Что такое тангенс угла и как его найти
Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.
Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.
Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.
Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.
Тангенс угла
Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.
В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.
Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.
Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.
Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.
Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.
Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).
Тангенс — это отношение.
Итак, есть два определения:
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.
Тангенс – это отношение синуса к косинусу.
Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.
” alt=””>
Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan(α).
Как найти тангенс угла (формулы)
Первое свойство тангенса вытекает из его определения как отношения катетов.
Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому
Так как тангенс – это отношение катетов, то
Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.
Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.
Как найти тангенс по клеточкам
Учитывая первое определение, можно определить, как найти тангенс угла по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.
Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:
Из формулы тангенсов, записывающей кратко второе определение
и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.
Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится зависимость тангенса и косинуса:
Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (5)
Я Очень Люблю Правила, Теоремы, Формулы по Предмету «Математика», «Алгебра».
Прочитал статью и остался один главный вопрос, а собственно без вспомогательных таблиц найти угол В ГРАДУСАХ вообще возможно и есть ли у вас статья, где рассказыввается как это сделать? Спасибо.
Я ни разу не математик, но почему у вас сумма углов прямоугольного треугольника равна 90 градусов. А так все хорошо начиналось. Объясняете хорошо, но после таких ошибок у меня сомнения что информация верная.
Спасибо. Уточнил в тексте, что это сумма двух непрямых углов прямоугольного треугольника.
Пишу стихи. Востребован тангенс для решения жизненных ситуаций поскольку состоит из тех же функций,как-то, касающийся,прилежащий, трогающий. Куда без них денешься.
Решение №2240 В треугольнике АВС угол С равен 90°, ВС = 15, АС = 3. Найдите tgВ.
В треугольнике АВС угол С равен 90°, ВС = 15, АС = 3. Найдите tgВ.
Источник: ОГЭ Ященко 2022 (36 вар)
Тангенс острого угла прямоугольного треугольника – это отношение противолежащего катета к прилежащему катету.
Ответ: 0,2.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 4
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время
В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.
Решение треугольников онлайн
С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.
Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:
- Три стороны треугольника.
- Две стороны треугольника и угол между ними.
- Две стороны и угол противостоящий к одному из этих сторон треугольника.
- Одна сторона и любые два угла.
Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.
Решение треугольника по трем сторонам
Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .
(1) |
(2) |
Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения
.
Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).
Решение. Из формул (1) и (2) находим:
И, наконец, находим угол C:
Решение треугольника по двум сторонам и углу между ними
Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.
Найдем сторону c используя теорему косинусов:
.
.
Далее, из формулы
.
. | (3) |
Далее из (3) с помощью калькулятора находим угол A.
Поскольку уже нам известны два угла то находим третий:
.
Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.
Решение. Иcпользуя теорму косинусов найдем сторону c:
,
Из формулы (3) найдем cosA:
.
Поскольку уже нам известны два угла то находим третий:
Решение треугольника по стороне и любым двум углам
Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.
Так как, уже известны два угла, то можно найти третий:
.
Далее, для находждения сторон b и c воспользуемся тероемой синусов:
Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.
Решение. Поскольку известны два угла, то легко можно найти третий угол С:
Найдем сторону b. Из теоремы синусов имеем:
Найдем сторону с. Из теоремы синусов имеем:
[spoiler title=”источники:”]
http://matworld.ru/geometry/reshenie-treugolnikov.php
[/spoiler]
Катетами прямоугольного треугольника называются те его стороны, которые образуют прямой угол. Каждый из катетов всегда меньше гипотенузы по значению, но в сумме они обязательно ее превосходят. Зная оба катета, можно найти не только третью сторону прямоугольного треугольника – гипотенузу, по теореме Пифагора, но и углы, находящиеся между катетами и гипотенузой. Для этого используется тригонометрическое отношение тангенса угла α, которое по определению равно отношению катета, противолежащего углу α, к катету прилежащему.
Делением катета, находящегося напротив угла, на катет, который является одной из сторон угла, получается значение тангенса, соответствующее определенной градусной мере. Краткая таблица основных значений тангенса находится внизу страницы, а полная таблица всех тангенсов расположена по ссылке.
Свойства
Тангенс угла tg(α) — есть отношение противолежащего катета a к прилежащему катету b.
Таблица тангенсов
Тангенс угла 0° градусов | 0 | 0.000 |
Тангенс угла 30° градусов | 1/√3 | 0.577 |
Тангенс угла 45° градусов | 1 | 1.000 |
Тангенс угла 60° градусов | √3 | 1.732 |
Тангенс угла 90° градусов | ∞ | ∞ |
Тангенсом угла в прямоугольном треугольнике называют отношение противолежащего катета к прилежащему.
Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.
Для простоты запоминания можно дать такое определение: тангенс угла — это отношение дальнего от рассматриваемого угла катета к ближнему катету.
В случае с рисунком, описанным выше: tgα=abtgalpha=frac{a}{b}
Тангенс можно найти напрямую пользуясь данной формулой, а можно и через тригонометрические тождества. Разберем подробнее задачи.
В прямоугольном треугольнике катеты равны 6 см6text{ см} и 8 см8text{ см}. Найдите тангенс угла, близлежащего к меньшей стороне.
Решение
a=8a=8
b=6b=6
tgα=ab=86≈1.33tgalpha=frac{a}{b}=frac{8}{6}approx1.33
Ответ
1.331.33
Формулу:
tgα=abtgalpha=frac{a}{b}
Можно записать в следующем виде:
tgα=sinαcosαtgalpha=frac{sinalpha}{cosalpha}
Проверим истинность данного выражения. Подставим вместо синуса и косинуса их определения:
tgα=sinαcosα=acbc=abtgalpha=frac{sinalpha}{cosalpha}=frac{frac{a}{c}}{frac{b}{c}}=frac{a}{b}
Получили первичное равенство, значит выражение для тангенса через отношение синуса к косинусу верно.
Решим задачу, пользуясь этой формулой.
По условию задачи известен косинус угла, равный 32frac{sqrt{3}}{2} и синус того же угла, равный 12frac{1}{2}. Найдите тангенс данного угла.
Решение
cosα=32cosalpha=frac{sqrt{3}}{2}
sinα=12sinalpha=frac{1}{2}
tgα=sinαcosα=1232=13tgalpha=frac{sinalpha}{cosalpha}=frac{frac{1}{2}}{frac{sqrt{3}}{2}}=frac{1}{sqrt{3}}
Ответ
13frac{1}{sqrt{3}}
Еще одно тождество помогает решить задачи, связанные с тангенсом:
1+tg2α=1cos2α1+tg^2alpha=frac{1}{cos^2alpha}
Оно появляется путем деление каждого слагаемого основного тождества тригонометрии на квадрат косинуса.
Известен квадрат косинуса угла в прямоугольном треугольнике, равный 0.80.8. Нужно найти тангенс этого угла.
Решение
cos2α=0.8cos^2alpha=0.8
1+tg2α=1cos2α1+tg^2alpha=frac{1}{cos^2alpha}
1+tg2α=10.81+tg^2alpha=frac{1}{0.8}
1+tg2α=1.251+tg^2alpha=1.25
tg2α=0.25tg^2alpha=0.25
tgα=0.25tgalpha=sqrt{0.25}
tgα=0.5tgalpha=0.5
Ответ
0.50.5
У вас есть трудности с вычислением тангенса? Можете заказать задачу по математике у наших экспертов!
Тест по теме “Вычисление тангенса”
Что такое тангенс угла и как его найти
Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.
Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.
Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.
Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.
Тангенс угла
Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.
В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.
Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.
Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.
Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.
Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.
Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).
Тангенс — это отношение…
Итак, есть два определения:
-
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.
-
Тангенс – это отношение синуса к косинусу.
Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.
Приняты обозначения:
Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan(α).
Как найти тангенс угла (формулы)
Первое свойство тангенса вытекает из его определения как отношения катетов.
Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому
Так как тангенс – это отношение катетов, то
Получается, что
Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.
В частности,
Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.
Как найти тангенс по клеточкам
Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.
Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:
Из формулы тангенсов, записывающей кратко второе определение
и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.
Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится его зависимость от косинуса:
Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:
Как найти тангенс угла
Тригонометрия – тема, которую многие обходят стороной. Несмотря на это, если найти к ней правильный подход она станет очень интересной для вас. Тригонометрические формулы, в том числе и формулы для нахождения тангенса, используются во многих сферах реальной жизни. Данная статья расскажет о способах нахождения тангенса угла и приведет примеры применения данной величины в жизни. Это даст вам мотивацию на пути изучения данной темы.
