Как найти температура уходящих газов

Подберите необходимую мощность котла для вашего объекта

Тип здания

Регион

Населенный пункт

Вид топлива

Наружный объем здания (м3)

Отапливаемый подвал

Подобрать мощность котла по площади важно учитывая не только площадь и объем здания, но и тип зданий и климатические данные региона.

На нашем сайте калькулятор расчета мощности котла учитывает тепло, требуемое на возмещение тепловых потерь через строительные конструкции и потери, вызываемые инфильтрацией (проникновением) наружного воздуха, через их неплотности и периодически открываемые двери.

Наружный строительный объем здания должен определяться умножением площади горизонтального сечения, взятого по внешнему обводу здания на уровне первого этажа на полную высоту здания, измеренную для панельных зданий: от уровня чистого пола (нулевой отметки) до верхней плоскости теплоизоляционного слоя чердачного покрытия, для остальных строений от уровня земли.

Расчетная температура воздуха в отапливаемых зданий принимается в зависимости от типа и назначения здания:

  • Гостиница, общежитие, административное здание, жилые дома + 20 °С;
  • Детские сады, ясли, поликлиники, амбулатории, диспансеры, больницы + 22 °С;
  • Высшие и средние специальные учебные заведения, общеобразовательные школы, школы интернаты, лаборатории, предприятия общественного питания, клубы, дома культуры + 16 °С;
  • Театры, магазины, пожарные депо + 15 °С;
  • Кинотеатры + 14 °С;
  • Гаражи + 10 °С;
  • Бани + 25 °С.

В случае если требуется отопление различных по типу зданий, теплопотребление каждого считается отдельно, полученные значения складываются и подобрать мощность котла нужно в соответствии с общей суммарной мощностью каждого отдельно стоящего задания.

Климатические условия вашего региона принимаются в соответствии с СП 131.13330 Строительная климатология. Данные по всем регионам России занесены в наш калькулятор расчета мощности котла.

Подобрать мощность котла по площади с учетом потребностей объекта в тепле на вентиляцию и горячую воду возможно только с более детальным расчетом. Его вы можете заказать в отделе сбыта котельного завода отправив заявку на электронный адрес sb@kvzr.ru или позвонив по телефонам (38-52) 29-97-41, 29-97-42.

1.5. Выбор расчетных температур воздуха и уходящих газов

Температура уходящих газов оказывает решающее влияние на экономичность работы парового котла, так как потеря теплоты с уходящими газами является при нормальных условиях эксплуатации наибольшей даже в сравнении с суммой других потерь. Снижение температуры уходящих газов на 12-16 °С приводит к повышению КПД котла примерно на 1 %. Однако глубокое охлаждение газов требует увеличения размеров конвективных поверхностей нагрева и во многих случаях приводит к усилению низкотемпературной коррозии.

Существенное влияние на выбор температуры уходящих газов оказывает также температура питательной воды. С ее ростом увеличивается КПД термодинамического цикла, а КПД котла падает. Температуры уходящих газов и питательной воды должны быть выбраны такими, чтобы сумма эксплуатационных и капитальных затрат была минимальной.

Продукты сгорания высоковлажных топлив из-за повышенного объема газов требуют для своего охлаждения увеличенных размеров конвективных поверхностей, поэтому при сжигании влажных топлив экономически оправдывается более высокая температура уходящих газов.

В любом случае оптимальные температуры уходящих газов для различных топлив и параметров пара котла устанавливаются на основании технико-экономических расчетов.

Рекомендуемые температуры уходящих газов в зависимости от приведенной влажности твердого топлива WП и температуры питательной воды приведены в табл. 1.2 (при сжигании твердых топлив). Высокая температура уходящих газов при сжигании сернистых мазутов обусловлена защитой воздухоподогревателя от интенсивной низкотемпературной коррозии (табл. 1.2 – при сжигании мазута и природного газа).

Температура воздуха на входе в воздухоподогреватель выбирается на уровне, предотвращающем развитую сернокислотную коррозию металла и забивание низкотемпературной части поверхности нагрева липкими отложениями. Таким образом, выбор зависит от влажности топлива и его сернистости.

Рекомендуемые приведены в табл. 1.3. Выбор температуры при сжигании твердого топлива прежде всего определяется его влажностью, но при этом следует учитывать и содержание серы в рабочей массе. Так, если твердое топливо окажется сухим (WП < 0,7), a SР > 2, то выбирать надо из условия исключения сернокислотной коррозии.

