно будет положительным:
$$cos(alpha)=frac{5}{sqrt{26}}.$$
Не самый приятный косинус, но что делать, будем решать так, как есть.

С другой стороны, из (bigtriangleup{ABC}):
$$cos(alpha)=frac{AC}{AB};$$
Подставим известное (AB):
$$frac{5}{sqrt{26}}=frac{AC}{13};$$
$$AC=13*frac{5}{sqrt{26}}=frac{13*5}{sqrt{26}};$$
Либо косинус еще можно расписать в (bigtriangleup{ACH}):
$$cos(alpha)=frac{AH}{AC}=frac{5}{sqrt{26}};$$
Подставим найденное (AC):
$$frac{AH}{frac{13*5}{sqrt{26}}}=frac{5}{sqrt{26}};$$
$$AH=frac{5}{sqrt{26}}*frac{13*5}{sqrt{26}}=frac{5*13*5}{26}=frac{25}{2}=12,5.$$

Ответ: (AH=12,5.)

Таблица тангенсов

Таблица тангенсов – это записанные в таблицу посчитанные значения тангенсов углов от 0° до 360°. Используя таблицу тангенсов Вы сможете провести расчеты даже если под руками не окажется инженерного калькулятора. Чтобы узнать значение тангенса от нужного Вам угла достаточно найти его в таблице.