Несмотря на мнение, которые бытует среди большинства школьников, тригонометрия достаточно часто применяется в жизни. Наглядный пример практического применения даст вам стимул не лениться. Вот несколько сфер деятельности где используются тригонометрические вычисления, в том числе и нахождение тангенса угла:
- Экономика.
- Астрономия.
- Авиация.
- Инженерия.
Итак, ниже будут приведены способы нахождения tg.
2
Как найти tg угла
Нахождение тангенса угла достаточно просто. Вы можете изучить данную тему и просто вызубрить правила, но все это может вылететь из головы на экзамене. Поэтому стоит подходить к данному вопросу осмысленно. Основные формулы для запоминания:
- tg0° = 0
- tg30° = 1/√3
- tg45° = 1
- tg60° = √3
- tg90° = ∞ (бесконечность/неопределенно)
Обратите внимание, что величины идут по возрастанию: чем больше угол – тем больше значение тангенса. Соответственно, при градусном значении угла в 0° мы получим 0. При значении в тридцать градусов – единица поделенная на корень из трех и т.д., пока мы не достигнем отметки в 90°. При нем величина тангенса равна бесконечности или неопределенности (исходя из конкретной ситуации).
Данные выражения вытекают из правила нахождения тангенса через прямоугольный треугольник. Так, тангенс угла A (tgA) равен соотношению противолежащего катета к прилежащему. Представьте, что дан прямоугольный треугольник, в котором известны все стороны, но не известны углу. По решению задачи требуется найти тангенс угла A. Величина стороны, которая лежит напротив угла – 1, а прилежащего катета – √3. Их соотношение дает 1/√3. Мы уже знаем, что величина угла при данном показателе равна 30 градусам. Соответственно, угол A = 30°.
В прямоугольном треугольнике у прямоугольного угла оба тангенса – прилежащие. Противолежащая сторона данного угла – гипотенуза. Именно потому, что мы не можем разделить два катета друг на друга (нарушится условие нахождения), тангенс 90° в данном случае не существует.
Помимо всего этого, часто приходится находить тангенс тупого угла. Обычно в задачах встречаются тупые углы с величиной в 120 или 150 градусов. Формула нахождения тангенса тупого угла выглядит следующим образом: tg(180-a) = tga.
К примеры, нам необходимо найти тангенс 120°. Необходимо задать себе следующий вопрос: сколько нужно отнять от 180, чтобы получить 120? Однозначно, 60°. Отсюда следует, что тангенс 120° и тангенс 60° равны друг другу и tg120° = √3. По такой же логике можно найти тангенс в 150 и 180 градусов. Их значения будут соответственно равны 1/√3 и 0. Величины тангенсов других углов приведены в тригонометрической таблицы, но используются они крайне редко.
3
Как найти tg угла онлайн
Существует много онлайн ресурсов для нахождения тангенса угла. Одним из таких является сайт FXYZ. Перейдите по ссылке. Перед вами выйдет страница, где будут приведены основные формулы, связанные с тангенсом, а также калькулятор. Пользоваться калькулятором достаточно просто. Необходимо ввести соответствующие и калькулятор вычислит ответ. Этот несложный алгоритм поможет вам в случае, если вы что-то забыли. На данном сайте есть два калькулятора. Один – для нахождения величины тангенса исходя из длин катетов треугольника, а второй исходя из величины угла. Используйте тот вычислитель, который требует задача.
Как вы могли заметить, нахождения тангенса и других тригонометрических показателей очень часто применяется в реальной жизни, а находить эти значения совсем несложно. Если вы поймете суть нахождения, то что-либо зазубривать вам не придется – вы сами сможете дойти до правильного ответа. Если все-таки что-то не получается, воспользуйтесь калькулятором, но не злоупотребляйте. На экзамене, зачете или школьной контрольной работе такой возможности вам никто не предоставит. Более того, если вы поступите на факультет, где изучается тригонометрия высшей математики, без базовых знаний вам придется серьезно попотеть чтобы не срезаться.