Загрузить PDF
Загрузить PDF
Если вы умеете вычислять угловые коэффициенты (тангенс угла наклона) прямых, то на основании этих коэффициентов можно узнать другие параметры. Например, выяснить, параллельны ли прямые или же перпендикулярны, найти их точку пересечения и многие другие величины. Вычисление углового коэффициента – довольно простая задача. Прочитайте эту статью, чтобы узнать, как это сделать.
-
1
Угловой коэффициент (тангенс угла наклона) определяется как отношение изменения координаты «у» к изменению координаты «х».
Реклама
-
1
Рассмотрите любую прямую линию. Убедитесь, что линия прямая, так как угловой коэффициент вычисляется только для прямых линий.
-
2
Выберите любые две точки, лежащие на прямой. Запишите их координаты в виде (х,у). Не имеет значения, какие точки вы выберете (главное, чтобы они были разными и лежали на одной прямой).
-
3
Дайте обозначение выбранным точкам. Не имеет значения, какую из них вы обозначите первой, а какую – второй (главное – на протяжении всего процесса вычисления строго придерживаться выбранного обозначения). Координаты первой точки запишем как x1 и y1, а координаты второй точки как x2 и y2.
-
4
Подставьте координаты точек в формулу для вычисления углового коэффициента, приведенную выше.
-
5
Вычтите две координаты «у».
-
6
Вычтите две координаты «х».
-
7
Разделите результат разности координат «у» на результат разности координат «х». Сократите дробь, если возможно.
-
8
Проверьте полученный результат.
- Прямые, идущие вверх слева направо, всегда имеют положительный угловой коэффициент (даже если это дробь).
- Прямые, идущие вниз слева направо, всегда имеют отрицательный угловой коэффициент (даже если это дробь).
Реклама
Пример
- Дана прямая с точками A и B, лежащими на ней.
- Координаты точек: A(-2,0) и B(0,-2)
- (y2-y1): -2-0=-2; Изменение координаты «у» = -2
- (x2-x1): 0-(-2)=2; Изменение координаты «х» = 2
- Угловой коэффициент данной прямой равен -1.
Советы
- Как только вы обозначили координаты точек на прямой через (х1,у1) и (у1,у2), не меняйте эти обозначения, или вы получите неверный ответ.
- Вы нашли “m” в линейном уравнении вида y=mx+b, где “у” – координата «у», “m” – угловой коэффициент, “х” – координата «х», “b” – смещение прямой по оси Y (или значение координаты «у» при х=0).
- Для получения ответов на возникающие вопросы прочитайте школьный учебник или обратитесь к учителю.
Реклама
Предупреждения
- Не путайте формулу для вычисления углового коэффициента (тангенса угла наклона) прямой с любой другой формулой, например, с формулой для вычисления расстояния или формулой для вычисления средней точки.
Реклама
Что вам понадобится
- Миллиметровка (возможно).
- Координатная плоскость или прямая с координатами двух точек, лежащих на ней.
- Формула для вычисления углового коэффициента (тангенса угла наклона) прямой.
- Карандаш, бумага, линейка, калькулятор.
- Прямая.
- Координаты «х».
- Координаты «у».
Об этой статье
Эту страницу просматривали 103 403 раза.
Была ли эта статья полезной?
Как найти тангенс угла наклона
Под тангенсом угла наклона обычно понимают угловой коэффициент касательной прямой какой-либо функции. Однако вам может понадобиться также умение найти тангенс угла наклона обычной прямой, например, одной из сторон треугольника по отношению к другой. Определив, что вам надо найти, действуйте одним из следующих способов.
Инструкция
Если вам нужно посчитать угол наклона прямой к оси абсцисс, а вы не знаете уравнение прямой, опустите из любой точки этой прямой (кроме точки пересечения с осью) перпендикуляр на ось. Затем измерьте катеты полученного прямоугольного треугольника и найдите отношение прилежащего катета к противолежащему. Полученное число будет равно тангенсу угла наклона. Этот способ удобно использовать не только для изучения угла наклона прямой, но и для измерения любых углов, как на чертеже, так и в жизни (например, угол ската кровли).
