Как найти тангенс угла в минутах

Тангенс угла. Таблица тангенсов.

Тангенс угла через градусы, минуты и секунды

Тангенс угла через десятичную запись угла

Определение тангенса

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

tg(α) = sin(α)/cos(α)

tg(α) = 1/ctg(α)

Таблица тангенсов в радианах

tg(0°) = 0tg(π/12) = tg(15°) = 0.2679491924tg(π/6) = tg(30°) = 0.5773502692tg(π/4) = tg(45°) = 1tg(π/3) = tg(60°) = 1.732050808tg(5π/12) = tg(75°) = 3.732050808tg(π/2) = tg(90°) = ∞tg(7π/12) = tg(105°) = -3.732050808tg(2π/3) = tg(120°) = -1.732050808tg(3π/4) = tg(135°) = -1tg(5π/6) = tg(150°) = -0.5773502692tg(11π/12) = tg(165°) = -0.2679491924tg(π) = tg(180°) = 0tg(13π/12) = tg(195°) = 0.2679491924tg(7π/6) = tg(210°) = 0.5773502692tg(5π/4) = tg(225°) = 1tg(4π/3) = tg(240°) = 1.732050808tg(17π/12) = tg(255°) = 3.732050808tg(3π/2) = tg(270°) = ∞tg(19π/12) = tg(285°) = -3.732050808tg(5π/3) = tg(300°) = -1.732050808tg(7π/4) = tg(315°) = -1tg(11π/6) = tg(330°) = -0.5773502692tg(23π/12) = tg(345°) = -0.2679491924

Таблица Брадиса тангенсы

tg(0) = 0 tg(120) = -1.732050808 tg(240) = 1.732050808
tg(1) = 0.01745506493 tg(121) = -1.664279482 tg(241) = 1.804047755
tg(2) = 0.03492076949 tg(122) = -1.600334529 tg(242) = 1.880726465
tg(3) = 0.05240777928 tg(123) = -1.539864964 tg(243) = 1.962610506
tg(4) = 0.06992681194 tg(124) = -1.482560969 tg(244) = 2.050303842
tg(5) = 0.08748866353 tg(125) = -1.428148007 tg(245) = 2.144506921
tg(6) = 0.1051042353 tg(126) = -1.37638192 tg(246) = 2.246036774
tg(7) = 0.1227845609 tg(127) = -1.327044822 tg(247) = 2.355852366
tg(8) = 0.1405408347 tg(128) = -1.279941632 tg(248) = 2.475086853
tg(9) = 0.1583844403 tg(129) = -1.234897157 tg(249) = 2.605089065
tg(10) = 0.1763269807 tg(130) = -1.191753593 tg(250) = 2.747477419
tg(11) = 0.1943803091 tg(131) = -1.150368407 tg(251) = 2.904210878
tg(12) = 0.2125565617 tg(132) = -1.110612515 tg(252) = 3.077683537
tg(13) = 0.2308681911 tg(133) = -1.07236871 tg(253) = 3.270852618
tg(14) = 0.2493280028 tg(134) = -1.035530314 tg(254) = 3.487414444
tg(15) = 0.2679491924 tg(135) = -1 tg(255) = 3.732050808
tg(16) = 0.2867453858 tg(136) = -0.9656887748 tg(256) = 4.010780934
tg(17) = 0.3057306815 tg(137) = -0.9325150861 tg(257) = 4.331475874
tg(18) = 0.3249196962 tg(138) = -0.9004040443 tg(258) = 4.704630109
tg(19) = 0.3443276133 tg(139) = -0.8692867378 tg(259) = 5.144554016
tg(20) = 0.3639702343 tg(140) = -0.8390996312 tg(260) = 5.67128182
tg(21) = 0.383864035 tg(141) = -0.8097840332 tg(261) = 6.313751515
tg(22) = 0.4040262258 tg(142) = -0.7812856265 tg(262) = 7.115369722
tg(23) = 0.4244748162 tg(143) = -0.7535540501 tg(263) = 8.144346428
tg(24) = 0.4452286853 tg(144) = -0.726542528 tg(264) = 9.514364454
tg(25) = 0.4663076582 tg(145) = -0.7002075382 tg(265) = 11.4300523
tg(26) = 0.4877325886 tg(146) = -0.6745085168 tg(266) = 14.30066626
tg(27) = 0.5095254495 tg(147) = -0.6494075932 tg(267) = 19.08113669
tg(28) = 0.5317094317 tg(148) = -0.6248693519 tg(268) = 28.63625328
tg(29) = 0.5543090515 tg(149) = -0.600860619 tg(269) = 57.28996163
tg(30) = 0.5773502692 tg(150) = -0.5773502692 tg(270) = ∞
tg(31) = 0.600860619 tg(151) = -0.5543090515 tg(271) = -57.28996163
tg(32) = 0.6248693519 tg(152) = -0.5317094317 tg(272) = -28.63625328
tg(33) = 0.6494075932 tg(153) = -0.5095254495 tg(273) = -19.08113669
tg(34) = 0.6745085168 tg(154) = -0.4877325886 tg(274) = -14.30066626
tg(35) = 0.7002075382 tg(155) = -0.4663076582 tg(275) = -11.4300523
tg(36) = 0.726542528 tg(156) = -0.4452286853 tg(276) = -9.514364454
tg(37) = 0.7535540501 tg(157) = -0.4244748162 tg(277) = -8.144346428
tg(38) = 0.7812856265 tg(158) = -0.4040262258 tg(278) = -7.115369722
tg(39) = 0.8097840332 tg(159) = -0.383864035 tg(279) = -6.313751515
tg(40) = 0.8390996312 tg(160) = -0.3639702343 tg(280) = -5.67128182
tg(41) = 0.8692867378 tg(161) = -0.3443276133 tg(281) = -5.144554016
tg(42) = 0.9004040443 tg(162) = -0.3249196962 tg(282) = -4.704630109
tg(43) = 0.9325150861 tg(163) = -0.3057306815 tg(283) = -4.331475874
tg(44) = 0.9656887748 tg(164) = -0.2867453858 tg(284) = -4.010780934
tg(45) = 1 tg(165) = -0.2679491924 tg(285) = -3.732050808
tg(46) = 1.035530314 tg(166) = -0.2493280028 tg(286) = -3.487414444
tg(47) = 1.07236871 tg(167) = -0.2308681911 tg(287) = -3.270852618
tg(48) = 1.110612515 tg(168) = -0.2125565617 tg(288) = -3.077683537
tg(49) = 1.150368407 tg(169) = -0.1943803091 tg(289) = -2.904210878
tg(50) = 1.191753593 tg(170) = -0.1763269807 tg(290) = -2.747477419
tg(51) = 1.234897157 tg(171) = -0.1583844403 tg(291) = -2.605089065
tg(52) = 1.279941632 tg(172) = -0.1405408347 tg(292) = -2.475086853
tg(53) = 1.327044822 tg(173) = -0.1227845609 tg(293) = -2.355852366
tg(54) = 1.37638192 tg(174) = -0.1051042353 tg(294) = -2.246036774
tg(55) = 1.428148007 tg(175) = -0.08748866353 tg(295) = -2.144506921
tg(56) = 1.482560969 tg(176) = -0.06992681194 tg(296) = -2.050303842
tg(57) = 1.539864964 tg(177) = -0.05240777928 tg(297) = -1.962610506
tg(58) = 1.600334529 tg(178) = -0.03492076949 tg(298) = -1.880726465
tg(59) = 1.664279482 tg(179) = -0.01745506493 tg(299) = -1.804047755
tg(60) = 1.732050808 tg(180) = 0 tg(300) = -1.732050808
tg(61) = 1.804047755 tg(181) = 0.01745506493 tg(301) = -1.664279482
tg(62) = 1.880726465 tg(182) = 0.03492076949 tg(302) = -1.600334529
tg(63) = 1.962610506 tg(183) = 0.05240777928 tg(303) = -1.539864964
tg(64) = 2.050303842 tg(184) = 0.06992681194 tg(304) = -1.482560969
tg(65) = 2.144506921 tg(185) = 0.08748866353 tg(305) = -1.428148007
tg(66) = 2.246036774 tg(186) = 0.1051042353 tg(306) = -1.37638192
tg(67) = 2.355852366 tg(187) = 0.1227845609 tg(307) = -1.327044822
tg(68) = 2.475086853 tg(188) = 0.1405408347 tg(308) = -1.279941632
tg(69) = 2.605089065 tg(189) = 0.1583844403 tg(309) = -1.234897157
tg(70) = 2.747477419 tg(190) = 0.1763269807 tg(310) = -1.191753593
tg(71) = 2.904210878 tg(191) = 0.1943803091 tg(311) = -1.150368407
tg(72) = 3.077683537 tg(192) = 0.2125565617 tg(312) = -1.110612515
tg(73) = 3.270852618 tg(193) = 0.2308681911 tg(313) = -1.07236871
tg(74) = 3.487414444 tg(194) = 0.2493280028 tg(314) = -1.035530314
tg(75) = 3.732050808 tg(195) = 0.2679491924 tg(315) = -1
tg(76) = 4.010780934 tg(196) = 0.2867453858 tg(316) = -0.9656887748
tg(77) = 4.331475874 tg(197) = 0.3057306815 tg(317) = -0.9325150861
tg(78) = 4.704630109 tg(198) = 0.3249196962 tg(318) = -0.9004040443
tg(79) = 5.144554016 tg(199) = 0.3443276133 tg(319) = -0.8692867378
tg(80) = 5.67128182 tg(200) = 0.3639702343 tg(320) = -0.8390996312
tg(81) = 6.313751515 tg(201) = 0.383864035 tg(321) = -0.8097840332
tg(82) = 7.115369722 tg(202) = 0.4040262258 tg(322) = -0.7812856265
tg(83) = 8.144346428 tg(203) = 0.4244748162 tg(323) = -0.7535540501
tg(84) = 9.514364454 tg(204) = 0.4452286853 tg(324) = -0.726542528
tg(85) = 11.4300523 tg(205) = 0.4663076582 tg(325) = -0.7002075382
tg(86) = 14.30066626 tg(206) = 0.4877325886 tg(326) = -0.6745085168
tg(87) = 19.08113669 tg(207) = 0.5095254495 tg(327) = -0.6494075932
tg(88) = 28.63625328 tg(208) = 0.5317094317 tg(328) = -0.6248693519
tg(89) = 57.28996163 tg(209) = 0.5543090515 tg(329) = -0.600860619
tg(90) = ∞ tg(210) = 0.5773502692 tg(330) = -0.5773502692
tg(91) = -57.28996163 tg(211) = 0.600860619 tg(331) = -0.5543090515
tg(92) = -28.63625328 tg(212) = 0.6248693519 tg(332) = -0.5317094317
tg(93) = -19.08113669 tg(213) = 0.6494075932 tg(333) = -0.5095254495
tg(94) = -14.30066626 tg(214) = 0.6745085168 tg(334) = -0.4877325886
tg(95) = -11.4300523 tg(215) = 0.7002075382 tg(335) = -0.4663076582
tg(96) = -9.514364454 tg(216) = 0.726542528 tg(336) = -0.4452286853
tg(97) = -8.144346428 tg(217) = 0.7535540501 tg(337) = -0.4244748162
tg(98) = -7.115369722 tg(218) = 0.7812856265 tg(338) = -0.4040262258
tg(99) = -6.313751515 tg(219) = 0.8097840332 tg(339) = -0.383864035
tg(100) = -5.67128182 tg(220) = 0.8390996312 tg(340) = -0.3639702343
tg(101) = -5.144554016 tg(221) = 0.8692867378 tg(341) = -0.3443276133
tg(102) = -4.704630109 tg(222) = 0.9004040443 tg(342) = -0.3249196962
tg(103) = -4.331475874 tg(223) = 0.9325150861 tg(343) = -0.3057306815
tg(104) = -4.010780934 tg(224) = 0.9656887748 tg(344) = -0.2867453858
tg(105) = -3.732050808 tg(225) = 1 tg(345) = -0.2679491924
tg(106) = -3.487414444 tg(226) = 1.035530314 tg(346) = -0.2493280028
tg(107) = -3.270852618 tg(227) = 1.07236871 tg(347) = -0.2308681911
tg(108) = -3.077683537 tg(228) = 1.110612515 tg(348) = -0.2125565617
tg(109) = -2.904210878 tg(229) = 1.150368407 tg(349) = -0.1943803091
tg(110) = -2.747477419 tg(230) = 1.191753593 tg(350) = -0.1763269807
tg(111) = -2.605089065 tg(231) = 1.234897157 tg(351) = -0.1583844403
tg(112) = -2.475086853 tg(232) = 1.279941632 tg(352) = -0.1405408347
tg(113) = -2.355852366 tg(233) = 1.327044822 tg(353) = -0.1227845609
tg(114) = -2.246036774 tg(234) = 1.37638192 tg(354) = -0.1051042353
tg(115) = -2.144506921 tg(235) = 1.428148007 tg(355) = -0.08748866353
tg(116) = -2.050303842 tg(236) = 1.482560969 tg(356) = -0.06992681194
tg(117) = -1.962610506 tg(237) = 1.539864964 tg(357) = -0.05240777928
tg(118) = -1.880726465 tg(238) = 1.600334529 tg(358) = -0.03492076949
tg(119) = -1.804047755 tg(239) = 1.664279482 tg(359) = -0.01745506493

Похожие калькуляторы

Тангенс угла tg(A)

Тангенс угла tg(A) — есть отношение
противолежащего катета a к
прилежащему катету b

[ tg(A) = frac{a}{b} ]

Тангенс угла — tg(A), таблица

0°
Тангенс угла 0 градусов

$ tg(0°) = tg(0) = 0 $
0.000
30°
Тангенс угла 30 градусов

$ tg(30°) = tgBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{1}{sqrt{3}}normalsize $
0.577
45°
Тангенс угла 45 градусов

$ tg(45°) = tgBig(Largefrac{pi}{4}normalsizeBig) = 1 $
1.000
60°
Тангенс угла 60 градусов

$ tg(60°) = tgBig(Largefrac{pi}{3}normalsizeBig) = sqrt{3} $
1.732
90°
Тангенс угла 90 градусов

$ tg(90°) = tgBig(Largefrac{pi}{2}normalsizeBig) = infin $

Вычислить, найти тангенс угла tg(A) и угол, в прямоугольном треугольнике

Вычислить, найти тангенс угла tg(A) по углу A в градусах

Вычислить, найти тангенс угла tg(A) по углу A в радианах

Тангенс угла — tg(A)

стр. 224

Вы здесь

  • Таблица тангенсов

    Тангенс, как отношение катетов в прямоугольном треугольнике, представляет собой функцию которая выглядит как дуга окружности внутри данного треугольника с центром в вершине угла и прилежащим катетом в качестве радиуса.

    Значение тангенса показывает не только раскрытие угла α, но и насколько один катет больше другого. При тангенсе угла α, равном 1, катеты равны друг другу и треугольник считается равнобедренным. Значения всех тангенсов и соответствующих им углов можно найти в таблице, приведенной ниже.

Подтемы

Смотрите также

Определение значения синуса, косинуса, тангенса и котангенса

Определение

Тригонометрия — это техническая часть математики, в которой представлены особенности взаимосвязи между сторонами и углами треугольников.

Тригонометрические функции, является очень важной составляющей не только математики, но других технических наук.

Применяя основные формулы и законы тригонометрии при вычислении задач. Огромное значение имеют таблицы значений данных функций. Они существенно упрощают решение задач различной сложности.  

Процесс работы и расчета функций данного вида, очень непростой. Решение задач и уравнение, очень часто вызывают сложности. Поэтому, со временем, были созданы и разработаны несколько видов решений, чтобы облегчить жизнь математика и всем представителям технических наук. Преобразовывая тригонометрические формулы, необходимо руководствоваться следующими правилами:

  1. Нельзя продумывать весь процесс решения от начала до самого конца сразу. Нужно определиться с основными задачами и данными.
  2. Весь пример, подвергать упрощению или преобразования постепенно;
  3. Разрешается применять все преобразования и действия, связанные с алгеброй, а именно: вынести значение за пределы скобок. сократить значение и многое другое:

[ sin x=frac{a}{c} ; cos x=frac{b}{c} ; operatorname{tg} x=frac{sin x}{cos x} ; operatorname{ctg}=frac{1}{operatorname{tg} x}=frac{sin x}{cos x} ]

Зная основные определения тригонометрических функций, можно определить их угловые значения. Для углов от нуля до трехсот шестидесяти градусов, вычислим данные и запишем их в виде таблицы.

Значения вышеупомянутых математических функций, в частности в разделе геометрия, вычисляются как соотношения длин прямоугольного треугольника.

Углы геометрической фигуры имеют соответствующие значения в градусах. Используя основные определения математики, а именно тригонометрии можно определить нужные нам данные.

Определим основные значения

1.синуса (sin):

Основные значения синуса

2. косинуса (cos):

Основные значения косинуса

3. тангенса(tg):

Основные значения тангенса

[ operatorname{tg} 90^{circ}, 270^{circ} ]

Данные выше угловые значения, не определяются, согласно основным законам геометрии и математики.

4. котангенса (ctg)

[ operatorname{ctg} 0^{circ}, 180^{circ}, 360^{circ} ]

Для перечисленных выше угловых значений по законам математики и всех технических наук в целом, значения не определяются

Основные значения котангенса

Мы произвели основные расчеты. Определили результаты угловых значений.

Мы определились с основными угловыми значениями функций. Следующим шагом будет их сведение в таблицу.

Таблица1.  Основные значения функций косинус, синус, тангенс и котангенс, для угловых значений и радиан

Основные значения функций 1
Основные значения функций 2
Продолжение таблицы 1
Основные значения функций 3
Продолжение таблицы 1

Вычисленные значения принято сводить в таблицу, показанную выше. Особенно рекомендуются, ее заучивать наизусть, для более лучшего восприятия. Рассмотрим, также значения для нестандартных угловых значений и сведем их в таблицу.

Таблица 2. Нестандартные углы функций косинус, синус, тангенс и котангенс в тригонометрии

Нестандартные углы функций 1

В данной таблице приведены значения углов, которые считаются нестандартными, также таблица необходима, чтобы облегчить жизнь, в первую очередь, школьной программе.

Например:

Пример 1

Значение заданной функции берется из таблицы. Оно равняется данному, которое попадает на пересечение столбца и строки.

Пример №1.  Необходимо определить чему равен [operatorname{tg} 300]

Берем левый столбец с наименованием функции, находим в верхней строке нужный градус, и на пересечении определяем нужный ответ.

Следовательно:[operatorname{tg} 300^{circ}=-sqrt{3}].

Пример №2. Необходимо определить чему равен [cos frac{5 pi}{3}].

Берем левый столбец с наименованием функции, находим в нижней строке значение радиан, поднимается на верх таблицы и определяем градусы.

[text { Следовательно: } operatorname{tg} 300^{circ}=frac{1}{2} .]

Пример №3. Необходимо определить чему равен [cos frac{11 pi}{6}].

Проводим аналогичные действия, как в предыдущих двух примерах и определяем угловое значение.

[text { Следовательно } cos =frac{sqrt{3}}{2}=330^{circ}.]

Таблица Брадиса для решения основных задач по тригонометрии

Первое упоминание о таблице, датируется 20-ми годами прошлого века. Основоположником, является советский ученый математик, и талантливый педагог Владимир Брадис. Созданная Брадисом таблица, позволяет определить значения тригонометрических функций, с большой точностью, а именно до четырех знаков. На практике решений, обычно требуется точность в три-четыре знака, после запятой, но не более. Для расчета, с такой точностью, значение синуса, в формуле достаточно трех известных слагаемых, а иногда и двух.  Произвести простых четыре перемножения.  Дважды разделить, умножить и отнять.

Если производить действия инженерным калькулятором, становится понятно, что все вышеперечисленные действия, уже запрограммированы в его микросхеме.  В таблице представлены следующие данные:

  • число в квадратной и кубической степени;
  • числа квадратных корней;
  • логарифмические функции и значение;
  • функции тригонометрии, представленный в градусах и радианах;
  • обратные функции.

Можно определить точность углового значения до минуты. Существуют также таблицы, где есть семизначные значения.

Для того чтобы составить таблицы следует пользовался методом разложения функций (либо метод разложения на степень в ряд)

Примеры решения задач

Пример 1:

Необходимо определить синус угла 18 ° 44 ‘.

По таблице значений определяем данные синуса 18 ° 42 ‘. Далее используем поправку, равную две минуты. Плюсуем ее и заданные минуты: 18 ° 44 ‘ − 18 ° 42 ‘ = 2 ‘   

Нужное значение равняется —  0,0006.

Узнав все необходимые значения, находим окончательное решение:

 sin   18 ° 44 ‘ = 0. 3208 + 0. 0006 = 0. 3214

Пример 2:

Условие задачи, заключается в необходимости вычислить угол функции синус 76 ° 12. В таблице находим столбец с название угол и ищем 76 градусов и строку со значением 12. Далее, исходя из найденных ячеек, находим значение угла — 0,2284.

Ответ: синус 76 ° 12 =0,2284.

Пример 3:

Нужно найти значение синус 16 градусов 32 минут.  Для того чтобы посчитать значение 16 ° 32 минуты. В таблице находим значение нужного угла, которое ближе всего по значению подходит к заданному. Это sin16 30 =0.2840. Так как 16 32=16 30+2, то в столбце, выбираем нужную поправку, которая находится на пересечении со строкой, со значением 16 градусов стоит 0,0006, то есть

 sin   16 ° 32 ‘ = 0. 3208 + 0. 0006 = 0. 3214

Пример 4:

Нужно найти значение синус 22 градусов 10 минут. Чтобы посчитать значение  22 ° 12,  в таблице найдем значение необходимого угла, наиболее подходящее заданному. Это sin16 30 =0.3778. Так как  22 ° 10= 22 ° 12+2, то тогда выбираем поправку равную двум  и видим, что нужный нам градус равный  22 ° имеет значение 0,0005. Далее записываем:

 sin   22 ° 10 ‘ = (22 12-2) =0. 3778 + 0. 0005 = 0. 3773

Пример 5:

Нужно найти значение косинус 50 градусов 33 минут.  Для того, чтобы посчитать значение 53 31 в таблице найдем значение нужного угла, наиболее близкого к искомому со знаком минус. Это косинус 50 33 =0.6361 Так как 50 33=50 30+3, то в нужном столбце выбираем значение 3. Далее находим значение 0,0007, и записываем следующее уравнение:

 косинус 50 ° 33 ‘ = (50 30-3) =0. 6361 +(- 0. 0007) = 0. 6454

Пример 6:

Нужно найти tg 35 градусов 6 минут.  В таблице значений функции, в столбце найдем значение 35 градусов, а в строке 6 минут. Определяем нужное значение по таблице равное 0,7028.

Пример 7:

Нужно найти значение котангенс 13 градусов 42 минут.  Снова применим таблицу значения функций и найдем значение 13 градусов, а в строке 40 минут и поправку равную 2.  Находим искомое значение 4,102.

Пример 8:

Нужно найти значение косинус для 49° 33 минут.  

Для того чтобы вычислить  значение 49° 31.  В таблице найдем значение угла, наиболее близкого по значению к заданному, но только с отрицательным знаком минус. Это косинус 49° 31/ =0.6361 Так как 49° 31/=50 30+3, из этого следует, что поправка  равняется  трем. Значение  49 градусов равно 0,0007, поэтому: косинус 49° 33 ‘ = ( 49° 31-3) =0 . 6361 +(- 0 . 0007) = 0,6454

Нет времени решать самому?

Наши эксперты помогут!

Основные способы, которые помогут заполнить таблицу функций

1 Действие: Необходимо изобразить простую таблицу, где будет несколько столбцов и строк, необходимых для заполнения данных. Следующая задача, состоит в том, что нужно пустые графы заполнить. Записываем в первом столбике значение математических функций, ранее нами изученных.

В начальной строке, должны отображаться самые часто используемые значения углов: от нуля до девяноста градусов и так далее.

Оставшиеся ячейки нужно оставить незаполненными, для следующих действий. Чтобы понять тригонометрию, нужно изучать не только основные функции. Стоит уделить внимание и таким функциях как: косеканс (cosec) и секанс (sec).

2. Действие: Заполняем пустые ячейки со значение синус. Берем выражение [frac{sqrt{x}}{2}] и подставляем числовые значения, то есть величины углов. они записаны в первом столбике. Далее применяя   [frac{sqrt{x}}{2}] можно вычислить данные для углов, которые нам необходимы. Вычисленные значения, записываются в таблицу.

Для наглядности все прописанные действия, можно разобрать на конкретном примере.

Например, мы заполняем ячейку sin 0 градусов. На месте неизвестного значения в выражении [frac{sqrt{x}}{2}] записываем значение угла.

Получаем следующую запись: [frac{sqrt{x}}{2}=frac{0}{2}=0]. Затем, проводим те же операции для заполнения оставшихся пустых строк.

[ frac{sqrt{1}}{2}=frac{1}{2} ; frac{sqrt{2}}{2}=frac{(sqrt{2 cdot 2})}{(2 cdot sqrt{2})}=frac{2}{2 cdot sqrt{2}}=frac{1}{sqrt{2}} ; frac{sqrt{3}}{2} frac{sqrt{4}}{2}=frac{2}{2}=1 ]

Необходимо первым делом заполнять неизвестные ячейки, для функции синус. Это значительно в будущем облегчит заполнение всей таблицы. Так как именно за данной функции и ее данных и завязана вся работы таблицы.

3. Действие: Продолжаем считать таблицу. для этого значения синуса, которые подсчитаны были ранее, переписываем для функции косинус. Только делаем это в порядке обратном значению синусу. Данная теория действительна, потому что sin x° = cos (90-x). Если в самой крайней ячейке синус, имеется  1(sin90°=1). То в первую строку значения косинус, перепишется это числовое значение, cos 0° = 1. Таким образом заканчиваем заполнение до конца.

4. Действие: Для определения тангенса. Необходимо произвести деление данных синуса на косинус. Так как тангенс равен данной функции. [operatorname{tg}=frac{sin }{cos }]. Выходим что искомое значение равно данному выражению.  Если [operatorname{tg} 45^{circ}=frac{sin }{cos }=frac{sqrt{1}}{2} / frac{sqrt{3}}{2}=frac{1}{sqrt{3}} .]

Аналогично поступаем и далее.

5. Действие: Для заполнения граф косеканс и секанс нужно 1/sin и 1/cos.

[text { Так как, } operatorname{cosec}=frac{1}{sin } . text { Например, } sin 40^{circ}=frac{1}{2}, text { поэтому } operatorname{cosec} 40^{circ}=frac{1}{frac{1}{2}}=2]

Действие 6: Оставшиеся функции тангенс и котангенс. также записываются обратно значениям. Если tg90 равняется ctg0, значение tg60 будет соответственно равен значению ctg 30 градусов.

[text { Таким же методом заполняются оставшиеся строки таблицы. Так } text { как } operatorname{ctg}=frac{1}{t g}, text { в свою очередь } operatorname{ctg}=frac{cos }{sin }]

Вычисление данных при помощи фигуры — прямоугольный треугольник

Для этого строится нужный треугольник заданным углом, который необходимо определить. Строится угол, точка и луч, которые выходят из данной точки под определенным углом. Соединяем лучи, прямой линией перпендикулярной, одному из лучей. В конечном итоге получаем фигуру, угол которой равняется заданному в задаче углу. В процессе вычисления, также задаются длины сторон. Поэтому трудней с построением не должно возникнуть.  

Вычисление при помощи длин сторон треугольника происходит следующим образом:

  • обозначается катет;
  • сторона возле угла;
  • сторона напротив угла с прямым значением.

Функции могут выражаться по-разному в отношении сторон. Например, нам нужно определим значение sin 45°. Поделим имеющуюся длину значения противолежащего катета на значение длины гипотенузы. Если заданные значения длины равны 4 и 6 соответственно. Тогда, составим следующее выражение и получим sin[45^{circ}=frac{4}{6}=0,67]

Для определения значений основных функций в математике, необходимо заучить наизусть определение основных понятий, связанный с данной темой.  

В процессе решения задачи, это придется применять постоянно.

Значения косеканса и секанса определяются в обратном порядке. Для этого необходимо знать какие стороны нужно делить для определения вышеперечисленных функций.

Косеканс находится [operatorname{cosec}=frac{1}{sin }] следовательно, нужно разделить гипотенузу на противолежащий катет. Секанс, наоборот к прилежащему катету [mathrm{sec}=frac{1}{cos }].

Например, для определения cosec 40°, если катет равен 5, а гипотенуза соответственно равна 8.  Нужно разделить 5/8 и получим ответ cosec 40° = 0,63.

При вычислениях всегда рекомендуется исключать значение под корнем в знаменателе, это наиболее облегчает процесс расчета.

Рассмотренная тема преобразования и расчета функций, является довольно громоздкой, на первый взгляд. Применяя для решения огромные формулы и функции можно растеряться и не сразу сообразить, как производить их расчет. Однако досконально рассмотрев и изучив каждый раздел, становится понятно, что все достаточно просто и громоздкие таблицы освоить можно быстро и легко.

Вычисление значений углов по окружности

Самый простой и понятный способ для вычисления углов и радиан.

Для этого вычерчиваем окружность с радиусом R. Он в свою очередь, равен единичному значению. Центр окружности равен центру системы координат. От положительной оси считаем углы, по часовой стрелке, выполняющей движении против хода. Точка, имеющая координаты 1;0 равняется угловому значению ноль. если координаты -1;0, тогда угол равен 90 градусов. Точка, находящаяся на окружности, соответствует углу от нуля до 360 градусов. Так как окружность является единичной, значения углов для синуса и косинуса находятся в пределах от -1 до 1:

Вычисление значений углов по окружности

Определяются знаки функций, также по окружности. если угловое значение более 360 градусов, делается два оборота по часовой стрелке и плюсуется еще дополнительно 12 минут.

[ cos (alpha+360 cdot n)=sin alpha ;] [ sin (alpha+360 cdot n)=sin alpha / ]

Значения тангенсов и котангенсов, можно вычислить аналогично, по окружности. Однако легче посчитать по формулам, уже известных данных.

[ operatorname{tg} alpha=frac{sin alpha}{cos alpha} ; operatorname{ctg} alpha=frac{cos alpha}{sin alpha} ]

Найти синус через косинус, тангенс, котангенс, секанс, косеканс угла


Онлайн калькулятор тригонометрических функций предназначен для того, чтобы быстро найти ответ на задачу, в которой нужно рассчитать, чему равен синус, косинус, тангенс онлайн.

Здесь также выполняется расчет котангенса, секанса, косеканса, версинуса, коверсинуса, гаверсинуса, экссеканса и экскосеканса. Единицы измерения – градусы, минуты, секунды. Ответ вычисляется после нажатия на кнопку “Решить”.

Пример задачи. Используем онлайн калькулятор синуса, косинуса, тангенса для того, чтобы найти синус и тангенс, зная косинус угла А в виде дроби Cos A = 1/3. В поле “тригонометрическая функция” указывается “cos”, “числитель” — число “1”, “знаменатель” — число “3”.
Решение синусов и тангенсов:
По таблице “Косинусы” находим значение угла A с градусами и минутами = 70,528779° = 70°32′.
Так как Sin2 + Cos2 = 1, то, используя тригонометрический калькулятор синусов онлайн:
1) значение синуса Sin A = √1 – (1/3)2 = √9/9 – 1/9 = √(9 – 1)/9 = √8/9 = 2,828427 / 3 = 0,942809;
2) значение тангенса tg A = Sin A / Cos A = (2,828427 / 3) • (3/1) = 8,485281/3 = 2,828427.

Пример задачи. Найти синус, тангенс через косинус угла А = Cos A = -0,5 с помощью онлайн калькулятора синусов, косинусов, тангенсов, котангенсов. В поле “тригонометрическая функция” указывается “cos”, “числитель” — число “- 0,5”.
Решение синусов и тангенсов:
По таблице “Косинусы” находим угол A в градусах = 120° = 120°0′.
Используем формулу основного тригонометрического тождества
Sin2 + Cos2 = 1. Далее требуется вычислить синус.
1) значение синуса Sin A = √1 – (-0,5)2 = √1 – 0,25 = √0,75 = 0,866025;
2) значение тангенса tg A = Sin A / Cos A = 0,866025 / -0,5 = -1,732051.

Пример задачи.
Используем калькулятор синусов и косинусов градусов, минут, секунд онлайн, чтобы найти значение синуса, косинуса, тангенса, котангенса угла A = 12°34’56” = 12 градусов 34 минуты 56 секунд.
Решение:
A = 12°34’56” = 12,582222°
Синус угла sin 12°34’56” = 0,2178404227.
Косинус угла cos 12°34’56” = 0,9759844015.
Тангенс угла tg 12°34’56” = sin 12°34’56” / cos 12°34’56” = 0,2232007218.
Котангенс угла ctg 12°34’56” = cos 12°34’56” / sin 12°34’56” = 4,4802722491.
Секанс sec 12°34’56” = 1 / cos 12°34’56” = 1,0246065402.
Косеканс cosec 12°34’56” = 1 / sin 12°34’56” = 4,5905162484.
Версинус versin 12°34’56” = 1 – cos 12°34’56” = 0,0240155994.

Коверсинус coversin 12°34’56” = 1 – sin 12°34’56” = 0,7821595773.
Гаверсинус haversin 12°34’56” = 0,0240155994 / 2 = 0,0120077997.
Экссеканс exsec 12°34’56” = 1,0246065402 – 1 = 0,0246065402.
Экскосеканс excsc 12°34’56” = 4,5905162484 – 1 = 3,5905162484.

Дано:
ΔABC – прямоугольный треугольник,
гипотенуза AB = c,
катет BC = a,
катет AC = b,

Таблица значений синуса угла

В геометрии синус угла A – отношение противолежащего катета “a” к гипотенузе “c”.

Математическая формула синуса. sin A = a/c

найти синус, косинус, тангенс онлайн калькулятор

Синус угла 0 градусов: sin 0° = sin 0 = 0

Синус угла 30 градусов: sin 30° = sin (π/6) = 1/2

Синус угла 45 градусов: sin 45° = sin (π/4) = √2/2

Синус угла 60 градусов: sin 60° = sin (π/3) = √3/2

Синус угла 90 градусов: sin 90° = sin (π/2) = 1

Синус угла 180 градусов: sin 180° = 0

Таблица косинуса угла

Косинус угла A – отношение прилежащего катета “b” к гипотенузе “c”.

Формула косинуса. cos A = b/c

Косинус угла 0 градусов: cos 0° = cos 0 = 1

Косинус угла 30 градусов: cos 30° = cos (π/6) = √3/2

Косинус угла 45 градусов: cos 45° = cos (π/4) = √2/2

Косинус угла 60 градусов: cos 60° = cos (π/3) = 1/2

Косинус угла 90 градусов: cos 90° = cos (π/2) = 0

Косинус угла 180 градусов: cos 180° = –1

Таблица тангенса угла

В тригонометрии тангенс угла A – отношение противолежащего катета “a” к прилежащему катету “b”.

Геометрическая формула тангенса. tg A = a/b

Тангенс угла 0 градусов: tg 0° = tg 0 = 0

Тангенс угла 30 градусов: tg 30° = tg (π/6) = √3/3

Тангенс угла 45 градусов: tg 45° = tg (π/4) = 1

Тангенс угла 60 градусов: tg 60° = tg (π/3) = √3

Тангенс угла 90 градусов: tg 90° = tg (π/2) = не определяется

Тангенс угла 180 градусов: tg 180° = 0

Котангенс угла

Котангенс угла A – отношение длины прилежащего катета “b” к противолежащему катету “a”.

Формула котангенса. ctg A = b/a

Секанс

Секанс угла A равен отношению гипотенузы “c” к длине прилежащего катета “b”.

Формула секанса. sec A = c/b

Косеканс

Косеканс угла A – отношение гипотенузы “c” к противолежащему катету “a”.

Формула косеканса. cosec A = c/a

Версинус

Формула версинуса. versin A = 1 — cos A.

Коверсинус

Коверсинус рассчитывается как coversin A = 1 — sin A.

Гаверсинус

Формула гаверсинуса. haversin A = (versin A)/2.

Экссеканс

Экссеканс вычисляется по формуле: exsec A = sec A — 1.

Экскосеканс

Формула экскосеканса. excsc A = cosec A — 1.

Добавить комментарий