Калькулятор – тангенс угла

tg(°) = 0

Калькулятор – арктангенс угла

arctan() = 45°

Таблица тангенсов в радианах

α 0 π6 π4 π3 π2 π 3π2 2π
tg α 0 33 1 3 0 0

Таблица тангенсов углов от 0° до 180°

tg(0°) = 0
tg(1°) = 0.01746
tg(2°) = 0.03492
tg(3°) = 0.05241
tg(4°) = 0.06993
tg(5°) = 0.08749
tg(6°) = 0.1051
tg(7°) = 0.12278
tg(8°) = 0.14054
tg(9°) = 0.15838
tg(10°) = 0.17633
tg(11°) = 0.19438
tg(12°) = 0.21256
tg(13°) = 0.23087
tg(14°) = 0.24933
tg(15°) = 0.26795
tg(16°) = 0.28675
tg(17°) = 0.30573
tg(18°) = 0.32492
tg(19°) = 0.34433
tg(20°) = 0.36397
tg(21°) = 0.38386
tg(22°) = 0.40403
tg(23°) = 0.42447
tg(24°) = 0.44523
tg(25°) = 0.46631
tg(26°) = 0.48773
tg(27°) = 0.50953
tg(28°) = 0.53171
tg(29°) = 0.55431
tg(30°) = 0.57735
tg(31°) = 0.60086
tg(32°) = 0.62487
tg(33°) = 0.64941
tg(34°) = 0.67451
tg(35°) = 0.70021
tg(36°) = 0.72654
tg(37°) = 0.75355
tg(38°) = 0.78129
tg(39°) = 0.80978
tg(40°) = 0.8391
tg(41°) = 0.86929
tg(42°) = 0.9004
tg(43°) = 0.93252
tg(44°) = 0.96569
tg(45°) = 1
tg(46°) = 1.03553
tg(47°) = 1.07237
tg(48°) = 1.11061
tg(49°) = 1.15037
tg(50°) = 1.19175
tg(51°) = 1.2349
tg(52°) = 1.27994
tg(53°) = 1.32704
tg(54°) = 1.37638
tg(55°) = 1.42815
tg(56°) = 1.48256
tg(57°) = 1.53986
tg(58°) = 1.60033
tg(59°) = 1.66428
tg(60°) = 1.73205
tg(61°) = 1.80405
tg(62°) = 1.88073
tg(63°) = 1.96261
tg(64°) = 2.0503
tg(65°) = 2.14451
tg(66°) = 2.24604
tg(67°) = 2.35585
tg(68°) = 2.47509
tg(69°) = 2.60509
tg(70°) = 2.74748
tg(71°) = 2.90421
tg(72°) = 3.07768
tg(73°) = 3.27085
tg(74°) = 3.48741
tg(75°) = 3.73205
tg(76°) = 4.01078
tg(77°) = 4.33148
tg(78°) = 4.70463
tg(79°) = 5.14455
tg(80°) = 5.67128
tg(81°) = 6.31375
tg(82°) = 7.11537
tg(83°) = 8.14435
tg(84°) = 9.51436
tg(85°) = 11.43005
tg(86°) = 14.30067
tg(87°) = 19.08114
tg(88°) = 28.63625
tg(89°) = 57.28996
tg(90°) = ∞
tg(91°) = -57.28996
tg(92°) = -28.63625
tg(93°) = -19.08114
tg(94°) = -14.30067
tg(95°) = -11.43005
tg(96°) = -9.51436
tg(97°) = -8.14435
tg(98°) = -7.11537
tg(99°) = -6.31375
tg(100°) = -5.67128
tg(101°) = -5.14455
tg(102°) = -4.70463
tg(103°) = -4.33148
tg(104°) = -4.01078
tg(105°) = -3.73205
tg(106°) = -3.48741
tg(107°) = -3.27085
tg(108°) = -3.07768
tg(109°) = -2.90421
tg(110°) = -2.74748
tg(111°) = -2.60509
tg(112°) = -2.47509
tg(113°) = -2.35585
tg(114°) = -2.24604
tg(115°) = -2.14451
tg(116°) = -2.0503
tg(117°) = -1.96261
tg(118°) = -1.88073
tg(119°) = -1.80405
tg(120°) = -1.73205
tg(121°) = -1.66428
tg(122°) = -1.60033
tg(123°) = -1.53986
tg(124°) = -1.48256
tg(125°) = -1.42815
tg(126°) = -1.37638
tg(127°) = -1.32704
tg(128°) = -1.27994
tg(129°) = -1.2349
tg(130°) = -1.19175
tg(131°) = -1.15037
tg(132°) = -1.11061
tg(133°) = -1.07237
tg(134°) = -1.03553
tg(135°) = -1
tg(136°) = -0.96569
tg(137°) = -0.93252
tg(138°) = -0.9004
tg(139°) = -0.86929
tg(140°) = -0.8391
tg(141°) = -0.80978
tg(142°) = -0.78129
tg(143°) = -0.75355
tg(144°) = -0.72654
tg(145°) = -0.70021
tg(146°) = -0.67451
tg(147°) = -0.64941
tg(148°) = -0.62487
tg(149°) = -0.60086
tg(150°) = -0.57735
tg(151°) = -0.55431
tg(152°) = -0.53171
tg(153°) = -0.50953
tg(154°) = -0.48773
tg(155°) = -0.46631
tg(156°) = -0.44523
tg(157°) = -0.42447
tg(158°) = -0.40403
tg(159°) = -0.38386
tg(160°) = -0.36397
tg(161°) = -0.34433
tg(162°) = -0.32492
tg(163°) = -0.30573
tg(164°) = -0.28675
tg(165°) = -0.26795
tg(166°) = -0.24933
tg(167°) = -0.23087
tg(168°) = -0.21256
tg(169°) = -0.19438
tg(170°) = -0.17633
tg(171°) = -0.15838
tg(172°) = -0.14054
tg(173°) = -0.12278
tg(174°) = -0.1051
tg(175°) = -0.08749
tg(176°) = -0.06993
tg(177°) = -0.05241
tg(178°) = -0.03492
tg(179°) = -0.01746
tg(180°) = 0

