Как найти тангенс угла наклона производная

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Значение производной в точке касания как тангенс угла наклона

Если к кривой (f(x)) проведена касательная в точке с абсциссой (x_0), то

[{large{color{royalblue}{f'(x_0)=mathrm{tg}, alpha, }}},]

где (alpha) – угол наклона касательной.

Значит, верна формула: (f'(x_0)=mathrm{tg}, alpha=k).

Заметим, что координаты точки (A) тогда можно записать как ( (x_0; f(x_0)) ) или ( (x_0; y_0) ),
где ( y_0=kx_0+b).
То есть ( y_0=f(x_0)).


Задание
1

#2090

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))) (то есть угла между касательной к графику (f(x)) в точке ((x_0; f(x_0))) и положительным направлением оси (Ox)).

По рисунку видно, что касательная проходит через точки ((0,5; 0)) и ((1; 1)), тогда тангенс угла наклона касательной составляет (1 : 0,5
= 2)
, следовательно, (f'(x_0) = 2).

Ответ: 2


Задание
2

#2091

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

По рисунку видно, что касательная проходит через точки ((0,5; -0,5)) и ((1; 1)), тогда тангенс угла наклона касательной составляет (1,5 :
0,5 = 3)
, следовательно, (f'(x_0) = 3).

Ответ: 3


Задание
3

#2092

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

По рисунку видно, что касательная проходит через точки ((0,5; 1)) и ((1,5; 1,5)), тогда тангенс угла наклона касательной составляет (0,5
: 1 = 0,5)
, следовательно, (f'(x_0) = 0,5).

Ответ: 0,5


Задание
4

#2093

Уровень задания: Равен ЕГЭ

На рисунке изображены график функции (y = f(x)) и касательная к нему в точке с абсциссой (x_0). Найдите значение производной функции (f(x)) в точке (x_0).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

По рисунку видно, что касательная проходит через точки ((1; 1)) и ((5; 2)), тогда тангенс угла наклона касательной составляет ((2 – 1)
: (5 – 1) = 0,25)
, следовательно, (f'(x_0) = 0,25).

Ответ: 0,25


Задание
5

#3112

Уровень задания: Равен ЕГЭ

На рисунке изображен график функции (y=f(x)) и отмечены точки (-2;
0; 2; 8)
. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Проведем касательные к графику функции в этих точках. Так как тангенс угла (alpha) наклона касательной равен значению производной (f'(x)) в точке касания (x_0) ((f'(x_0)=mathrm{tg},alpha)), то нужно сравнить тангенсы углов, отмеченных на рисунке.
Вспомним, что если угол тупой, то его тангенс отрицательный, если острый – положительный. Следовательно, так как мы ищем наибольший тангенс, имеет смысл рассматривать только острые углы. Это углы, образованные касательными в точках (0) и (2). Заметим, что угол в точке (0) больше, следовательно, его тангенс также больше, чем тангенс угла в точке (2). Таким образом, ответ: (0).

Ответ: 0


Задание
6

#718

Уровень задания: Сложнее ЕГЭ

Производная (f'(x)) функции (f(x)) в точке (x_0) равна (10). Найдите котангенс угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

При всех (alpha), при которых (mathrm{tg}, alpha) и (mathrm{ctg}, alpha) имеют смысл, выполнено (mathrm{tg}, alphacdotmathrm{ctg}, alpha = 1), откуда котангенс угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))) равен (0,1).

Ответ: 0,1


Задание
7

#719

Уровень задания: Сложнее ЕГЭ

Производная (f'(x)) функции (f(x)) в точке (x_0) равна (5). Найдите сумму тангенса и котангенса угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))).

Производная функции (f(x)) в точке (x_0) равна тангенсу угла наклона касательной к графику (f(x)) в точке ((x_0; f(x_0))).