Если вы знаете уравнение прямой, и вам нужно найти тангенс угла наклона этой прямой к оси абсцисс, выразите у через х. В результате вы получите выражение типа у=kх+b. Обратите внимание на коэффициент k – это и есть тангенс угла наклона между положительным направлением оси ох и лучом прямой, расположенным надо этой осью. Если же k=0, то тангенс также равен нулю, то есть прямая параллельна или совпадает с осью абсцисс.
Если вам дана сложная функция, например, квадратичная, и вам нужно найти тангенс угла наклона касательной к этой функции, или, по-другому, угловой коэффициент, вычислите производную. Затем вычислите значение производной в заданной точке, к которой будет проведена касательная. Полученное число и является тангенсом угла наклона касательной. Например, вам дана функция у=х^2+3х, посчитав ее производную, вы получите выражение у`=2х+3. Чтобы найти угловой коэффициент в точке х=3, подставьте это значение в уравнение. В результате несложных вычислений легко можно получить у=2*3+3=9, это и есть искомый тангенс.
Для того чтобы найти тангенс угла наклона одной из сторон треугольника к другой, поступите следующим образом. Найдите синус (sin) этого угла и разделите его на косинус (cos), в результате вы получите тангенс этого угла.
Источники:
- как найти тангенс по углу
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Угол наклона прямой
Для построения графика линейной функции или определения координат точек пересечения прямой с осью Ох и Оy важно уметь находить угол наклона прямой.
Углом наклона прямой к оси Ох является угол, который считают против часовой стрелки от положительного направления Ох к прямой.
В уравнении y = kх + b, где b — координата «у» — точки пересечения прямой с Оy, коэффициент k при х — коэффициент наклона прямой.
Этот коэффициент равняется тангенсу угла а, образованного между прямой и положительным направлением оси Ох: k = tg а.
Если прямая наклонена вправо, то угол, образованный между прямой и осью Ох, будет острым, тангенс угла (tgа) и коэффициент наклона k больше нуля. Угол определяем по формуле: a = arctg k.
Если наклон прямой влево, то угол между прямой и осью Ох будет тупым, а тангенс угла (tgа) и коэффициент k меньше нуля. Угол a = Пи — arctg |k|.
Угол наклона равняется 0, если прямая расположена параллельно Ох или совпадает с ней.
Зная координаты 2-х точек, расположенных на прямой, можно легко рассчитать угол наклона как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между ними.
Пусть координаты первой точки (х1,y1), координаты второй (х2,y2), тогда угловой коэффициент будет равняться: (y2 — y1): (х2 — х1),
где (y2 — y1) — величина изменения координаты «у», (х2 — х1) — изменение координаты «х». Из полученной величины возьмем арктангенс и определим угол наклона прямой.
Быстро определить угол наклона прямой, вам поможет онлайн калькулятор.
Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач
Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.
Угол наклона прямой и угловой коэффициент прямой
Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.
Угол наклона прямой к оси О х , расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.
Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π ) .
Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.
Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.
Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.
Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.
Посчитать угловой коэффициент прямой при угле наклона равном 120 ° .
Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = – 3 .
Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k 0 , тогда угол тупой, что дает право определить его по формуле α = π – a r c t g k .
Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .
Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .
Ответ: α = a r c t g 3 .
Найти угол наклона прямой к оси О х , если угловой коэффициент = – 1 3 .
Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х . Отсюда k = – 1 3 0 , тогда необходимо применить формулу α = π – a r c t g k При подстановке получим выражение:
α = π – a r c t g – 1 3 = π – a r c t g 1 3 = π – π 6 = 5 π 6 .
Ответ: 5 π 6 .
Уравнение с угловым коэффициентом
Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у .
Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М , M 1 ( x 1 , y 1 ) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.
Задана прямая с угловым коэффициентом y = 1 3 x – 1 . Вычислить, принадлежат ли точки M 1 ( 3 , 0 ) и M 2 ( 2 , – 2 ) заданной прямой.
Необходимо подставить координаты точки M 1 ( 3 , 0 ) в заданное уравнение, тогда получим 0 = 1 3 · 3 – 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.
Если подставим координаты точки M 2 ( 2 , – 2 ) , тогда получим неверное равенство вида – 2 = 1 3 · 2 – 1 ⇔ – 2 = – 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.
Ответ: М 1 принадлежит прямой, а М 2 нет.
Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 ( 0 , b ) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х , где k = t g α .
Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x – 1 . Получим, что прямая пройдет через точку с координатой 0 , – 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х . Отсюда видно, что коэффициент равен 3 .
Уравнение прямой с угловым коэффициентом, проходящей через заданную точку
Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 ( x 1 , y 1 ) .
Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 ( x 1 , y 1 ) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y – y 1 = k · ( x – x 1 ) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 ( x 1 , y 1 ) .
Составьте уравнение прямой, проходящей через точку М 1 с координатами ( 4 , – 1 ) , с угловым коэффициентом равным – 2 .
Решение
По условию имеем, что x 1 = 4 , y 1 = – 1 , k = – 2 . Отсюда уравнение прямой запишется таким образом y – y 1 = k · ( x – x 1 ) ⇔ y – ( – 1 ) = – 2 · ( x – 4 ) ⇔ y = – 2 x + 7 .
Ответ: y = – 2 x + 7 .
Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами ( 3 , 5 ) , параллельную прямой y = 2 x – 2 .
По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x – 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:
y – y 1 = k · ( x – x 1 ) ⇔ y – 5 = 2 · ( x – 3 ) ⇔ y = 2 x – 1
Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно
Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.
Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x – x 1 a x = y – y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y – b = k · x ⇔ k · x k = y – b k ⇔ x 1 = y – b k .
Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.
Привести уравнение прямой с угловым коэффициентом y = – 3 x + 12 к каноническому виду.
Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:
y = – 3 x + 12 ⇔ – 3 x = y – 12 ⇔ – 3 x – 3 = y – 12 – 3 ⇔ x 1 = y – 12 – 3
Ответ: x 1 = y – 12 – 3 .
Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x – y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.
Дано уравнение прямой вида y = 1 7 x – 2 . Выяснить, является ли вектор с координатами a → = ( – 1 , 7 ) нормальным вектором прямой?
Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:
y = 1 7 x – 2 ⇔ 1 7 x – y – 2 = 0
Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , – 1 , отсюда 1 7 x – y – 2 = 0 . Понятно, что вектор a → = ( – 1 , 7 ) коллинеарен вектору n → = 1 7 , – 1 , так как имеем справедливое соотношение a → = – 7 · n → . Отсюда следует, что исходный вектор a → = – 1 , 7 – нормальный вектор прямой 1 7 x – y – 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x – 2 .
Решим задачу обратную данной.
Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ – A B · x – C B .
Результат и является уравннием с угловым коэффициентом, который равняется – A B .
Задано уравнение прямой вида 2 3 x – 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.
Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:
2 3 x – 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .
Ответ: y = 1 6 x + 1 4 .
Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x – x 1 a x = y – y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:
x a + y b = 1 ⇔ y b = 1 – x a ⇔ y = – b a · x + b .
Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:
x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x · ( y – y 1 ) ⇔ ⇔ a x · y = a y · x – a y · x 1 + a x · y 1 ⇔ y = a y a x · x – a y a x · x 1 + y 1
Имеется прямая, заданная уравнением x 2 + y – 3 = 1 . Привести к виду уравнения с угловым коэффициентом.
Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на – 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:
y – 3 = 1 – x 2 ⇔ – 3 · y – 3 = – 3 · 1 – x 2 ⇔ y = 3 2 x – 3 .
Ответ: y = 3 2 x – 3 .
Уравнение прямой вида x – 2 2 = y + 1 5 привести к виду с угловым коэффициентом.
Необходимо выражение x – 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · ( x – 2 ) = 2 · ( y + 1 ) . Теперь необходимо полностью его разрешить, для этого:
5 · ( x – 2 ) = 2 · ( y + 1 ) ⇔ 5 x – 10 = 2 y + 2 ⇔ 2 y = 5 x – 12 ⇔ y = 5 2 x
Ответ: y = 5 2 x – 6 .
Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.
Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = – 1 + 2 · λ .
Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:
x = λ y = – 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .
Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:
x 1 = y + 1 2 ⇔ 2 · x = 1 · ( y + 1 ) ⇔ y = 2 x – 1
Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .
Уравнение прямой с угловым коэффициентом
Пусть на плоскости, где имеется прямоугольная декартова система координат, прямая l проходит через точку М0 параллельно направляющему вектору а (рис. 96).
Если прямая l пересекает ось Ох (в точке N), то под углом прямой l с осью Ох будем понимать угол α, на который необходимо повернуть ось Ох вокруг точки N в направлении, обратном вращению часовой стрелки, чтобы ось Ох совпала с прямой l. (Имеется в виду угол, меньший 180°.)
Этот угол называют углом наклона прямой. Если прямая l параллельна оси Ох, то угол наклона принимается равным нулю (рис. 97).
Тангенс угла наклона прямой называется угловым коэффициентом прямой и обычно обозначается буквой k:
Если α = 0, то и k = 0; это означает, что прямая параллельна оси Ох и ее угловой коэффициент равен нулю.
Если α = 90°, то k = tg α не имеет смысла: это означает, что прямая, перпендикулярная оси Ох (т. е. параллельная оси Оу), не имеет углового коэффициента.
Угловой коэффициент прямой можно вычислить, если известны координаты двух каких-либо точек этой прямой. Пусть даны две точки прямой: M1(x1; у1) и M2(x2; у2) и пусть, например, 0 x1, у2 > у1 (рис. 98).
Тогда из прямоугольного треугольника M1РM2 находим
Аналогично доказывается, что формула (2) верна и в случае 90° 3 х + 3у – 7 = 0.
Приведем данное уравнение к виду
Следовательно, k = tg α = – 1 /√ 3 , откуда α = 150°
Задача 5. Составить уравнение прямой, проходящей через точку Р(3; -4), с угловым коэффициентом k = 2 /5
Задача 6. Составить уравнение прямой, проходящей через точку Q (-3; 4) и составляющей с положительным направлением оси Ох угол 30°.
Если α = 30°, то k = tg 30° = √ 3 /3. Подставив в уравнение (4) значения x1, y1 и k, получим
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-prjamoj-s-uglovym-koeffitsientom/
http://razdupli.ru/teor/100_uravnenie-pryamoj-s-uglovym-koefficientom.php
[/spoiler]
Угол наклона прямой
Решение функций
Для построения графика линейной функции или определения координат точек пересечения прямой с осью Ох и Оy важно уметь находить угол наклона прямой.
Углом наклона прямой к оси Ох является угол, который считают против часовой стрелки от положительного направления Ох к прямой.
В уравнении y = kх + b, где b — координата «у» — точки пересечения прямой с Оy, коэффициент k при х — коэффициент наклона прямой.
Этот коэффициент равняется тангенсу угла а, образованного между прямой и положительным направлением оси Ох: k = tg а.
Если прямая наклонена вправо, то угол, образованный между прямой и осью Ох, будет острым, тангенс угла (tgа) и коэффициент наклона k больше нуля. Угол определяем по формуле: a = arctg k.
Если наклон прямой влево, то угол между прямой и осью Ох будет тупым, а тангенс угла (tgа) и коэффициент k меньше нуля. Угол a = Пи — arctg |k|.
Угол наклона равняется 0, если прямая расположена параллельно Ох или совпадает с ней.
Зная координаты 2-х точек, расположенных на прямой, можно легко рассчитать угол наклона как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между ними.
Пусть координаты первой точки (х1,y1), координаты второй (х2,y2), тогда угловой коэффициент будет равняться: (y2 — y1): (х2 — х1),
где (y2 — y1) — величина изменения координаты «у», (х2 — х1) — изменение координаты «х». Из полученной величины возьмем арктангенс и определим угол наклона прямой.
Быстро определить угол наклона прямой, вам поможет онлайн калькулятор.
В декартовых координатах каждая прямая
определяется уравнением первой степени
и, обратно, каждое уравнение первой
степени определяет прямую.
Уравнение
вида
(1)
называется
общим уравнением прямой.