Таблица тангенсов углов от 181° до 360°

tg(181°) = 0.01746
tg(182°) = 0.03492
tg(183°) = 0.05241
tg(184°) = 0.06993
tg(185°) = 0.08749
tg(186°) = 0.1051
tg(187°) = 0.12278
tg(188°) = 0.14054
tg(189°) = 0.15838
tg(190°) = 0.17633
tg(191°) = 0.19438
tg(192°) = 0.21256
tg(193°) = 0.23087
tg(194°) = 0.24933
tg(195°) = 0.26795
tg(196°) = 0.28675
tg(197°) = 0.30573
tg(198°) = 0.32492
tg(199°) = 0.34433
tg(200°) = 0.36397
tg(201°) = 0.38386
tg(202°) = 0.40403
tg(203°) = 0.42447
tg(204°) = 0.44523
tg(205°) = 0.46631
tg(206°) = 0.48773
tg(207°) = 0.50953
tg(208°) = 0.53171
tg(209°) = 0.55431
tg(210°) = 0.57735
tg(211°) = 0.60086
tg(212°) = 0.62487
tg(213°) = 0.64941
tg(214°) = 0.67451
tg(215°) = 0.70021
tg(216°) = 0.72654
tg(217°) = 0.75355
tg(218°) = 0.78129
tg(219°) = 0.80978
tg(220°) = 0.8391
tg(221°) = 0.86929
tg(222°) = 0.9004
tg(223°) = 0.93252
tg(224°) = 0.96569
tg(225°) = 1
tg(226°) = 1.03553
tg(227°) = 1.07237
tg(228°) = 1.11061
tg(229°) = 1.15037
tg(230°) = 1.19175
tg(231°) = 1.2349
tg(232°) = 1.27994
tg(233°) = 1.32704
tg(234°) = 1.37638
tg(235°) = 1.42815
tg(236°) = 1.48256
tg(237°) = 1.53986
tg(238°) = 1.60033
tg(239°) = 1.66428
tg(240°) = 1.73205
tg(241°) = 1.80405
tg(242°) = 1.88073
tg(243°) = 1.96261
tg(244°) = 2.0503
tg(245°) = 2.14451
tg(246°) = 2.24604
tg(247°) = 2.35585
tg(248°) = 2.47509
tg(249°) = 2.60509
tg(250°) = 2.74748
tg(251°) = 2.90421
tg(252°) = 3.07768
tg(253°) = 3.27085
tg(254°) = 3.48741
tg(255°) = 3.73205
tg(256°) = 4.01078
tg(257°) = 4.33148
tg(258°) = 4.70463
tg(259°) = 5.14455
tg(260°) = 5.67128
tg(261°) = 6.31375
tg(262°) = 7.11537
tg(263°) = 8.14435
tg(264°) = 9.51436
tg(265°) = 11.43005
tg(266°) = 14.30067
tg(267°) = 19.08114
tg(268°) = 28.63625
tg(269°) = 57.28996
tg(270°) = ∞
tg(271°) = -57.28996
tg(272°) = -28.63625
tg(273°) = -19.08114
tg(274°) = -14.30067
tg(275°) = -11.43005
tg(276°) = -9.51436
tg(277°) = -8.14435
tg(278°) = -7.11537
tg(279°) = -6.31375
tg(280°) = -5.67128
tg(281°) = -5.14455
tg(282°) = -4.70463
tg(283°) = -4.33148
tg(284°) = -4.01078
tg(285°) = -3.73205
tg(286°) = -3.48741
tg(287°) = -3.27085
tg(288°) = -3.07768
tg(289°) = -2.90421
tg(290°) = -2.74748
tg(291°) = -2.60509
tg(292°) = -2.47509
tg(293°) = -2.35585
tg(294°) = -2.24604
tg(295°) = -2.14451
tg(296°) = -2.0503
tg(297°) = -1.96261
tg(298°) = -1.88073
tg(299°) = -1.80405
tg(300°) = -1.73205
tg(301°) = -1.66428
tg(302°) = -1.60033
tg(303°) = -1.53986
tg(304°) = -1.48256
tg(305°) = -1.42815
tg(306°) = -1.37638
tg(307°) = -1.32704
tg(308°) = -1.27994
tg(309°) = -1.2349
tg(310°) = -1.19175
tg(311°) = -1.15037
tg(312°) = -1.11061
tg(313°) = -1.07237
tg(314°) = -1.03553
tg(315°) = -1
tg(316°) = -0.96569
tg(317°) = -0.93252
tg(318°) = -0.9004
tg(319°) = -0.86929
tg(320°) = -0.8391
tg(321°) = -0.80978
tg(322°) = -0.78129
tg(323°) = -0.75355
tg(324°) = -0.72654
tg(325°) = -0.70021
tg(326°) = -0.67451
tg(327°) = -0.64941
tg(328°) = -0.62487
tg(329°) = -0.60086
tg(330°) = -0.57735
tg(331°) = -0.55431
tg(332°) = -0.53171
tg(333°) = -0.50953
tg(334°) = -0.48773
tg(335°) = -0.46631
tg(336°) = -0.44523
tg(337°) = -0.42447
tg(338°) = -0.40403
tg(339°) = -0.38386
tg(340°) = -0.36397
tg(341°) = -0.34433
tg(342°) = -0.32492
tg(343°) = -0.30573
tg(344°) = -0.28675
tg(345°) = -0.26795
tg(346°) = -0.24933
tg(347°) = -0.23087
tg(348°) = -0.21256
tg(349°) = -0.19438
tg(350°) = -0.17633
tg(351°) = -0.15838
tg(352°) = -0.14054
tg(353°) = -0.12278
tg(354°) = -0.1051
tg(355°) = -0.08749
tg(356°) = -0.06993
tg(357°) = -0.05241
tg(358°) = -0.03492
tg(359°) = -0.01746
tg(360°) = 0

Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.

В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.

Рассмотрим подробно каждый случай.

Определение 1

Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.

Соотношения сторон и углов фигуры используются для того, чтобы определить значения для 30°, 45°, 60°. Если угол выходит за пределы 90°, то перед вычислением значения следует воспользоваться специальной формулой для того, чтобы привести угол к нужному виду.

Если известно значение синуса для α, можно быстро узнать значение косинуса для этого же угла. Это легко выполнить с помощью основных тождеств, которые представлены в геометрии.

В некоторых случаях для того, чтобы узнать sin или cos угла, можно использовать подходящую тригонометрическую формулу. Например, по известному значению синуса 45°, мы сможем определить значение синуса 30°, воспользовавшись правилом из тригонометрии.

Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.

Если взять за основу определения, возможно определить значения для определенного угла α. Также можно вычислить значения тангенса и котангенса для определенного случая. Можно найти значений основных функций из тригонометрии для частных вариантов. Это углы 0°, 90°, 180°, 270°, 360°.

Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 90+360·z градусов (π2+2π·z рад), 180+360·z градусов (π+2π·z рад) и 270+360·z градусов (3π2+2π·z рад), где z- любое целое число.

Изобразим данные формулы на рисунке: 

Нахождение значений синуса, косинуса, тангенса и котангенса 

Для каждой группы соответствуют свои значения.

Пример 1

При повороте из точки A на 360·z°, она переходит в себя. А1(1, 0). Синус 0°, 360°, 720° равен 0, а косинус равен 1.  Представим это в виде формулы: sin (360°·z)=0 и cos (360°·z)=1 .

Можно определить, что tg (360°·z)=01=0 , а котангенс не определен. 

Пример 2

Если А(1, 0) повернуть на 90+360·z°, то она перейдет в А1 (0, 1).  По определению:  sin (90°+360°·z) =1 и cos (90°+360°·z) =0 . Мы не сможем определить значение тангенса, но котангенс рассчитывается по данной формуле: ctg (90°+360°·z) =01=0 . 

Пример 3

Рассмотрим особенности для третьей группы углов. После поворота точки А(1, 0) на любой из углов 180+360·z°, она перейдет в A1(−1, 0). Мы находим значения функций кроме тангенса.

Пример 4

Рассмотрим правила для четвертой группы углов. При повороте точки на 270+360·z° мы попадем в A1(0, −1). Мы находим значения всех функций кроме тангенса.  

Для углов, которые не относятся к перечню от 0 °, 90 °, 180 °, 270 °, 360 °…, точных значений нет. Мы можем найти лишь приближенные значения. Рассмотрим пример. Условия – найти основные значения для угла −52 °.  Выполним построения. 

Нахождение значений синуса, косинуса, тангенса и котангенса

Согласно рисунку, абсцисса А1 ≈ 0,62, а ордината ≈ −0,78. Соответственно, sin(-52°)≈-0,78 и cos(-52°)≈0,62 . Осталось определиться с тангенсом и котангенсом. 

Выполняем вычисления:  tg(-52°)≈-0, 780, 62≈-1,26 и ctg(-52°)≈0,62-0,78≈-0,79. 

Чем точнее выполняется чертеж, тем более точными будут значения для каждого индивидуального случая. Выполнять вычисления удобно только в теории, так как на практике довольно сложно и долго выполнять рисунки.

Линии тригонометрических функций

Определение 2

Линии тригонометрических функций – это линии, которые изображаются вместе с единичной окружностью. Они имеют точку отсчета и единичный отрезок, которая равна единице в координатной системе. Они используются для наглядного изображения значений.

Рассмотрим их на подробном рисунке

Линии тригонометрических функций

Как найти sin α, cos α, tg α, ctg α

Для тридцати-, сорокопяти-, шестидесятиградусных углов мы имеем определенные значения. Чтобы найти их, можно воспользоваться правилами о прямоугольном треугольнике с острыми углами. Для этого используется теорема Пифагора.

Пример 5

Для того, чтобы узнать значения для углов тридцати- и шестидесятиградусных углов изображаем прямоугольный треугольник с углами данной величины. Длина гипотенузы должна быть равна 1. Согласно теореме Пифагора, катет, лежащий напротив тридцатиградусного угла,  равен половине гипотенузы. Воспользуемся теоремой: 12-122=32 .  Так как синус угла – это катет, деленный на гипотенузу, вычисляем, что sin 30°=121=12 и sin 60°=321=32 . 

Косинус можно найти по формуле, которая предполагает деление прилежащего катета на гипотенузу. Вычисляем: cos 30°=321=32 и cos 60°=121=12 .

Тангенс можно найти по формуле, которая предполагает деление противолежащего катета на прилежащий. Котангенс находим по такой же схеме – делим прилежащий катет на противолежащий. 

Вычисляем: tg 30°=1232=13=33 и tg 60°=3212=3 . Находим котангенс по подобной схеме: сtg 30°=3212=3 и сtg 60°=1232=13=33 .  После этого приступаем к вычислению значений основных тригонометрических функций для сорока пятиградусного угла. Используем равнобедренный треугольник с углами 45° и гипотенузой, которая равна 1. Используем теорему Пифагора. Согласно формуле, длины катетов равны 22 . Т

Теперь мы сможем найти значения для основных тригонометрических функций. Используем формулу, которая предполагает деление длин соответствующих сторон рассматриваемого треугольника.

Выводим формулу: ctg 45°=2222=1 . 

Полученные значения для тридцати-, сорокапяти-, шестидесятиградусных углов будут использоваться для решения различных задач. Запишите их – они часто будут использоваться. Для удобства можно использовать таблицу значений.

Проиллюстрируем значения для тридцати-, сорокапяти-, шестидесятиградусных углов с использованием окружности и линий.

Линии тригонометрических функций

Значения основных функций тригонометрии

Основные тождества из геометрии связывают с собой sin α, cos α, tg α, ctg α для определенного угла. С помощью одной функции вы легко сможете найти другую.

Определение 3

Для того, чтобы найти синус по известному косинусу, sin2α+cos2α=1 . 

Определение 4

Тангенс по известному косинусу tg2α+1=1cos2α . 

Определение 5

Котангенс по известному синусу или наоборот 1+ctg2α= 1sin2α . 

Определение 6

Тангенс через котангенс или наоборот можно найти благодаря удобной формуле: tg α·ctg α=1 . 

Для того, чтобы закрепить полученные знания, рассмотрим их на подробном примере

Пример 6

Необходимо найти значение синуса угла π8, если tg π8=2-1 . 

Сначала найдем котангенс угла: ctgπ8=1tgπ8=12-1=2+1(2-1)·(2+1)= 2+1(2)2-12=2+1  Воспользуемся формулой 1+ctg2α=1sin2α . Благодаря этому мы вычисляем значение синуса. Имеем
sin2π8=11+ctg2π8=11+(2+1)2=14+22=12·(2+2)=2-22·(2+2)·(2-2)==2-22·(22-(2)2)=2-24

Для завершения необходимо определить значение синуса. Угол π8 является углом первой четверти, то синус является положительным. Чтобы точно определить знак, вы можете воспользоваться таблицей, в которой определены знаки по четвертям координатной плоскости. Таким образом, sin π8=sin2π8=2-24=2-22 .  sin π8=2-22.

Сведение к углу 

Удобнее всего находить значения для угла от 0 до 90 °. Сведение к углу из интервала от 0 до 90 °. Если угол не соответствует заданному интервалу, можно использовать законы и тождества, которые мы учили на уроках геометрии. Тогда мы сможем найти значение, которое будет равно для угла указанных пределах.

Пример 7

Задача заключается в том, чтобы найти синус 210°. Представим 210 как разность или сумму, разложив число на несколько. Воспользуемся соответствующей формулой для приведения.  Используем формулу для нахождения значения синуса 30°: sin 210°=sin(180°+30°)=-sin 30°=-12 , или косинуса 60 ° sin 210°=sin(270°-60°)=-cos 60°=-12.

Для того, чтобы решать задачи было намного проще, при нахождении значений переходите к углам из интервала от 0 до 90° с помощью формул приведения, если угол не находится в этих пределах.

Использование формул

Раннее мы рассмотрели подробности, касающиеся нахождению значений основных функций с использованием формул тригонометрии. Для того, чтобы определить значение для определенного угла, используйте формулы и значения основных функций для известных углов.

Для примера вычислим значение тангенса π8, который был использован в предыдущем примере. Возьмем за основу основные формулы тригонометрии.

Пример 8

Найдите значение tgπ8 . 

Используя формулу тангенса, преобразуем уравнение до следующего равенства tg2π8=1-cosπ41+cosπ4 . Значения косинуса угла π4 известны из предыдущего примера. Благодаря этому мы быстро найдем значения тангенса.
tg2π8=1-cosπ41+cosπ4=1-221+22=2-22+2==(2-2)2(2+2)·(2-2)=(2-2)222-(2)2=(2-2)22 

Угол π8 является углом первой четверти. Согласно таблице основных тригонометрических функций по четвертям координатной плоскости, тангенс этого угла положителен. Продолжаем вычисления для дальнейшего решения: tgπ8=tg2π8=(2-2)22=2-22=2-1

tgπ8=2-1.

Частные случаи

Тригонометрия – довольно сложная наука. Далеко не всегда можно найти формулы, используемые для вычисления. Существует множество уравнений, которые не поддаются стандартным формулам. Некоторые значения очень сложно обозначить точной цифрой. Это не так просто, как может показаться.

Однако точные значения не всегда нужны. Хватает и тех, что не претендуют на высокую точность. Благодаря существующим таблицам, которые можно найти в математических учебниках, можно найти любое приближенное значение основных функций. Благодаря справочным материалам вычислять формулы будет намного проще. В таблицах содержатся значения с высокой точностью.

В этой статье мы разберем такое понятие, как тангенс угла. Начнем с понятия прямого угла. Прямым углом называется угол равный 900. Угол в котором меньше 90 градусов – называется острым. Угол в котором больше 90 градусов – называется тупым. В развернутом угле 180 градусов.

разности углов

Изображаем треугольник с прямым углом С , при этом противолежащая сторона будет имеет такое же обозначение (с -будет гипотенузой), аналогично поступаем и с другими углами. Сторона находящаяся противоположно от острого угла – называется катетом.

прямоугольный треугольник

Синус и косинус находятся с помощью катета и гипотенузы, а именно:

sinA = a/c
cosA = b/c

Формула тангенса

tg A = a/b

другими словами определение тангенса – это деление противоположного катета на прилежащий
Существует ещё одна равносильная формула тангенса

tg A = sinA/cosA

расшифровывается как деление sin на cos.

Котангенс находится практически аналогично, лишь значения поменяются местами.

ctg A = cosA/sinA

Внимание! В помощь родителям и учителям гдз по математики 5 класс (http://spisaly.ru/gdz/5_klass/math). Все предложенные на сайте книги можно скачать или изучить онлайн. Перейдите по ссылке и узнайте подробнее.

Данные тригонометрические функции, значительно облегчают вычисление углов. Благодаря синусу, косинусу и тангенсу стало возможным, определение всех неизвестных углов в треугольнике, с одним известным.

Обозначения для основных углов:
тангенс 30 – 0,577

тангенс 45 – 1,000
тангенс 60 – 1,732

Существуют специальная таблица тангенсов, значения которой можно получить при помощи деления значений таблиц синуса и косинуса, но так как это достаточно трудоемкий процесс и нужна данная таблица тангенсов.

таблица тангенсов таблица тангенсов 2

Есть очень много задач в которых у треугольника углы равны 90, 30, 60 градусам. либо 90, 45, 45 градусам. Для таких фигур лучше заучить их соотношение , что бы потом было проще.

значения для частых случаев

В первом случае катет противоположный 30 градусам равняется 1/2 от гипотенузы.
Во втором случае гипотенуза превышает катет в ?2 раз.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:


Добавить комментарий