Каталог заданий.
Углы
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 18 № 40
i
Найдите тангенс угла AOB, изображенного на рисунке.
Аналоги к заданию № 40: 341331 349174 350958 … Все
Источники:
Демонстрационная версия ГИА—2013 по математике;
Демонстрационная версия ГИА—2014 по математике.
Решение
·
Помощь
2
Тип 18 № 311485
i
На квадратной сетке изображён угол A. Найдите
Источник: ГИА-2013. Математика. Тренировочная работа № 4.(1 вар.)
Решение
·
Помощь
3
Тип 18 № 316348
i
Найдите тангенс угла, изображённого на рисунке.
Аналоги к заданию № 316348: 316374 323618 348622 … Все
Решение
·
Помощь
4
Тип 18 № 316374
i
Найдите тангенс угла, изображённого на рисунке.
Аналоги к заданию № 316348: 316374 323618 348622 … Все
Решение
·
Помощь
5
Тип 18 № 323618
i
Найдите тангенс угла AOB, изображённого на рисунке.
Аналоги к заданию № 316348: 316374 323618 348622 … Все
Решение
·
Помощь
Пройти тестирование по этим заданиям
№8. Найдите тангенс угла AOB, изображенного на рисунке.
Решение:
Опустим перпендикуляр AH на сторону OB.
Рассмотрим прямоугольный △ A O H :
Тангенс угла – отношение противолежащего катета к прилежащему.
tg ∠ A O H = A H O H = 4 2 = 2
Ответ: 2
№9. Найдите тангенс угла A треугольника ABCб изображённого на рисунке.
Решение:
Тангенс угла – это отношение противолежащего катета к прилежащему.
tg ∠ B A C = B C A C = 2 5 = 0,4
Ответ: 0,4
№10. На рисунке изображена трапеция ABCD. Используя рисунок, найдите sin ∠ B A H .
Решение:
Рассмотрим прямоугольный △ A B H :
Синус угла – отношение противолежащего катета к гипотенузе.
sin ∠ A = B H A B
Найдем AB по теореме Пифагора:
A B 2 = A H 2 + B H 2
A B 2 = 3 2 + 4 2
A B 2 = 9 + 16 = 25
A B = ± 25 = [ − 5 не подходит 5 подходит
A B = 5
sin ∠ A = B H A B = 4 5 = 0,8
Ответ: 0,8
№11. На рисунке изображен ромб ABCD. Используя рисунок, найдите tg ∠ O B C .
Решение:
Тангенс угла – это отношение противолежащего катета к прилежащему.
tg ∠ O B C = O C B O = 3 4 = 0,75
Ответ: 0,75
№12. На рисунке изображена трапеция ABCD. Используя рисунок, найдите cos ∠ H B A .
Решение:
Рассмотрим прямоугольный △ A B H :
Косинус угла – отношение прилежащего катета к гипотенузе.
cos ∠ A B H = B H A B
Найдем A B по теореме Пифагора:
A B 2 = A H 2 + B H 2
A B 2 = 6 2 + 8 2
A B 2 = 36 + 64 = 100
A B = ± 100 = [ − 10 не подходит 10 подходит
A B = 10
cos ∠ A B H = B H A B = 8 10 = 0,8
Ответ: 0,8
№13. Найдите тангенс угла, изображенного на рисунке.
Решение:
tg β = tg ( 180 ° − α ) = − tg α
Рассмотрим прямоугольный △ B C H .
Тангенс угла – отношение противолежащего катета к прилежащему.
tg α = C H B H = 3 1
tg β = − tg α = − 3
Ответ: -3
№14. Найдите тангенс угла AOB.
Решение:
Опустим высоту BH на сторону OA.
Рассмотрим прямоугольный △ O B H :
tg ∠ O = B H O H
Найдем B H и O H по теореме Пифагора:
B H 2 = 2 2 + 8 2 = = 4 + 64 = 68
B H = ± 68 = ± 4 ⋅ 17 = ± 4 ⋅ 17 = ± 2 17 = [ − 2 17 не подходит 2 17 подходит
B H = 2 17
O H 2 = 1 2 + 4 2 = 1 + 16 = 17
O H = ± 17 = [ − 17 не подходит 17 подходит
O H = 17
tg ∠ O = B H O H = 2 17 17 = 2
Ответ: 2
Найдите тангенс угла ВОА изображенного на рисунке.
С решением
Мудрец
(10044),
закрыт
1 год назад
Сергей Янков
Просветленный
(48212)
1 год назад
Я так понимаю, что клетки тут 1 на 1. Если провести перпендикуляр из точки В, получится прямоугольный треугольник, для которого этот перпендикуляр будет катетом. Тангенс угла ВОА – это отношение этого катета ко второму, который равен 2, а данный катет – 4. 4/2 = 2
SeustМудрец (10044)
1 год назад
в ответах к подготовительному тесту пишет что ответ Г, но мне бы объяснение почему именно Г…
SeustМудрец (10044)
1 год назад
Хотя не факт что там не опечатка, ну ладно скорее всего правда 2
Здравствуйте, дорогие читатели. В этом выпуске поговорим о задании, которое иногда доставляет неожиданные неприятности на экзамене. Задания довольно простые, но бывают промахи. Это задания, которые сделаны как бы на тетрадном листочке в клеточку. Итак, давайте начнем.
Задание №1. УГЛЫ
Задача №1
Запомните, чтобы найти тангенс острого угла на таких картинках, обязательно нужно достроить до прямоугольного треугольника.
Вспомним, что такое тангенс острого угла прямоугольного треугольника?
Определение тангенса острого угла:
Тангенсом острого угла прямоугольного треугольника, называется отношение противолежащего катета к прилежащему. Катет BF- противолежащий угла FОВ, OF – прилежащий к углу FOB.
Задача №2
Чтобы найти тангенс угла АОВ на этой картинке, нужно достроить до прямоугольного треугольника, и найти стороны этого треугольника.
1. Достроим до треугольника ОВН и докажем, что он прямоугольный.
2. Для этого достроим на стороне ОН, ОВ и ВН прямоугольные треугольники ОСВ, ОНК и BDH. Докажем, что треугольник АВН прямоугольный.
Найдем гипотенузу ОВ прямоугольного треугольника ОСВ, гипотенузу ОН прямоугольного треугольника ОКН и гипотенузу ВН прямоугольного треугольника ВDH через теорему Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Теперь докажем, что треугольник ОВН прямоугольный. Воспользуемся обратной теоремой Пифагора: если квадрат одной стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Так как равенство верно, то треугольник ОВН прямоугольный.
Теперь найдем тангенс угла АОВ
Задание №2 Расстояние
Для выполнения этого задания, проведите отрезок ВС, найдите середину его и отметим точкой К. Проведите отрезок АК, который равен 4. Ответ 4
Задание №3 Площадь
Задача №1
Задание простое, но есть ошибки по невнимательности.
Задача №2
а) Площадь треугольника и параллелограмма
Запомните! Площадь треугольника от площади параллелограмма отличается только тем, что площадь треугольника нужно делить на 2, а площадь параллелограмма нет.
б) Площадь трапеции. Чтобы найти площадь трапеции, нужно сложить основания трапеции, умножить на высоту и поделить на 2.
в) Площадь ромба равна половине произведения диагоналей.
Это не все типы заданий, что встречаются на экзамене. Продолжение следует.
Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.
Обычно в задачах требуется найти тангенс именно острого угла, как, допустим, на этом примере:
Для этого мы строим прямоугольный треугольник, проведя линию (перпендикуляр) BD:
Далее вспоминаем определение тангенса, это отношение противолежащего катета к прилежащему.
То есть tg(BOA) = DB / DO.
Чтобы найти DO и DB достаточно будет посчитать количество клеточек.
DO = 2.
DB = 5.
Значит, tg(BOA) = 5 / 2 = 2,5.
Зная тангенс, мы можем легко найти и котангенс:
ctg(BOA) = 1 / tg(BOA) = 1 / 2,5 = 0,4.
_
А вот задача на нахождение тангенса угла по клеточкам немного другого плана (ищем тангенс угла AOB):
Если соединить точки A и B, то угол ABO будет прямым.
И тангенс можно вычислить как отношение BA к BO.
Как же нам их найти?
И BO, и BA будут гипотенузами 2 совершенно равных прямоугольных треугольников (для наглядности я их выделил красным).
Длина катетов их равна 2 и 8, а квадрат гипотенузы, как известно, равен сумме квадратов катетов.
Таким образом, у нас получится следующее:
tg(BOA) = BA / BO = √(2² + 8²) / √(2² + 8²) = 1.
И нетрудно догадаться, что треугольник этот равнобедренный с равными углами BOA и BAO по 45 градусов.