Угол ,
определяемый, как показано на рис.,
называется углом наклона прямой к оси
Ох. Тангенс угла наклона прямой к оси
Ох называется угловым коэффициентом
прямой; его обычно обозначают буквой
k:
Уравнение называется
уравнением прямой с угловым коэффициентом;
k – угловой коэффициент, b – величина
отрезка, который отсекает прямая на оси
Оу, считая от начала координат.
Если
прямая задана общим уравнением
,
то
ее угловой коэффициент определяется
по формуле
.
Уравнение является
уравнением прямой, которая проходит
через точку (, )
и имеет угловой коэффициент k.
Если
прямая проходит через точки (, ), (, ),
то ее угловой коэффициент определяется
по формуле
.
Уравнение
является
уравнением прямой, проходящей через
две точки (, )
и (, ).
Если
известны угловые коэффициенты и двух
прямых, то один из углов между
этими прямыми определяется по формуле
.
Признаком
параллельности двух прямых является
равенство их угловых коэффициентов:.
Признаком
перпендикулярности двух прямых является
соотношение
,
или .
Иначе говоря, угловые коэффициенты
перпендикулярных прямых обратны по
абсолютной величине и противоположны
по знаку.
4.Общее уравнение прямой
Уравнение
Ах+Ву+С=0
(где А, В, Смогут иметь любые
значения, лишь бы коэффициентыА,
Вне были нулями оба сразу)
представляетпрямую
линию. Всякую прямую можно
представить уравнением этого вида.
Поэтому его называютобщим уравнением
прямой.
Если А=0, то есть уравнение не
содержитх, то оно представляет
прямую,параллельную
оси ОХ.
Если В=0, то есть уравнение не
содержиту, то оно представляет
прямую,параллельную
оси ОY.
Когла Вне равно нулю, то общее
уравнение прямой можноразрешить
относительно ординаты у,
тогда оно преобразуется к виду
y=ax+b
(где a=-A/B; b=-C/B).
Аналогично, при Аотличным от
нуля общее уравнение прямой можно
разрешить относительнох.
Если С=0, то есть общее уравнение
прямой не содержит свободного члена,
то оно представляет прямую, проходящую
через начало координат
5. Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом
Уравнение прямой, проходящей
через данную точку A(x1, y1)
в данном направлении, определяемом
угловым коэффициентом k,
y – y1 = k(x – x1). (1)
Это уравнение определяет
пучок прямых, проходящих через
точку A(x1, y1),
которая называется центром пучка.
6. уравнение прямой,
проходящей через две данные точки.
. Уравнение
прямой, проходящей через две точки: A(x1, y1)
и B(x2, y2),
записывается так:
(2)
Угловой коэффициент прямой, проходящей
через две данные точки, определяется
по формуле
(3)
7.
Уравнение прямой в отрезках
Если в общем уравнении
прямой ,
то разделив (1) на ,
получаем уравнение прямой в отрезках
,
где , .
Прямая пересекает ось в
точке ,
ось в
точке .
8.
Формула: Угол между прямыми на плоскости
Уголα между
двумя прямыми, заданными
уравнениями: y=k1x+b1 (первая
прямая) и y=k2x+b2 (вторая
прямая), может быть вычислен по формуле
(угол отсчитывается от 1й прямой
ко 2й против
часовой стрелки):
tg(α)=(k2-k1)/(1+k1k2) |
9. Взаимное
расположение двух прямых на плоскости.
Пусть сейчас
оба уравнения прямых
записаны в общем виде.
Теорема. Пусть
и
– общие уравнения двух
прямых на координатной плоскости
Оху. Тогда
1) если ,
то прямые и совпадают;
2) если ,
то прямые и
параллельные;
3) если ,
то прямые пересекаются.
Доказательство.
Условие равносильно
коллинеарности нормальных векторов данных
прямых:
.
Поэтому, если ,
то и прямыепересекаются.
Если же ,
то , , иуравнение прямой принимает
вид:
или ,
т.е. прямые совпадают.
Заметим, что коэффициент пропорциональности ,
иначе все коэффициенты общего уравнения были
бы равны нулю, что невозможно.
Если же прямые не
совпадают и не пересекаются, то остается
случай ,
т.е. прямые параллельны.
Теорема доказана.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #