Как найти тангенс угла в задании 18

Здравствуйте, дорогие читатели. В этом выпуске поговорим о задании, которое иногда доставляет неожиданные неприятности на экзамене. Задания довольно простые, но бывают промахи. Это задания, которые сделаны как бы на тетрадном листочке в клеточку. Итак, давайте начнем.

Задание №1. УГЛЫ

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №1

Найти тангенс угла АОB
Найти тангенс угла АОB

Запомните, чтобы найти тангенс острого угла на таких картинках, обязательно нужно достроить до прямоугольного треугольника.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Вспомним, что такое тангенс острого угла прямоугольного треугольника?

Определение тангенса острого угла:

Тангенсом острого угла прямоугольного треугольника, называется отношение противолежащего катета к прилежащему. Катет BF- противолежащий угла FОВ, OF – прилежащий к углу FOB.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №2

Фигуры на квадратной решетке. Задание №18 ОГЭ

Чтобы найти тангенс угла АОВ на этой картинке, нужно достроить до прямоугольного треугольника, и найти стороны этого треугольника.

1. Достроим до треугольника ОВН и докажем, что он прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

2. Для этого достроим на стороне ОН, ОВ и ВН прямоугольные треугольники ОСВ, ОНК и BDH. Докажем, что треугольник АВН прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Найдем гипотенузу ОВ прямоугольного треугольника ОСВ, гипотенузу ОН прямоугольного треугольника ОКН и гипотенузу ВН прямоугольного треугольника ВDH через теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Фигуры на квадратной решетке. Задание №18 ОГЭ
Фигуры на квадратной решетке. Задание №18 ОГЭ

Теперь докажем, что треугольник ОВН прямоугольный. Воспользуемся обратной теоремой Пифагора: если квадрат одной стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Так как равенство верно, то треугольник ОВН прямоугольный.

Теперь найдем тангенс угла АОВ

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задание №2 Расстояние

Фигуры на квадратной решетке. Задание №18 ОГЭ
Вычисление расстояния между точкой и отрезком
Вычисление расстояния между точкой и отрезком

Для выполнения этого задания, проведите отрезок ВС, найдите середину его и отметим точкой К. Проведите отрезок АК, который равен 4. Ответ 4

Задание №3 Площадь

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задача №1

Фигуры на квадратной решетке. Задание №18 ОГЭ

Задание простое, но есть ошибки по невнимательности.

Задача №2

а) Площадь треугольника и параллелограмма

Вычисление площади треугольника и параллелограмма
Вычисление площади треугольника и параллелограмма

Запомните! Площадь треугольника от площади параллелограмма отличается только тем, что площадь треугольника нужно делить на 2, а площадь параллелограмма нет.

б) Площадь трапеции. Чтобы найти площадь трапеции, нужно сложить основания трапеции, умножить на высоту и поделить на 2.

Вычисление площади трапеции
Вычисление площади трапеции

в) Площадь ромба равна половине произведения диагоналей.

Вычисление площади ромба
Вычисление площади ромба

Это не все типы заданий, что встречаются на экзамене. Продолжение следует.

Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Фигуры на квадратной решетке. Задание №18 ОГЭ

Всего: 40    1–20 | 21–40

Добавить в вариант

Тип 18 № 40

i

Найдите тангенс угла AOB, изображенного на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, в треугольнике, изображённом на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB. Размер клетки 1 × 1.


Найдите тангенс угла AOB.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс угла AOB


Найдите тангенс угла AOB, изображённого на рисунке.


Найдите тангенс AOB

Всего: 40    1–20 | 21–40

Обычно в задачах требуется найти тангенс именно острого угла, как, допустим, на этом примере:

Как найти тангенс угла по клеточкам огэ 18 задание

Для этого мы строим прямоугольный треугольник, проведя линию (перпендикуляр) BD:

Как найти тангенс угла по клеточкам огэ 18 задание

Далее вспоминаем определение тангенса, это отношение противолежащего катета к прилежащему.

То есть tg(BOA) = DB / DO.

Чтобы найти DO и DB достаточно будет посчитать количество клеточек.

DO = 2.

DB = 5.

Значит, tg(BOA) = 5 / 2 = 2,5.

Зная тангенс, мы можем легко найти и котангенс:

ctg(BOA) = 1 / tg(BOA) = 1 / 2,5 = 0,4.

_

А вот задача на нахождение тангенса угла по клеточкам немного другого плана (ищем тангенс угла AOB):

Как найти тангенс угла по клеточкам огэ 18 задание

Если соединить точки A и B, то угол ABO будет прямым.

Как найти тангенс угла по клеточкам огэ 18 задание

И тангенс можно вычислить как отношение BA к BO.

Как же нам их найти?

Как найти тангенс угла по клеточкам огэ 18 задание

И BO, и BA будут гипотенузами 2 совершенно равных прямоугольных треугольников (для наглядности я их выделил красным).

Длина катетов их равна 2 и 8, а квадрат гипотенузы, как известно, равен сумме квадратов катетов.

Таким образом, у нас получится следующее:

tg(BOA) = BA / BO = √(2² + 8²) / √(2² + 8²) = 1.

И нетрудно догадаться, что треугольник этот равнобедренный с равными углами BOA и BAO по 45 градусов.

Каталог заданий.
Углы


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задание 18 № 40

Найдите тангенс угла AOB, изображенного на рисунке.

Аналоги к заданию № 40: 348424 348519 352779 357581 369740 369808 Все

Источник: Демонстрационная версия ГИА—2013 по математике., Демонстрационная версия ГИА—2014 по математике.

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


2

Задание 18 № 311485

На квадратной сетке изображён угол  A. Найдите   тангенс A.

Источник: ГИА-2013. Математика. Тренировочная работа № 4.(1 вар.)

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


3

Задание 18 № 316348

Найдите тангенс угла, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 348734 349410 349506 349517 349574 349593 340982 … Все

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


4

Задание 18 № 316374

Найдите тангенс угла, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 348734 349410 349506 349517 349574 349593 340982 … Все

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


5

Задание 18 № 323618

Найдите тангенс угла AOB, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 348734 349410 349506 349517 349574 349593 340982 … Все

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

     О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2022

Найдите тангенс угла, изображённого на рисунке.

15г - 12

Решение задачи

В данном уроке рассматривается пример решения задачи на определение значения тригонометрических функций. Решением данной задача целесообразно будет воспользоваться при подготовке к ОГЭ.

Для решения задачи на заданном рисунке проводятся дополнительные построения: проводится прямая, совпадающая с одной из сторон заданного угла, а от другой стороны заданного угла на эту прямую опускается перпендикуляр. Для наглядности заданный угол обозначается Как найти тангенс угла по клеточкам огэ 18 задание, смежный с ним угол – Как найти тангенс угла по клеточкам огэ 18 задание. Анализируя рисунок, определяется, что верно равенство   и решение задачи сводится к определению Как найти тангенс угла по клеточкам огэ 18 задание. Согласно определению, тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему. Далее по рисунку определяется значение катетов образованного в результате построения треугольника. Таким образом, вычисляется значение Как найти тангенс угла по клеточкам огэ 18 задание и соответственно , что и является решением задачи.

Задание 18 в ОГЭ — это задачи на квадратной решётке, которые, в свою очередь, объединяют в себе очень много геометрического материала. Здесь и нахождение длин отрезков (медиан, биссектрис, средних линий, радиусов, расстояний до прямой), и вычисление площадей, и нахождение тригонометрических функций углов.

Рассмотрим задачи последнего типа. Стороны квадратных клеток равны 1
.

Задача 1. Найдите тангенс угла АОВ

Эта задача легко решится, если увидеть прямоугольный треугольник и вспомнить, что тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Опустим из точки В перпендикуляр ВН на сторону ОА.  

Из рисунка видно, что катет ВН = 4, а катет ОН = 5. Значит, 

Ответ: 0,8.

Теперь решим задачу посложней. 

Задача 2. Найдите тангенс угла АОВ.

Казалось бы, условие тоже, но посмотрите на расположение угла. Можно ли здесь увидеть прямоугольный треугольник? Можно и нужно.

Что мы знаем? Из любой точки к прямой можно провести перпендикуляр, и притом только один. Перпендикуляр — это кратчайшее расстояние от точки до прямой. 

Вполне достаточно.

Из точки В к прямой ОА можно провести отрезки (важно: проводить надо в узлы клеток).

Однако, только один из отрезков перпендикулярен прямой ОА. На рисунке он красного цвета. Уберём с чертежа ненужные элементы.

Перед нами треугольник ОВН. Но, чтобы не было никаких сомнений, проверим, будет ли он прямоугольным. Найдём каждую из сторон треугольника, используя теорему Пифагора.

Для этого достроим наш чертёж.

Используя рисунок, получим

По теореме, обратной теореме Пифагора, если для треугольника выполняется равенство  a² + b² = c², то треугольник прямоугольный.

В нашем случае,

Теперь ответим на вопрос задачи (не забыли ещё?).

Ответ: 1,5.

Эти две задачи показывают, что одинаковые условия не гарантируют ещё, что решения также будут один в один. В каждом случае нужно «нащупать» свой путь. Наверное, это самое трудное в этих задачах. 

Решите самостоятельно.

1. На квадратной сетке изображён угол  . Найдите  .

2. Найдите тангенс угла . Размер клетки 1 × 1.

Желаю вам успешной и плодотворной работы по подготовке к экзамену!

Это задание из ОГЭ по математике предлагает найти площади, углы, длины геометрических фигур, нарисованных на фоне в клетку. Задание 18 с кратким ответом, в ответ идет только число.

Реальные задания №18 по геометрии из банка ФИПИ

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=6/2=3.
Ответ: 3

AE8B22

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=6/4=1,5.
Ответ: 1,5

09C3B1

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=5/4=1,25.
Ответ: 1,25

739060

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=5/2=2,5.
Ответ: 2,5

0747AA

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=4/1=4.
Ответ: 4

9C09A9

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=4/5=0,8.
Ответ: 0,8

A1ECAA

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=3/5=0,6.
Ответ: 0,6

887E42

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=2/4=0,5.
Ответ: 0,5

201054

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=2/5=0,4.
Ответ: 0,4

E73651

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=1/5=0,2.
Ответ: 0,2

A601D0

Найдите тангенс угла AOB, изображённого на рисунке.

Решение:

Опустим перпендикуляр из точки B на прямую AO для получения прямоугольного треугольника. Тангенс угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:  tgAOB=1/4=0,25.
Ответ: 0,25

51BEC9

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 6*4=12
Ответ: 12

F519DD

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10*2=10
Ответ: 10

704DB1

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 6*8=24
Ответ: 24

2F4DA5

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 6*2=6
Ответ: 6

1F239C

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 8  * 4 = 16
Ответ: 16

33E327

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 12 * 6 = 36
Ответ: 36

0B92D0

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 8 * 2 = 8
Ответ: 8

3B5D8B

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10 * 4 = 20
Ответ: 20

CFCA33

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10 * 8 = 40
Ответ: 40

3B008A

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 10 * 6 = 30
Ответ: 30

8372E0

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 12 * 4 = 24
Ответ: 24

FFD1EE

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите площадь этого ромба.

Решение:

Площадь ромба равна половине произведения диагоналей. 1/2 * 12 * 2 = 12
Ответ: 12

E2A932

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 3

969F4E

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 5

AFB9A1

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 1

D234F7

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 2

68F679

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 4

9672D7

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 5

3F311F

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 6

C598DA

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 8

FCC29D

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 7

0DBF9B

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 6

B73FA9

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 1

78BDFE

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 7

CB1715

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 3

107F53

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Находим середину ВС, проводим к ней прямую от точки А, считаем клетки.
Ответ: 2

5B4C37

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до середины отрезка BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 4

FEDC09

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 6

C563EA

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 5

B2853A

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 4

FE13B1

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 2

C8BF73

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 5

A4B62F

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 2

DA3762

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 7

C576A6

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 1

9D880E

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 4

078B48

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 6

854014

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 3

B4DCCF

На клетчатой бумаге с размером клетки 1×1 отмечены три точки: A, B и C. Найдите расстояние от точки A до прямой BC.

Решение:

Проводим перпендикуляр от точки А к ВС, считаем клетки.
Ответ: 8

259D23

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 6. Длина средней линии равна половине длины стороны AC, следовательно, 3.
Ответ: 3

9C2804

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 10. Длина средней линии равна половине длины стороны AC, следовательно, 5.
Ответ: 5

BC4EBE

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 4. Длина средней линии равна половине длины стороны AC, следовательно, 2.
Ответ: 2

7ECBCE

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 8. Длина средней линии равна половине длины стороны AC, следовательно, 4.
Ответ: 4

D2D94B

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 8. Длина средней линии равна половине длины стороны AC, следовательно, 4.
Ответ: 4

8F5C52

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 4. Длина средней линии равна половине длины стороны AC, следовательно, 2.
Ответ: 2

686EFB

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 6. Длина средней линии равна половине длины стороны AC, следовательно, 3.
Ответ: 3

07C968

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 10. Длина средней линии равна половине длины стороны AC, следовательно, 5.
Ответ: 5

E3456A

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 6. Длина средней линии равна половине длины стороны AC, следовательно, 3.
Ответ: 3

794271

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 8. Длина средней линии равна половине длины стороны AC, следовательно, 4.
Ответ: 4

A1906B

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 4. Длина средней линии равна половине длины стороны AC, следовательно, 2.
Ответ: 2

E52B99

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AC.

Решение:

Из рисунка видно, что длина стороны AC равна 10. Длина средней линии равна половине длины стороны AC, следовательно, 5.
Ответ: 5

E331C7

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 6

F7FF65

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 8

AAC1BC

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 7

2BD44A

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 8

6DE9A6

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 4

39A91A

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 9

197283

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 5

2EA9C2

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 7

ED1F0E

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 9

10323E

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 10

ED4E1A

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 6

4FAEEC

На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.

Решение:

Катет – сторона, прилежащая к прямому углу. Посчитаем клетки в большем катете.
Ответ: 10

F8232E

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (1+7) : 2 = 4
Ответ: 4

351A72

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (6+10) : 2 = 8
Ответ: 8

5EFE19

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (4+8) : 2 = 6
Ответ: 6

C05266

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (2+10) : 2 = 6
Ответ: 6

CFD6D8

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (3+7) : 2 = 5
Ответ: 5

3BD771

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (2+8) : 2 = 5
Ответ: 5

869450

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (1+5) : 2 = 3
Ответ: 3

19D522

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (2+6) : 2 = 4
Ответ: 4

A28F9D

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (1+9) : 2 = 5
Ответ: 5

2EF821

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (3+9) : 2 = 6
Ответ: 6

45A5FF

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (5+9) : 2 = 7
Ответ: 7

7AAADC

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину её средней линии.

Решение:

Длина средней линии трапеции равна полусумме её оснований, т. е. (4+10) : 2 = 7
Ответ: 7

321F00

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

87C214

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 6

6CB64A

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 8

4801B0

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 12

DEA70E

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 8

6D0D8F

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 12

8D9098

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 8

90A16B

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

F3D7EA

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

35106F

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 10

1C594B

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 6

E4F439

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите длину его большей диагонали.

Решение:

Диагональ – прямая линия, соединяющая вершины двух углов, не прилежащих к одной стороне. Находим большую. Считаем клеточки.
Ответ: 12

657F97

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 6 * 3 = 9
Ответ: 9

E873D3

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 8 * 5 = 20
Ответ: 20

9E69AF

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 8 * 3 = 12
Ответ: 12

53C928

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 6 * 5 = 15
Ответ: 15

EE2C25

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 5 * 10 = 25
Ответ: 25

1B4EAF

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 8 * 9 = 36
Ответ: 36

94B40E

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 5 * 4 = 10
Ответ: 10

F50FF8

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 7 * 6 = 21
Ответ: 21

3A7F81

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 4 * 3 = 6
Ответ: 6

DFB4EA

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 7 * 8 = 28
Ответ: 28

7AEBD7

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 10 * 7 = 35
Ответ: 35

4718F7

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Решение:

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию
S = 1/2 * 7 * 2 = 14
Ответ: 14