Таблица 1.2 – Рекомендуемые температуры уходящих газов, °С

При сжигании твердых топлив

Топливо, приведенная влажность,
%·кг/МДж

Среднее давление Р = 4-6 МПа, tп.в = 150 °С

Высокое давление

Сверхкритическое давление
Р = 25,5 МПа, tп.в = 270 °С

Р = 3-12 МПа, tп.в = 215 °С

Р = 14-18 МПа, tп.в = 230 °С

Сухое, WП ? 0,7

110–120

120–130

120–130

130–140

Влажное, WП = 1–5

120–130

140–150

140–150

150–160

Сильновлажное, WП > 5

130–140

160–170

160–170

170–180

При сжигании мазута и природного газа

Топливо

?ух, °С

Мазут:

высокосернистый, SР > 2 %;

сернистый, SР = 0,5–2 %;

малосернистый, SР < 0,5 %

Природный газ

150–160

130–140

120–130

120–130

Примечание. В газоплотных топках при сжигании сернистого и высокосернистого мазутов с коэффициентом избытка воздуза на выходе из топки не более 1,02 минимальная температура стенки воздухоподогревателя может составлять 80–85 °С. При этом температура уходящих газов может быть принята 130 – 140 °С для высокосернистого и 120 – 130 °С для сернистого азута при температуре воздуха на входе в воздухоподогреватель 40–50 °С.

Предварительный подогрев воздуха от 20-30 до 50 °С обычно осуществляют рециркуляцией части горячего воздуха на всас дутьевых вентиляторов. Более высокую температуру получают подогревом воздуха в паровых или водяных калориферах, установленных перед воздухоподогревателем. В первом случае подогрев воздуха происходит за счет теплоты продуктов сгорания собственно котла («внутренней» теплоты), поэтому в уравнении теплового баланса этот подогрев не учитывается, а расчет потерь теплоты с уходящими газами производится от tх.в = 20–30 °С. В случае калориферного подогрева воздуха отборным паром турбины (внешний подогрев) потери теплоты с уходящими газами также считаются по отношению к tх.в = 20–30 °С, однако располагаемая теплота топлива в уравнении теплового баланса (гл. 3) увеличивается на теплоту подогрева воздуха от tх.в до 1.wmf.

При содержании серы в рабочей массе мазута более 2 % или в рабочей массе твердого топлива более 3 % необходима дополнительная проверка надежности работы холодной части воздухоподогревателя с позиции исключения интенсивной сернокислотной коррозии. В этих целях минимальная температура стенки металла воздухоподогревателя должна составлять 2.wmf (большее значение – при сжигании мазута с ?m ? 1,03).

Рекомендуется определять значение 3.wmf в зависимости от типа воздухоподогревателя и предварительно выбранных температур уходящих газов и воздуха на входе в воздухоподогреватель:

для регенеративного воздухоподогревателя

4.wmf (1.2)

для трубчатого воздухоподогревателя

5.wmf (1.3)

При 6.wmf во всех случаях наблюдается интенсивная коррозия поверхности нагрева. Если расчетные 3.wmf по (1.2) или (1.3) не удовлетворяют требованиям надежной эксплуатации, необходимо несколько увеличить выбранные температуры 1.wmf и ?ух.

Температура горячего воздуха при сжигании твердых топлив определяется не только характеристиками топлива, но и организацией его сжигания (табл. 1.4.).

Количество поступающего в зону горения воздуха по массе в несколько раз превосходит массу топлива. Недостаточный подогрев воздуха может затормозить воспламенение топлива и привести к значительному недожогу. Так, для топлив с относительно малым выходом летучих веществ (VГ < 25 %) раннее воспламенение и низкий механический недожог достигаются при температуре горячего воздуха не ниже 300 °С.

Более низкий подогрев воздуха по условиям горения (250–300 °С)
допустим для топлив с высоким выходом летучих (VГ >> 25 %). Исключение составляют сильновлажные топлива, требующие использования для работы пылесистемы высокотемпературного сушильного агента. Последний можно получить путем смешения части горячих топочных газов с воздухом. Тогда допустимо некоторое снижение подогрева воздуха в воздухоподогревателях. Так, при влажности топлива WП ? 2 %·кг/МДж температура горячего воздуха может быть принята 270-300 °С, а при WП ? 5 %·кг/МДж – 400 °С.

Таблица 1.3 – Температура воздуха на входе в воздухоподогреватель

Топливо

1.wmf, °С

Твердое:

сухое, WП ? 0,7 и при SР < 2 %

умеренновлажное, WП = 1–5 и при SР = 2–3 %

сильновлажное, WП > 5 и при %

20–30

45–55

60–70

Природный газ

20–30

Мазут:

малосернистый, SР < 0,5 %

сернистый, SР = 0,5–2 %;

высокосернистый, SР > 2 %;

20–30

50–70

70–100

Таблица 1.4 – Температура подогрева воздуха

Характеристика топочного устройства

Сжигаемое топливо

Рекомендуемая
температура tгв, °С

Топки с твердым шлакоудалением и замкнутой системой сушки топлива горячим воздухом

Каменный и тощий угли при Wг ? 25 %

Каменный уголь при Wг > 25

Бурый уголь, фрезерный торф

300–350

250–300

350–400*

То же при сушке топлива смесью воздуха с топочными газами

Бурые угли, фрезерный торф

300–400*

Топки с жидким шлакоудалением при сушке топлива воздухом

Антрацит и полуантрацит

Тощий и каменный угли

Бурый уголь

380–400

350–400

380–400

Открытые камерные топки

Мазут, природный газ

250–300

Примечание.* Для сильновлажных бурых углей с WР > 50 % и торфа принимать 400 °С.

Обеспечение жидкого шлакоудаления требует высокого подогрева воздуха (не ниже 350 °С), уровень его зависит от выхода летучих, температуры плавкости золы и влажности сжигаемого топлива.

Сжигание мазута и природного газа допускает умеренный подогрев воздуха, при котором исключается недогорание топлива в высоконапряженных топках. Экономически выгодно подогревать воздух выше температуры питательной воды, поступающей в экономайзер.

Минимальный температурный напор за экономайзером (разность температур между газовым потоком и питательной водой) принимается 7.wmf.

Минимальный температурный напор перед воздухоподогревателем (разность температур между газами на входе в воздухоподогреватель и горячим воздухом) принимается 8.wmf. Снижение температурного напора ниже минимального приводит к неоправданному росту размеров поверхности нагрева.

Вопросы для самоконтроля

1. Чем поверочный расчет котельного агрегата отличается от конструктивного?

2. Какой тип топок применяется при сжигании жидких и газообразных топлив?

3. Для котлоагрегатов какой производительности рекомендуется использовать камерные топки?

4. в каком случае целесообразнее применять организацию твердого шлакоудаления, а в каком – жидкого?

5. В чем состоит достоинство жидкого шлакоудаления?

6. Какое влияние оказывают температура уходящих газов и питательной воды на экономичность работы котельного агрегата?

7. Какими параметрами необходимо руководствоваться при выборе температуры горячего воздуха?

8. Чему равен минимальный температурный напор перед воздухоподогревателем и за экономайзером?

Потеря тепла с уходящими газами

Тепло горячих газов, полученных в результате сгорания топлива, используется отдельными элементами котельной установки. Газы по мере прохождения по газоходам котла, перегревателя, экономайзера постепенно охлаждаются и затем выбрасываются в дымовую трубу.

Значение потери с отходящими газами, считая на 1 кг топлива, зависит от произведения объема газов на их теплоемкость и на температуру газов, идущих в трубу:

Q2= VrCryT ккал/кг. (118)

В левой части уравнения баланса тепла котельной установки (90) указывается только теплотворная способность 1 кг топлива. Поскольку баланс тепла подсчитывается от 0°, к теплотворной способности топлива надо присоединить тепло, приносимое с воздухом из котельного помещения, обычно нагретого до 25° и расходуемого в топке, а также подсосанного через неплотности обмуровки, тепло форсуночного пара при паровом дутье и физическое тепло топлива. Обычно в левой части баланса тепла оставляется лишь Qрн, а остальные из перечисленных величин условно присоединяются, только с обратным знаком, к потере с отходящими газами. С учетом сказанного и используя приведенные ранее формулы теплосодержания продуктов сгорания (88) и их объем с поправкой на механический недожог (76), потеря тепла с уходящими газами выразится следующим равенством:

Q2= Iy – Iв.к.- Iф– Iт. ккал/кг, (119)

где Iy – теплосодержание отходящих газов, подсчитывается по формуле:

Теплосодержание отходящих газов

или, подставляя Vу.с.г и Vy.в.п из формулы (76), получают выражение, определяющее теплосодержание отходящих газов:

Теплосодержание отходящих газов

где ау – коэффициент избытка воздуха в отходящих газах;

Теплосодержание воздуха

где Iв.к – теплосодержание воздуха, забираемого из котельного помещения;

0,45 и 0,24 – средние весовые теплоемкости водяных паров и сухого воздуха для заданных условий в ккал/кг град;

tB.K – температура воздуха в котельной; при проектировании обычно принимается равной 25°;

Iф – тепло, внесенное с форсуночным паром;

Iф=Wф (i-600) ккал/кг, (123)

где Wф – расход пара на паровое дутье в кг на 1 кг топлива при сжигании мазута Wф = 0,2÷0,4 кг на 1 кг мазута, при эжектировании воздуха в поддувало топок W = 0,7 : 0,8 кг на 1 кг топлива;

i – теплосодержание расходуемого пара в ккал/кг;

600 – скрытая теплота парообразования в ккал/кг при 0°;

Iт – физическое тепло топлива, в ккал/кг, которое может быть подсчитано для твердых и жидких топлив по выражению cTtT;

ст – средняя весовая теплоемкость топлива; принимается для дров, торфа и мазута 0,5, для угля и газа – 0,25 ккал/кг град;

tт – температура топлива в град.

Для твердого топлива в обычных условиях его сжигания Iт не учитывается. При сжигании подогретых мазута или газа Iт надо учитывать.

Средняя весовая теплоемкость газообразного топлива точно может быть подсчитана, если известны температура топлива и его состав.

В окончательном виде потеря тепла с уходящими газами выражается так:

Потеря тепла с уходящими газами

Стремление максимально повысить к. п. д. и тем сберечь топливо приводит к выводу о необходимости доведения до возможного минимума потери тепла с уходящими газами. Для этого в соответствии с формулой (118) надо уменьшать объем отходящих газов, что может быть выполнено за счет снижения избытков воздуха, и снижать температуру отходящих газов. Уменьшение а достигается рациональным конструированием топки и правильной эксплуатацией, обеспечивающими хорошее омывание воздухом частиц твердого топлива и перемешивание его с летучим горючим.

Плотная обмуровка уменьшает присосы, не допуская значительного повышения избытка воздуха в конечных элементах установки. Высокие показания на R02 в уходящих газах, при одновременной незначительной потере от химической неполноты сгорания, служат критерием совершенства топочного процесса и плотности обмуровки.

Температура отходящих газов зависит от условий эксплуатации. При загрязненных поверхностях нагрева накипью, в особенности золой и сажей, ухудшаются условия передачи тепла и одновременно повышается температура отходящих газов, что и должно учитываться при эксплуатации.

Понизить температуру отходящих газов можно путем развития хвостовых поверхностей нагрева. Теоретически она могла бы снижаться до температуры воды, входящей в водяной экономайзер, или воздуха, входящего в воздухоподогреватель. Практически это не выполняется, так как последние из экономайзерных поверхностей будут работать при очень малом температурном напоре и потребуют больших затрат металла на их изготовление.

Поэтому обычно не допускают снижения разности температур между отходящими газами и поступающими водой или воздухом ниже 50°. Более уточненные данные можно получить техникоэкономическими подсчетами. Сопоставляя экономию на топливе с амортизационными расходами и капитальными затратами, находят оптимальную температуру уходящих газов.

Выполнение подробных технико-экономических расчетов требует большой затраты времени. Поэтому с целью ускорения подобных вычислений проф. Л. К. Рамзиным был предложен упрощенный метод определения потери с отходящими газами, дающий хотя и не совсем точные результаты, так как игнорируется ряд изменяющихся параметров, но зато сильно сокращающий работу.

Если за котлом устанавливается водяной экономайзер, то по мере прохождения газов по газоходу экономайзера их температура будет снижаться по кривой Т’э – Т”э (рис. 22).

Вода как тело с большей теплоемкостью, чем газы, будет нагреваться медленнее, и кривая температур воды t’э – t”э располагается более полого.

Количество потери тепла с уходящими газами, переходящего в час через бесконечно малый элемент поверхности нагрева экономайзера, выражается так:

dQ=KэdH (T – t) ккал/час.

Здесь (Т- t) – разность температур в рассматриваемом пункте экономайзера. Она, как это видно из диаграммы рис. 22, все время уменьшается по мере прохождения газов по экономайзеру, а следовательно, и эффективность использования поверхностей нагрева по мере охлаждения газов понижается. Если теперь, охладив газы до температуры Ту, продолжить это охлаждение далее путем добавления бесконечно малого элемента поверхности нагрева, то можно за счет уменьшения потери с отходящими газами меньше израсходовать топлива. Количество дополнительно полученного тепла определяется равенством

Графики разности температур и нагрузки

Количество дополнительно полученного тепла

Годичные расходы на установку этой дополнительной поверхности нагрева подсчитываются по формуле

Годичные расходы на установку

где аэ – стоимость 1 м2 экономайзера в руб.;

О – прибавка к стоимости 1 м2 экономайзера на каркас и обмуровку (в зависимости от конструкции 0,5 до 1,0);

р – процентные начисления на амортизацию, ремонт, чистку.

Считая, что экономайзер выйдет из строя по прошествии 10 лет эксплуатации, можно принять р = 10 + 5 = 15%.

Тем, что устанавливается дополнительная поверхность нагрева, сберегается топливо. Годовые сбережения подсчитываются так:

Годовые сбережения

где n – годовое число часов работы экономайзера со средней нагрузкой;

b – стоимость в коп. 1000 ккал топлива франко-топка, т. е. с дополнительным учетом всех расходов по его доставке на склад, хранению, транспортированию в котельную, загрузке в топку и золоочистке.

Подсчет годового количества часов работы экономайзера при средней нагрузке можно произвести так. Выясняются графики нагрузки по отдельным потребителям тепла в течение суток, месяцев и года. Все эти нагрузки суммируются с целью получения общей нагрузки на котельную в течение года. Затем строится график годовой тепловой нагрузки по продолжительности, в котором нагрузки подбираются “по росту”, начиная от самых больших и кончая малыми. Нагрузки откладываются по оси ординат, по оси абсцисс измеряется время их действия в течение года.

После построения графика среднюю нагрузку можно было бы определить путем замены фигуры abсd (рис. 23) равновеликим прямоугольником aefd. Однако при групповом экономайзере может получиться, что его перегрузка значительно превысил в процентном отношении недогрузку. Вследствие этого при перегрузке чрезмерно увеличатся скорости газов по экономайзеру, его газовое сопротивление настолько возрастает, что придется, например, отказаться от естественной тяги.

Чтобы проценты перегрузки и недогрузки группового экономайзера получились равными, можно выбрать нормальную нагрузку, исходя из этого задания. В таком случае фигура abсd (рис. 23) заменится равновеликим прямоугольником aghl и в формулу (128) надо будет подставить число часов n, равное отрезку al.

Иначе выясняется годовое число часов работы экономайзера в случаях установки индивидуальных экономайзеров. Здесь в первую очередь надо решить вопрос о числе устанавливаемых котлов. Как правило, не следует ставить в котельной только один котел, так как в случае его остановки на ремонт или чистку останавливается и работа котельной. Чтобы не увеличивать расходов на трубопроводы, топливоподачу, здание котельной и пр., избегают большого количества устанавливаемых котельных единиц как в мелких отопительных котельных, так и на крупных станциях, предпочитая идти на укрупненные агрегаты. Наиболее часто количество устанавливаемых котлов равняется трем-четырем.

Конечно, при выборе числа котлов надо считаться с тем, каких размеров котлы изготовляются, а также и с характером графика по продолжительности работы. В котельных отопительного характера при кратковременности максимальных нагрузок, к тому же приуроченных к определенным месяцам в году, обычно резервных котлов не устанавливают. Если нагрузка котельной преимущественно производственная с незначительными колебаниями для зимы и лета, например, при обслуживании банно-прачечных комбинатов, то резервный котел нужен. При индивидуальном экономайзере в резервный ai регат включается и резервный экономайзер, отсутствующий при групповом экономайзере.

Среднее число часов работы индивидуальных экономайзеров равняется среднему числу часов работы всех котлов, исключая резервный. Определить среднее число часов работы котлов можно при помощи графика по продолжительности, разбивая последний на отдельные части с разным числом работающих котлов. В таком случае один или несколько котлов работает в течение года, и по мере нарастания нагрузки включаются дополнительные котлы, работающие меньшее время. Среднее число часов работы агрегата определяется как среднее арифметическое из числа часов работы всех котлов. Резервный экономайзер учитывается путем повышения стоимости экономайзера; последнюю в таком случае надо умножить на коэффициент резерва

f=ivcт/iраб,

где ivcт – число установленных агрегатов;

iраб – максимальное число работающих.

Средняя нагрузка агрегата выясняется путем подсчета D/Hк для отдельных ступеней графика.

Очевидно, что пока Цт будет превышать Цп.н подобное увеличение поверхности нагрева выгодно, в итоге будет снижаться стоимость получаемой тепловой энергии. Предел дальнейшему увеличению поверхности экономайзера наступит при равенстве Цт и Цп.н. Приравнивая между собой их выражения, получают зависимость

Предел дальнейшему увеличению поверхности экономайзера

Из уравнения (129) можно исключить dH путем подстановки его значения из формулы (126):

Предел увеличению поверхности экономайзера

откуда и получается уравнение наивыгоднейшей температуры отходящих газов

Наивыгоднейшая температура отходящих газов

Определив наивыгоднейшую температуру отходящих газов, в дальнейшем при расчете теплопередачи в котельной установке необходимо проверить, возможно ли развить таких размеров экономайзер и не закипит ли в нем вода, вследствие чего могут получаться гидравлические удары, сопровождаемые авариями. Температура воды, выходящей из экономайзера, в обычных условиях при пользовании чугунными экономайзерами, а таковыми только и пользуются в рассматриваемых установках, не должна доходить до температуры кипения на интервал в 40°. В водогрейных установках эти ограничения отсутствуют.

Если устанавливается воздухоподогреватель, то течение температурных кривых будет иное. Теплоемкости газоз и воздуха будут отличаться друг от друга, и отходящих газов получается больше, чем расходуется на горение воздуха, как вследствие увеличения объема после реакции сгорания, так и из-за присоса воздуха в газоходах. Поэтому отходящие газы будут медленнее охлаждаться по сравнению с нагреваемым воздухом, и наибольший расход металла при малом тепловом эффекте окажется не в конце экономайзера, считая по ходу газов, а в начале (рис. 24). По формуле типа (130) тогда определяется наивыгоднейшая температура газов перед воздухоподогревателем

Температура, до которой целесообразно нагревать воздух

График разности температур

Рис. 24

Если используется существующая конструкция котла, то температура газов перед воздухоподогревателем обусловливается соответствующей форсировкой котла; в таком случае по формуле (131) выясняется температура, до которой целесообразно нагревать воздух; если последняя получается чрезмерно высокой и неприемлемой для используемой конструкции топочного устройства, то дополнительно устанавливается водяной экономайзер.

На основании высказанных технико-экономических соображений температура отходящих газов на крупных центральных электрических станциях выбирается порядка Ту = 150-170°, и наблюдается тенденция к дальнейшему ее снижению. В сравнительно мелких котельных отопительно-производственного характера вследствие еще слабой механизации погрузочно-разгрузочных работ при транспортировании топлива, отсутствия ширококолейных подъездных путей и г. п. сильно повышается стоимость топлива франко-топка, что указывает на желательность понижения температуры отходящих газов по сравнению с указанными.

    Потери теплоты с уходящими газами Qy.г (qy.г) возникают из-за того, что физическая теплота (энтальпия) газов Hуг, покидающих котел при температуре tу.г превышает физическую теплоту поступающих в котел холодного воздуха аy.гH°х в и топлива Ст∆tт.

    Потери теплоты с уходящими газами Q

уг занимают обычно основное место среди тепловых потерь котла и составляют qуг= 5… 12% располагаемой теплоты Qpp Для расчета Qyv используют формулу

Qy.г =Hуг – аy.гH°х в 

 
    Здесь Hуг, H°х в — энтальпии соответственно уходящих газов и теоретически необходимого холодного воздуха, МДж/кг (МДж/м3).

    Потери теплоты с уходящими газами зависят в основном от объема и температуры уходящих газов. Наибольшее внимание для снижения этих потерь следует уделять уменьшению коэффициента избытка воздуха ау.г в уходящих газах, который зависит от коэффициента избытка воздуха в топке ат и балластного воздуха ∆аподс за счет его подсосов в газоходы котла, находящиеся обычно под разрежением:

аy.г = ат + ∆аподс 

       Возможность снижения ат зависит от вида сжигаемого топлива, способа его сжигания, типа горелок и топочного устройства. При благоприятных условиях контактирования топлива и воздуха избыток воздуха ат необходимый для полного сгорания, может быть уменьшен. Принимается, что при сжигании газообразного топлива коэффициент избытка воздуха ат< 1,1, при сжигании мазута ат= 1,1, для пылевидного топлива ат= 1,2 и для кускового топлива ат= 1,3… 1,7.

    Подсосы воздуха по газовому тракту ∆аподс в пределе могут быть сведены к нулю в котла, работающих под наддувом, т.е. под давлением в дымовом тракте. Для котлов, работающих под разрежением, подсосы составляют ∆аподс= 0,15…0,3 и даже больше. Местами проникновения воздуха из окружающей среды в систему котла являются места прохода труб через обмуровку, уплотнения лючков, дверок, гляделок, холодная воронка, трещины и неплотности в обмуровке.

    Нередко высказывается мнение, что опасность, связанная с подсосами воздуха в топку незначительна, что можно использовать этот воздух для процесса горения. Такие суждения неверны. Дело в том, что большая часть воздуха подсосов засасывается в топку через небольшие неплотности стен топочной камеры, т.е. не может проникать глубоко внутрь топочной камеры. Двигаясь вблизи экранов, в зоне относительно невысоких температур этот воздух в горении участвует слабо. Таким образом, несмотря на достаточно высокое значение атна выходе из топки, основной процесс горения протекает с недостатком воздуха, часть топлива, не сгорая, выносится из топки, повышая температуру продуктов сгорания и создавая восстановительную среду внетопочного пространства. Повышение температуры частиц топлива (следовательно, и золы), а также образующаяся восстановительная среда усиливают процессы шлакования и загрязнения труб.

    Балластный воздух в продуктах сгорания помимо увеличения потерь теплоты Qy.г приводит также к дополнительным затратам электроэнергии на дымосос.

     Важнейшим фактором, влияющим на потери с уходящими газами Qy.г, является температура уходящих газов ty.г. Ее снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздушного подогревателя), так как чем ниже температура уходящих газов и, соответственно, меньше разность температур ∆t уходящих газов и нагреваемого рабочего тела (например, воздуха), тем большая площадь поверхности нагрева требуется для охлаждения продуктов сгорания.

    Повышение же температуры уходящих газов приводит к увеличению потери с Qy.г и, следовательно, к дополнительным затратам топлива ∆В на выработку одного и того же количества пара или горячей воды. В связи с этим оптимальная температура ty.г определяется на основе технико-экономических расчетов при сопоставлении годовых капитальных затрат на сооружение поверхности нагрева и затрат на топливо.

    Область температур от t’у.г до t”у.г, в которой расчетные затраты различаются незначительно. Это может служить основанием для выбора в качестве наиболее целесообразной температуры t”у.г, при которой начальные капитальные затраты будут ниже, чем при t‘у.г. Необходимая поверхность нагрева также будет меньше, т.е. теплообменник будет более компактным, что облегчает условия его обслуживания и ремонта. При выборе в качестве более целесообразной температуры t”у.г уменьшается также вероятность конденсации водяных паров, содержащихся в продуктах сгорания, и коррозии поверхности нагрева.

    С увеличением тепловой нагрузки котельного агрегата (увеличением расхода топлива В и выхода пара D потеря теплоты qy.г с уходящими газами возрастает. Это связано с тем, что с ростом нагрузки увеличивается количество выделенной теплоты в топке. Одновременно увеличиваются объем продуктов сгорания и их скорость в газоходах котла. При этом теплоотдача к конвективным поверхностям нагрева возрастает пропорционально увеличению скорости лишь в степени 0.6…0,8. Таким образом, тепловыделение превышает тепловосприятие, и температура уходящих газов с увеличением нагрузки повышается.

    При работе котла на твердом и жидком топливе поверхности нагрева могут загрязняться золой топлива. Это приводит к ухудшению теплообмена продуктов сгорания с поверхностями нагрева. Для сохранения заданной паропроизводительности в таком случае приходится увеличивать расход топлива. Загрязнение поверхностей нагрева приводит также к увеличению сопротивления газового тракта котла, и при недостаточной мощности дымососа нагрузка котла снижается. Для обеспечения нормальной эксплуатации агрегата необходимо систематически очищать его поверхности нагрева от загрязнений.

Добавить комментарий