При всех (alpha), при которых (mathrm{tg}, alpha) и (mathrm{ctg}, alpha) имеют смысл, выполнено (mathrm{tg}, alphacdotmathrm{ctg}, alpha = 1), откуда котангенс угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))) равен (0,2), тогда сумма тангенса и котангенса угла наклона касательной к графику функции (f(x)) в точке ((x_0; f(x_0))) равна (5,2).

Ответ: 5,2

УСТАЛ? Просто отдохни

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции ( y=fleft( x right)):

Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).

Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол ( alpha )?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).

Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:

По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).

Тогда отношение приращений:

( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )

(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).

Давай теперь уменьшать ( Delta x).

Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).

Что же при этом станет с секущей?

Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная

( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),

то есть

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

( y=kx+b).

За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!

То есть вот что получается:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k).

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.

Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).

С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).

Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.

Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k)

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).

Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).

Решение.

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: 

( displaystyle f’left( x right)=k= {tg}varphi).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:

( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).

Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).

Ответ: ( displaystyle 1,2).

Теперь попробуй сам.

Уравнение касательной к графику функций

А сейчас сосредоточимся на произвольных касательных.

Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).

Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?

Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении

( y=kx+b).

Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

( k={f}’left( {{x}_{0}} right)).

В нашем примере будет так:

( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)

( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)

Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).

Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):

Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).

Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?

По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:

( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).

Соединяем все полученные формулы в уравнение прямой:

( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)

( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))

Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).

Пример:

Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).

Решение:

На этом примере выработаем простой…

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование

На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5. 

Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.  

Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.

P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».

Геометрический смысл производной. Уравнение касательной к графику функции. Задание 7.

Вспомним определение производной:

Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

{f}prime(x)= lim{Delta{x}right{0}}{{Delta{S}}/{Delta{t}}}

Исходя из этого определения, рассмотрим, каким образом производная функции y=f(x) связана с графиком этой функции.

Посмотрите ВИДЕОУРОК, в котором я подробно объясняю, в чем заключается геометрический смысл производной, и как выводится уравнение касательной. А затем мы рассмотрим решение задач из Открытого банка заданий для подготовки к ЕГЭ по математике.

Итак.

Геометрический смысл производной.

Тангенс угла наклона касательной (угловой коэффициент наклона касательной), проведенной к графику функции y=f(x)  в точке  x_0  равен производной функции y=f(x) в этой точке:

k={tg}alpha={f}prime{(x_0)}

Заметим, что угол alpha – это угол между прямой и положительным направлением оси ОХ:

Геометрический смысл производной. Уравнение касательной

Уравнение касательной к графику функции y=f(x)  в точке  x_0имеет вид:

y= f(x_0)+{f}prime{(x_0)}(x-x_0)

В этом уравнении:

x_0 – абсцисса точки касания,

f(x_0) – значение функции y=f(x) в точке касания,

{f}prime{(x_0)} – значение производной функции y=f(x) в точке касания.

Приведем несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике, в которых используется знание геометрического смысла производной.

Пример 1. Задание В8 (№ 27504) На рисунке изображены график функции y=f(x)  и касательная к нему в точке с абcцисcой x_0 . Найдите значение производной функции y=f(x) в точке f(x_0) .

Геометрический смысл производной. Уравнение касательной

Значение производной функции y=f(x) в точке x_0 равно тангенсу угла между касательной и положительным направлением оси ОХ. Чтобы его найти, выделим прямоугольный треугольник, гипотенуза которого лежит на касательной, а катеты параллельны осям координат. Обозначим точки с целыми координатами буквами  А и В – эти точки выделены на касательной:

Геометрический смысл производной. Уравнение касательной

Проведем через точку А прямую параллельно оси ОХ, а через точку В – параллельно оси OY. Получим прямоугольный треугольник ABC:

12

Угол А  треугольника  АВС равен углу между касательной и положительным направлением оси ОХ.

Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.

tg{alpha}={BC}/{AC}=2/8=0,25

Длины катетов считаем по количеству клеточек.

Ответ: 0,25

Пример 2. Задание В8 (№ 27506) На рисунке изображены график функции y=f(x)  и касательная к нему в точке с абцисоой f(x_0) . Найдите значение производной функции y=f(x) в точке f(x_0).

12

Эта задача очень похожа на предыдущую, за исключением того, что здесь касательная  наклонена влево, и угол alphaмежду касательной и положительным направлением оси ОХ расположен так:

12

Построим, как предыдущей задаче, прямоугольный треугольник АВС:

12

Угол А треугольника ABC и угол alpha – смежные, то есть их сумма равна 180 градусов. Значит,

tg{alpha}=-tgA=-{BC}/{AC}=-2/8=-0,25

Запомните, если прямая наклонена влево, то коэффициент наклона прямой отрицателен.

Ответ: -0,25

Пример 3. Задание В8 (№ 40129)  На рисунке изображен график функции y=f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсцссой 8. Найдите значение производной функции в точке x_0=8.

Геометрический смысл производной. Уравнение касательной

Соединим  отрезком точку начала координат с точкой касания:

12

Производная функции в точке касания равна тангенсу угла  между касательной и положительным направлением оси ОХ:

12

Чтобы найти тангенс alpha, рассмотрим прямоугольный треугольник АОВ:

12

tg{alpha}=tgAOB={AB}/{OB}={10}/8=1,25

Ответ: 1,25

И.В. Фельдман, репетитор по математике.

Как найти тангенс угла наклона касательной

Геометрический смысл производной первого порядка функции F(х) представляет собой касательную прямую к ее графику, проходящую через заданную точку кривой и совпадающую с ней в этой точке. Причем значение производной в данной точке х0 является угловым коэффициентом или иначе – тангенсом угла наклона касательной прямой k = tg a = F`(х0). Вычисление данного коэффициента – одна из наиболее распространенных задач теории функций.

Как найти тангенс угла наклона касательной

Инструкция

Запишите заданную функцию F(x), например F(x) = (x³ + 15х +26). Если в задаче явно указана точка, через которую проводится касательная, например, ее координата х0 = -2, можно обойтись без построения графика функции и дополнительных прямых на декартовой системе ОХY. Найдите производную первого порядка от заданной функции F`(x). В рассматриваемом примере F`(x) = (3x² + 15). Подставьте заданное значение аргумента х0 в производную функции и вычислите ее значение: F`(-2) = (3(-2)² + 15) = 27. Таким образом, вы нашли tg a = 27.

При рассмотрении задачи, где требуется определить тангенс угла наклона касательной к графику функции в точке пересечения этого графика с осью абсцисс, вам понадобится сначала найти числовое значение координат точки пересечения функции с ОХ. Для наглядности лучше всего выполнить построение графика функции на двухмерной плоскости ОХY.

Задайте координатный ряд для абсцисс, например, от -5 до 5 с шагом 1. Подставляя в функцию значения х, вычислите соответствующие им ординаты у и отложите на координатной плоскости полученные точки (х, у). Соедините точки плавной линией. Вы увидите на выполненном графике место пересечения функцией оси абсцисс. Ордината функции в данной точке равна нулю. Найдите численное значение соответствующего ей аргумента. Для этого заданную функцию, например F(x) = (4x² – 16), приравняйте к нулю. Решите полученное уравнение с одной переменной и вычислите х: 4x² – 16 = 0, x² = 4, х = 2. Таким образом, согласно условию задачи, тангенс угла наклона касательной к графику функции необходимо найти в точке с координатой х0 = 2.

Аналогично описанному ранее способу определите производную функции: F`(x) = 8*x. Затем вычислите ее значение в точке с х0 = 2, что соответствует точке пересечения исходной функции с ОХ. Подставьте полученное значение в производную функции и вычислите тангенс угла наклона касательной: tg a = F`(2) = 16.

При нахождении углового коэффициента в точке пересечения графика функции с осью ординат (ОY) выполните аналогичные действия. Только координату искомой точки х0 сразу следует принять равной нулю.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий