Как найти тау в электротехнике

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе,
согласно закону Ома, составит U/R, где U – напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и
противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = – t/RC + Const.
Выразим из него напряжение U потенцированием: U = e-t/RC * eConst.
Решение примет вид:

U = e-t/RC * Const.

Здесь Const – константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону
e-t/RC.

Экспонента – функция exp(x) = ex
e – Математическая константа, приблизительно равная 2.718281828…


Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U,
в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

UC = U(1 – e-t/RC)

При t = RC, напряжение на конденсаторе составит UC = U(1 – e-1) = U(1 – 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 – 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 – 1/e3)*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 – 1/e5)*100% ≈ 99% значения U.


Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R,
тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue-t/τ = U/et/τ.

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.

За время 3τ конденсатор разрядится до (1/e3)*100% ≈ 5% от значения U.
За время 5τ до (1/e5)*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.


Замечания и предложения принимаются и приветствуются!

From Wikipedia, the free encyclopedia

The RC time constant, also called tau, the time constant (in seconds) of an RC circuit, is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads), i.e.

tau =RC [seconds]

It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage. These values are derived from the mathematical constant e, where {displaystyle 63.2%approx 1-e^{-1}} and {displaystyle 36.8%approx e^{-1}}. The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time:

Charging toward applied voltage (initially zero voltage across capacitor, constant V0 across resistor and capacitor together) {displaystyle V_{0}:quad V(t)=V_{0}(1-e^{-t/tau })}[1]
Discharging toward zero from initial voltage (initially V0 across capacitor, constant zero voltage across resistor and capacitor together) {displaystyle V_{0}:quad V(t)=V_{0}(e^{-t/tau })}

Cutoff frequency[edit]

The time constant tau is related to the cutoff frequency fc, an alternative parameter of the RC circuit, by

tau =RC={frac  {1}{2pi f_{c}}}

or, equivalently,

f_{c}={frac  {1}{2pi RC}}={frac  {1}{2pi tau }}

where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in Hz.

Short conditional equations using the value for {displaystyle 10^{6}/(2pi )}:

fc in Hz = 159155 / τ in µs
τ in µs = 159155 / fc in Hz

Other useful equations are:

rise time (20% to 80%) t_{r}approx 1.4tau approx {frac  {0.22}{f_{c}}}
rise time (10% to 90%) t_{r}approx 2.2tau approx {frac  {0.35}{f_{c}}}

In more complicated circuits consisting of more than one resistor and/or capacitor, the open-circuit time constant method provides a way of approximating the cutoff frequency by computing a sum of several RC time constants.

Delay[edit]

The signal delay of a wire or other circuit, measured as group delay or phase delay or the effective propagation delay of a digital transition, may be dominated by resistive-capacitive effects, depending on the distance and other parameters, or may alternatively be dominated by inductive, wave, and speed of light effects in other realms.

Resistive-capacitive delay, or RC delay, hinders the further increasing of speed in microelectronic integrated circuits. When the feature size becomes smaller and smaller to increase the clock speed, the RC delay plays an increasingly important role. This delay can be reduced by replacing the aluminum conducting wire by copper, thus reducing the resistance; it can also be reduced by changing the interlayer dielectric (typically silicon dioxide) to low-dielectric-constant materials, thus reducing the capacitance.

The typical digital propagation delay of a resistive wire is about half of R times C; since both R and C are proportional to wire length, the delay scales as the square of wire length. Charge spreads by diffusion in such a wire, as explained by Lord Kelvin in the mid nineteenth century.[2] Until Heaviside discovered that Maxwell’s equations imply wave propagation when sufficient inductance is in the circuit, this square diffusion relationship was thought to provide a fundamental limit to the improvement of long-distance telegraph cables. That old analysis was superseded in the telegraph domain, but remains relevant for long on-chip interconnects.[3][4][5]

See also[edit]

  • Cutoff frequency and frequency response
  • Emphasis, preemphasis, deemphasis
  • Exponential decay
  • Filter (signal processing) and transfer function
  • High-pass filter, low-pass filter, band-pass filter
  • RL circuit, and RLC circuit
  • Rise time

References[edit]

  1. ^ “Capacitor Discharging”.
  2. ^ Andrew Gray (1908). Lord Kelvin. Dent. p. 265.
  3. ^ Ido Yavetz (1995). From Obscurity to Enigma. Birkhäuser. ISBN 3-7643-5180-2.
  4. ^ Jari Nurmi; Hannu Tenhunen; Jouni Isoaho & Axel Jantsch (2004). Interconnect-centric Design for Advanced SoC and NoC. Springer. ISBN 1-4020-7835-8.
  5. ^ Scott Hamilton (2007). An Analog Electronics Companion. Cambridge University Press. ISBN 978-0-521-68780-5.

External links[edit]

  • RC Time Constant Calculator
  • Conversion time constant tau to cutoff frequency fc and back
  • RC time constant

Термин: Постоянная времени RC-цепи

τ – постоянная времени RC-цепи – это временна́я характеристика простой электрической цепи, в которой происходит изменение заряда конденсатора С за счёт его разряда через сопротивление R. Постоянная времени вычисляется как τ=R*C [Ф*Ом], что эквивалентно размерности «секунда» [c].
Как показано на рисунке, постоянная времени τ входит в аналитическую функцию описания процесса изменения напряжения на конденсаторе U(t) при его заряде от источника напряжения через сопротивление R. На рисунке U(0) – это начальное напряжение на конденсаторе (в момент времени t=0), а U(∞) – это напряжение источника напряжения, к которому асимтотически стремится U(t).

За время, равное τ, напряжение на конденсаторе изменяется от U(0) до U(∞) + [U(0) — U(∞)]/e, где e=2,718. .

Экспоненциальный заряд конденсатора происходит для случая U(∞) > U(0), а экспоненциальный разряд – для случая U(∞) -t/τ ) в моменты времени t от t=0,001τ до t=10τ протекания экспоненциального процесса.

Время процесса в единицах τ=RC Доля неустановившейся величины напряжения e -t/τ
*100, % *10 6 , ppm
0,001τ ≈99,9% ≈999000
0,01τ ≈99% ≈990000
0,1τ ≈90% ≈900000
0,5τ ≈61% ≈610000
τ ≈37% ≈370000
≈14% ≈140000
≈5,0% ≈50000
≈1,8% ≈1800
≈0,67% ≈6700
≈0,25% ≈2500
≈0,091% ≈910
≈0,034% ≈340
≈0,012% ≈120
10τ ≈0,0045% ≈45

Понятие постоянной времени RC-цепи помогает оценить время протекания процесса при анализе эквивалентных электрических схем, содержащих RC-цепи. Заметим только, что понятие постоянной времени не применимо для частного случая заряда-разряда конденсатора постоянным током, где закон изменения напряжения и заряда на конденсаторе имеет линейный характер, а не экспоненциальный.

Постоянные времени RC-цепей (в качестве величин с прозрачным физическим смыслом) участвуют в аналитических решениях дифференциальных уравнений, описывающих не только экспоненциальные процессы в электрических схемах, содержащих RC-цепи (например, пассивные и активные RC-фильтры).

Источник

Дифференциальное уравнение [ править ]

Основная статья: теория систем LTI

Системы LTI первого порядка характеризуются дифференциальным уравнением

τ d V d т + V знак равно ж ( т ) { Displaystyle тау { гидроразрыва {dV} {dt}} + V = f (t)}

где τ представляет собой экспоненциальную константу затухания, а V является функцией времени t

V знак равно V ( т ) . { Displaystyle V = V (t).}

Правая часть — это вынуждающая функция
f
(
t
), описывающая внешнюю движущую функцию времени, которую можно рассматривать как
вход
системы , на который
V
(
t
) является
ответом
или выходом системы. Классические примеры для
f
(
t
) :

Функция Хевисайда , часто обозначается U

(
т
) :
ты ( т ) знак равно { 0 , т < 0 1 , т ≥ 0 {displaystyle u(t)={begin{cases}0,&t<0\1,&tgeq 0end{cases}}}
импульсная функция , часто обозначается б

(
т
) , а также функция синусоидальной входного сигнала:
f ( t ) = A sin ⁡ ( 2 π f t ) {displaystyle f(t)=Asin(2pi ft)}
или же

f ( t ) = A e j ω t , {displaystyle f(t)=Ae^{jomega t},}

где A — амплитуда вынуждающей функции, f — частота в герцах, а ω = 2 π f

— частота в радианах в секунду.

Пример решения [ править ]

Пример решения дифференциального уравнения с начальным значением V

0 и без функции принуждения:
V ( t ) = V o e − t / τ {displaystyle V(t)=V_{o}e^{-t/tau }}
куда

V o = V ( t = 0 ) {displaystyle V_{o}=V(t=0)}

это начальное значение V . Таким образом, отклик представляет собой экспоненциальный спад с постоянной времени τ .

Обсуждение [ править ]

Предполагать

V ( t ) = V 0 e − t / τ {displaystyle V(t)=V_{0}e^{-t/tau }} .

Такое поведение называется «убывающей» экспоненциальной функцией. Время τ (тау) называется «постоянной времени» и может использоваться (как в этом случае), чтобы указать, насколько быстро экспоненциальная функция затухает.

Здесь:

t = время (обычно
t
> 0 в технике управления)
V
0 = начальное значение (см. «Особые случаи» ниже).

Конкретные случаи [ править ]

1) Пусть ; тогда и так t = 0 {displaystyle t=0} V = V 0 e 0 {displaystyle V=V_{0}e^{0}} V = V 0 {displaystyle V=V_{0}} 2) Пусть ; тогда t = τ {displaystyle t=tau } V = V 0 e − 1 ≈ 0.37 V 0 {displaystyle V=V_{0}e^{-1}approx 0.37V_{0}} 3) Пусть , и так V = f ( t ) = V 0 e − t / τ {displaystyle V=f(t)=V_{0}e^{-t/tau }} lim t → ∞ f ( t ) = 0 {displaystyle lim _{tto infty }f(t)=0} 4) Пусть ; тогда t = 5 τ {displaystyle t=5tau } V = V 0 e − 5 ≈ 0.0067 V 0 {displaystyle V=V_{0}e^{-5}approx 0.0067V_{0}}
После периода в одну постоянную времени функция достигает e

−1 = примерно 37% от своего начального значения. В случае 4 после пяти постоянных времени функция достигает значения менее 1% от исходного. В большинстве случаев этот порог в 1% считается достаточным, чтобы предположить, что функция упала до нуля — как показывает опыт, в технике управления стабильной системой является система, которая демонстрирует такое общее затухающее поведение.

Переходные процессы в цепи с одним накопителем энергии и произвольным числом резисторов

Как отмечалось в предыдущей лекции, линейная цепь охвачена единым переходным процессом. Поэтому в рассматриваемых цепях с одним накопителем энергии (катушкой индуктивности или конденсатором) – цепях первого порядка – постоянная времени будет одной и той же для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение.

Общий подход к расчету переходных процессов в таких цепях основан на применении теоремы об активном двухполюснике: ветвь, содержащую накопитель, выделяют из цепи, а оставшуюся часть схемы рассматривают как активный двухполюсник А (эквивалентный генератор) (см. рис.1, а) со схемой замещения на рис. 1,б.

Совершенно очевидно, что постоянная времени здесь для цепей с индуктивным элементом определяется, как:

и с емкостным, как:

где — входное сопротивление цепи по отношению к зажимам 1-2 подключения ветви, содержащей накопитель энергии.

Например, для напряжения на конденсаторе в цепи на рис. 2 можно записать

где в соответствии с вышесказанным

Переходные процессы при подключении последовательной R-L-C-цепи к источнику напряжения

Рассмотрим два случая:

Согласно изложенной в предыдущей лекции методике расчета переходных процессов классическим методом для напряжения на конденсаторе в цепи на рис. 3 можно записать

Тогда для первого случая принужденная составляющая этого напряжения

Характеристическое уравнение цепи

решая которое, получаем

В зависимости от соотношения параметров цепи возможны три типа корней и соответственно три варианта выражения для свободной составляющей:

1. или , где — критическое сопротивление контура, меньше которого свободный процесс носит колебательный характер.

В этом случае

2. — предельный случай апериодического режима.

В этом случае и

3. — периодический (колебательный) характер переходного процесса.

В этом случае и

где — коэффициент затухания; — угловая частота собственных колебаний; — период собственных колебаний.

Для апериодического характера переходного процесса после подстановки (2) и (3) в соотношение (1) можно записать

Для нахождения постоянных интегрирования, учитывая, что в общем случае и в соответствии с первым законом коммутации , запишем для t=0 два уравнения:

решая которые, получим

Тогда ток в цепи

и напряжение на катушке индуктивности

На рис. 4 представлены качественные кривые , и , соответствующие апериодическому переходному процессу при .

Для критического режима на основании (2) и (4) можно записать

Для колебательного переходного процесса в соответствии с (2) и (5) имеем

Для нахождения постоянных интегрирования запишем

На рис. 5представлены качественные кривые и , соответствующие колебательному переходному процессу при .

При подключении R-L-C-цепи к источнику синусоидального напряжения для нахождения принужденных составляющих тока в цепи и напряжения на конденсаторе следует воспользоваться символическим методом расчета, в соответствии с которым

Здесь также возможны три режима:

Наибольший интерес представляет третий режим, связанный с появлением во время переходного процесса собственных колебаний с частотой . При этом возможны, в зависимости от соотношения частот собственных колебаний и напряжения источника, три характерные варианта: 1 — ; 2 — ; 3 — , — которые представлены на рис. 6,а…6,в соответственно.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Контрольные вопросы

  1. Как можно определить постоянную времени в цепи с одним накопителем энергии по осциллограмме тока или напряжения в какой-либо ветви?
  2. Определить, какой процесс: заряд или разряд конденсатора в цепи на рис. 2 – будет происходить быстрее?
  • Влияет ли на постоянную времени цепи тип питающего устройства: источник напряжения или источник тока?
  • В цепи на рис. 2 , С=10 мкФ. Чему должна быть равна индуктивность L катушки, устанавливаемой на место конденсатора, чтобы постоянная времени не изменилась?
  • Как влияет на характер переходного процесса в R-L-C-контуре величина сопротивления R и почему?
  • Определить ток через катушку индуктивности в цепи на рис. 7, если ; ; ; ; .
    Определить ток в ветви с конденсатором в цепи на рис. 8, если ; ; ; .

    Источник

RC-цепи, 5 самых ходовых схем фильтров и их простой рассчет

RC-цепь, такое частое явление радиоэлектроники. Такие фильтры стоят повсюду. Понимание того, как какой фильтр влияет на форму АЧХ сигнала во многом определяет правильность чтения всей электронной схемы. В статье собраны 5 основных RC-фильтров, приведены их АЧХ и упрощенные формулы расчета.

В ранние годы развития радиоэлектроники для воздействие на Амплитудно — Частотную Характеристику (АЧХ) сигнала в основном применялись LC — фильтры, т.е. фильтры состоящие из катушки индуктивности и конденсатора. Со временем им на смену пришла RC-цепь, которая была плотно взята в оборот радиоэлектроникой ввиду меньшей стоимости и габаритов.

Конечно, фильтры на RC-цепях не могут полностью вытеснить LC собратьев. Например в фильтрах для АС предпочтительнее использование LC-фильтров. Но практически во всей маломощной электронике главенствуют именно RC-цепи. Например двойная RC-цепь в фильтре RIAA-корректора.

Интересным вариантом избавления от катушек являются фильтры на гираторах, где посредством конденсатора и операционного усилителя эмитируется работа катушки.

Постоянная времени RC — RC time constant

Постоянная времени RC

, также называемая тау, постоянная времени (в секундах ) RC-цепи , равна произведению сопротивления цепи (в омах ) на емкость цепи (в фарадах ), т. Е.

τ знак равно р C [секунды]

Это время, необходимое для зарядки конденсатора через резистор от начального напряжения заряда, равного нулю, до примерно 63,2% от значения приложенного напряжения постоянного тока или для разряда конденсатора через тот же резистор примерно до 36,8% от его начального значения. напряжение заряда. (Эти значения получены из математической константы e

: и .) Следующие формулы используют ее, принимая постоянное напряжение, приложенное последовательно к конденсатору и резистору, для определения напряжения на конденсаторе в зависимости от времени: 63,2 % знак равно 1 — е — 1 >

Постоянная времени электрической цепи — что это такое и где используется

Природе свойственны периодические процессы: день сменяет ночь, теплое время года сменяется холодным и т. д. Период этих событий почти постоянен и поэтому может быть строго определен. Кроме того, мы вправе утверждать, что приведенные в качестве примера периодические природные процессы не являются затухающими, по крайней мере по отношению к продолжительности жизни одного человека.