0C5645

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (7+3) * 4= 20
Ответ: 20

695D77

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (4+8) * 7= 42
Ответ: 42

07B1AD

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (4+8) * 3 = 18
Ответ: 18

4774FE

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (5+9) * 2= 14
Ответ: 14

284762

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (5+9) * 4= 28
Ответ: 28

2916B2

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (3+7) * 5= 25
Ответ: 25

867701

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (5+9) * 5= 35
Ответ: 35

B5D99F

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (2+6) * 7= 28
Ответ: 28

B11571

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (4+8) * 6= 36
Ответ: 36

E46263

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (2+6) * 3= 12
Ответ: 12

283DE4

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (3+7) * 2= 10
Ответ: 10

383C46

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту
S = 1/2 * (3+7) * 6= 30
Ответ: 30

2E7B84

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 7 * 4 = 28
Ответ: 28

71E23E

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 2 = 10
Ответ: 10

3BD9B6

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 4 = 20
Ответ: 20

5C5046

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 6 * 3 = 18
Ответ: 18

566A4E

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 6 * 6 = 36
Ответ: 36

0275CC

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 3 * 7 = 21
Ответ: 21

E81F8D

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 7 = 35
Ответ: 35

2A59D7

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 7 * 2 = 14
Ответ: 14

5FC71A

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 6 * 5 = 30
Ответ: 30

257B6F

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 7 * 6 = 42
Ответ: 42

839354

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 4 * 3 = 12
Ответ: 12

C1A1AF

На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

Решение:

Площадь параллелограмма равна произведению основания на проведенную к нему высоту
S = 5 * 5 = 25
Ответ: 25

9B4AE0

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 14

11403B

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 8

CDF457

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 15

06B968

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 10

AFB70E

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 13

C4025D

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 16

E4CBB2

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 9

211628

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 17

5D3FCF

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 19

320729

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 18

C72856

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 12

BB2950

На клетчатой бумаге с размером клетки 1×1 изображена фигура. Найдите её площадь.

Решение:

Считаем клетки внутри фигуры.
Ответ: 11

F78C61

Задание 18 в ОГЭ – это задачи на квадратной решётке, которые, в свою очередь, объединяют в себе очень много геометрического материала. Здесь и нахождение длин отрезков (медиан, биссектрис, средних линий, радиусов, расстояний до прямой), и вычисление площадей, и нахождение тригонометрических функций углов.

Рассмотрим задачи последнего типа. Стороны квадратных клеток равны 1
.

Задача 1. Найдите тангенс угла АОВ

Эта задача легко решится, если увидеть прямоугольный треугольник и вспомнить, что тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Опустим из точки В перпендикуляр ВН на сторону ОА.  

Из рисунка видно, что катет ВН = 4, а катет ОН = 5. Значит, 

Ответ: 0,8.

Теперь решим задачу посложней. 

Задача 2. Найдите тангенс угла АОВ.

Казалось бы, условие тоже, но посмотрите на расположение угла. Можно ли здесь увидеть прямоугольный треугольник? Можно и нужно.

Что мы знаем? Из любой точки к прямой можно провести перпендикуляр, и притом только один. Перпендикуляр – это кратчайшее расстояние от точки до прямой. 

Вполне достаточно.

Из точки В к прямой ОА можно провести отрезки (важно: проводить надо в узлы клеток).

Однако, только один из отрезков перпендикулярен прямой ОА. На рисунке он красного цвета. Уберём с чертежа ненужные элементы.

Перед нами треугольник ОВН. Но, чтобы не было никаких сомнений, проверим, будет ли он прямоугольным. Найдём каждую из сторон треугольника, используя теорему Пифагора.

Для этого достроим наш чертёж.

Используя рисунок, получим

По теореме, обратной теореме Пифагора, если для треугольника выполняется равенство  a² + b² = c², то треугольник прямоугольный.

В нашем случае,

Теперь ответим на вопрос задачи (не забыли ещё?).

Ответ: 1,5.

Эти две задачи показывают, что одинаковые условия не гарантируют ещё, что решения также будут один в один. В каждом случае нужно “нащупать” свой путь. Наверное, это самое трудное в этих задачах. 

Решите самостоятельно.

1. На квадратной сетке изображён угол  . Найдите  .

2. Найдите тангенс угла . Размер клетки 1 × 1.

Желаю вам успешной и плодотворной работы по подготовке к экзамену!

Добавить комментарий