Однако в технике, а в электротехнике и в электронике — особенно, далеко не все процессы являются периодическими и незатухающими. Обычно какой-нибудь электромагнитный процесс сначала возрастает, а затем убывает. Часто дело ограничивается лишь фазой начала колебания, которое так и не успевает толком набрать размах.

Колебательный процесс на осциллографе

Сплошь и рядом в электротехнике можно встретить так называемые экспоненциальные переходные процессы, суть которых заключается в том, что система просто стремится придти к какому-то равновесному состоянию, которое в конце концов выглядит как состояние покоя. Такой переходный процесс может быть как нарастающим, так и спадающим.

Внешняя сила сначала выводят динамическую систему из состояния равновесия, а затем не препятствует естественному возврату данной системы к ее исходному состоянию. Эта последняя фаза и есть так называемый переходный процесс, которому свойственна определенная длительность. Кроме того процесс выведения системы из равновесия также является переходным процессом с характерной длительностью.

Так или иначе, постоянной времени переходного процесса мы называем его временную характеристику, определяющую время, через которое некоторый параметр данного процесса изменится в «е» раз, то есть увеличится или уменьшится примерно в 2,718 раз по сравнению с состоянием, принятым за исходное.

Рассмотрим для примера электрическую цепь, состоящую из источника постоянного напряжения, конденсатора и резистора. Подобного рода цепь, где резистор включен последовательно с конденсатором, называется интегрирующей RC-цепью.

Если в начальный момент времени подать на такую цепь питание, то есть установить на входе некоторое постоянное напряжение Uвх, то Uвых — напряжение на конденсаторе, начнет по экспоненте нарастать.

Через время t1 напряжение на конденсаторе достигнет 63,2% от напряжения на входе. Так вот, промежуток времени от начального момента до t1 – это и будет постоянная времени данной RC-цепи.

Данную константу цепи называют «тау», она измеряется в секундах, а обозначают ее соответствующей греческой буквой. Численно для RC-цепи она равна R*C, где R выражается в омах, а С — в фарадах.

Есть простейшая схема состоящая из источника питания с напряжением 10V, кнопки, резистора сопротивлением 1кОм и конденсатора ёмкостью 1000мфк. Сочетание конденсатора и резистора называется резистивно-емкостной цепочкой (или RC-цепь, R – резистор, С-конденсатор). Через какое время после нажатия на кнопку напряжение на конденсаторе сможет достичь значения напряжения источника питания?

rc цепь
rc цепь

Для ответа на этот вопрос необходимо построить график изменения напряжения на конденсаторе в зависимости от времени. Делать это с помощью вольтметра не очень удобно, поэтому я воспользуюсь платой Arduino и модулем цифрового вольтметра INA219 из прошлой статьи. (перед проведением опыта конденсатор необходимо полностью разрядить перемкнув его выводы перемычкой)!

Строим график изменения напряжения на конденсаторе
Строим график изменения напряжения на конденсаторе

Скетч который в данном случае cможет заменить осциллограф состоит из 3 строк кода (строим график только если напряжение на конденсаторе больше 0.1V и прекращаем строить если больше 9.9V)

Строим график изменения напряжения на выходе конденсатора.
Строим график изменения напряжения на выходе конденсатора.
Прототип на беспаечной макетной плате
Прототип на беспаечной макетной плате

Открываем плоттер порта в среде Arduino IDE, “клацаем” кнопку и на выходе получаем симпатичную картинку.

График зарядки конденсатора в rc цепи
График зарядки конденсатора в rc цепи

Осталось проанализировать получившийся график.

По оси Х время в секундах, по оси Y напряжение на конденсаторе в вольтах
По оси Х время в секундах, по оси Y напряжение на конденсаторе в вольтах

Из графика хорошо видно, что скорость зарядки конденсатора падает по мере роста на нем напряжения.

Если представить, что резистор это вентиль, ограничивающий поток воды, а конденсатор это резиновый шарик, который будет наполняться – то если
закрыть вентиль до такой степени, что вода будет просачиваться по каплям – шарик будет заполняться очень долго.

Аналогия процесса заряда конденсатора в rc цепи
Аналогия процесса заряда конденсатора в rc цепи

По мере того как шарик наполняется, оболочка растягивается, оказывая большее давление на его содержимое. С увеличением давления внутри шарика, оно выталкивает входящий поток воды и следовательно с течением времени вода будет заполнять шарик все медленнее. Если предположить, что шарик не лопнет – процесс закончится когда давление внутри шарика сравняется с давлением воды в трубе.

Похожие процессы происходят в конденсаторе. Сначала электроны стремительно поступают, но по мере заполнения пространства новоприбывшим требуется больше времени на поиск свободного места. Процесс заряда становится все более медленным и медленным, а на самом деле теоретически никогда не сравняется с подаваемым на него напряжением.

Скорость с которой заряжается конденсатор зависит от параметра – постоянная времени.

TC = R * C

  • TC – постоянная времени в секундах
  • С – емкость конденсатора в фарадах
  • R – сопротивление в омах

Для нашего примера:

TC = 1 кОм * 1000мкф = 1000 Ом * 0.001Ф = 1с.

Постоянная времени RC цепи ТС это время (сек) необходимое конденсатору для того, чтобы напряжение на нем составило 63% от подаваемого напряжения, если заряд начинался с нулевого значения.

Для нашего случая в первую секунду конденсатор должен будет зарядиться до значения:

10V / 100 * 63 = 6.3V

А дальше смотрим картинку:

Процесс зарядки конденсатора в RC цепи
Процесс зарядки конденсатора в RC цепи

Считаем:

Первая секунда:
10*0.63 =
6.3V

Вторая секунда:
10 – 6.3 = 3.7
3.7 * 0.63 = 2.33
6.3 + 2.33 =
8.63V

Третья секунда:
10 – 8.63=1.37
1.37 * 0.63 = 0.86
8.63 + 0.86 =
9.49V

Четвертая секунда:
10 – 9.49 = 0.51
0.51 * 0.63 = 0.32
9.49 + 0.32 =
9.81V

Пятая секунда:
10 – 9.81 = 0.19
0.19 * 0.63 = 0.11
9.81 + 0.11 =
9.92V

В мире идеальных компонентов процесс заряда будет продолжаться бесконечно. В реальных условиях считается, что по истечении временного интервала, равного 5 постоянным времени, заряд конденсатора приблизится к 100% и можно считать процесс завершенным.

Если вы еще раз обратите внимание на мой реальный график – цифры будут несколько отличаться от расчетных. Здесь много причин влияющих на результат измерений: номинал резистора не ровно 1000 Ом, емкость конденсатора не ровно 1000 микрофарад, сопротивление контактов макетной платы, внутреннее сопротивление вольтметра INA219, небольшой ток утечки присущий любому электролиту, помехи от ПК и много чего другого. Тем не менее Arduino остановило отрисовку графика ровно через 5 секунд, и окончательный расчёт времени зарядки конденсатора достаточно простой:

T = 5*R*C = 5 * 1000 Ом * 0.001 Ф = 5 сек.

что для практических целей необходимо и достаточно.

Полный список всех статей на канале доступен по этой ссылке:

Если информация была полезной не забудьте подписаться и поставить лайк. Всем удачи!



Ученик

(108),
на голосовании



7 лет назад

Голосование за лучший ответ

ded pihto

Мудрец

(16363)


7 лет назад

конденсатор не может зарядится или разрядиться мгновенно.
время его заряда-разряда
зависит от емкости конкретного конденсатора и резистора в этой цепи …
это соотношение емкость-резистор и называется тау.
по расчетам получено что полностью конденсатор зарядится-разрядится
за 3 тау на 95 процентов
за 5 тау на 100 проц.
Это свойство реально применяется для расчетов и постройки фильтров частот.
изменяя соотношение емкость-резистор можно
отсекать или наоборот пропускать
необходимые сигналы. частоты.. импульсы..

Добавить комментарий