Как рассчитать температуру нити лампы накаливания в номинальном режиме
Как известно, с увеличением температуры металла, его электрическое сопротивление растет. Для различных металлов, в связи с данным явлением, характерен свой температурный коэффициент сопротивления α, который можно без особого труда найти в справочнике.
Причина этого явления заключается в том, что тепловые колебания ионов кристаллической решетки металла с ростом температуры становится более интенсивными, и образующие ток электроны проводимости сталкиваются с ними чаще, расходуя больше энергии на эти соударения. А поскольку сам ток (по закону Джоуля-Ленца) приводит к нагреву проводника, то как только через проводник начинает течь ток — сразу начинает возрастать и сопротивление этого проводника.
Подобным образом возрастает сопротивление нити накаливания лампы, когда ее подключают к источнику питания. Давайте найдем температуру нити накаливания лампы в номинальном режиме ее работы.
Температурный коэффициент сопротивления вольфрама (из которого и изготовлена нить лампы накаливания) равен α = 0.0045/К, причем он связан с изменением сопротивления (вместе с изменением температуры) следующим соотношением:
R0-сопротивление нити накаливания при 0°С;
R-сопротивление нити накаливания при текущей температуре t.
Сопротивление R0 нити накаливания при 0°С нам не известно, его сейчас нужно косвенным путем определить. Для этого сначала при помощи мультиметра измерим сопротивление лампы при комнатной температуре.
Далее взглянем на комнатный термометр, и узнаем таким образом температуру воздуха в комнате.
Если принять, что холодная нить накаливания лампы имеет точно такую же температуру, что и воздух в комнате, то сопротивление лампы при 0°С легко определить по формуле:
Сюда необходимо подставить:
t-температура в комнате (по термометру);
Rk-сопротивление нити накаливания лампы при текущей температуре в комнате (измерим мультиметром).
Итак, теперь нам известно сопротивление R0 нити накаливания нашей лампы при 0°С. Теперь, зная номинальную мощность лампы и ее номинальное напряжение, определим чисто математическим путем ее номинальное сопротивление Rn по следующей известной формуле:
Подставим сюда данные, указанные прямо на лампе:
U-номинальное напряжение лампы;
P-номинальная мощность лампы.
Теперь приведем самую первую формулу к следующему виду, и подставим только что найденное номинальное сопротивление Rn, и сопротивление R0 при 0°С, которое было найдено выше, а также температурный коэффициент сопротивления α = 0.0045/К для вольфрама (взятый из справочника):
Вот мы и нашли реальную температуру нити накаливания лампы в рабочем состоянии, не измеряя ее прямо, а лишь зная номинальную мощность P, номинальное напряжение сети U, сопротивление в холодном состоянии Rk, комнатную температуру t и температурный коэффициент сопротивления вольфрама α.
Источник
Определить температуру проводника
Определить температуру холодильника
Определить температуру холодильника идеальной тепловой машины (C), если ее КПД составляет 9%, а.
Определить начальную температуру чёрного тела
При увеличении термодинамической температуры. Т черного тела в два раза длина волны λm, на.
Определить температуру в калориметре
Прошу дать подробное решение. В калориметре находится 4 кг. воды при температуре 291 К. В воду.
Определить температуру в калориметре
В калориметре находится 2 кг воды при температуре 282 К. В воду опускают электронагреватель.
Сначала находим сопротивление с закона Ома: R = U/I.
Потом используем зависимость сопротивления от температуры: .
— коэффициент зависимости сопротивления от температуры.
Добавлено через 2 минуты
— сопротивление при начальной температуре( может быть 0 или 20 градусов, или другое значение, которое наводится в таблице)
Альфа и Rо табличные величины.
Добавлено через 6 минут
Задача немного сложнее чем думал на первый взгляд, сейчас порешаю и напишу.
Добавлено через 49 секунд
Поправка Rо может быть найдена через табл. величины.
Добавлено через 2 минуты
Случайно длина проводника не наведена?
Решение
Итак начнём. Для решения этой задачи нужны след. законы и формулы:
1 — з. Ома — .
2 — зависимость сопротивления от длины, сечения и материала проводника — .
3 — зависимость сопротивления от изменения температуры — .
Температура которая нас интересует может быть найдена как + .
температура при которой измеряется начальное значение ро — (наведена в таблице).
При температуре 20 градусов Цельсия = 4,3 * 1/ .
Решение
Из (1) находим R. R = U/I. R = 5 Ом.
Из (2) находим . = . Переводить в десятичный дробь пока не будем, так как получится бесконечный дробь. Хотя если большая точность не нужна, можно его округлить и посчитать.
(3) же перепишем так, чтобы выразить дельта т. — .
Отсюда 390,4 гр. Цельсия. А температура алюминия 390,4 + 20 = 410. 4 градусов.
Вы мне очень помогли) спасибо
Добавлено через 9 минут
Спасибо огромное)
Определить температуру холодильника
В цикле Карно газ получил от нагревателя количество теплоты равное 500 Дж и совершил работу 100 Дж.
Определить температуру азота
При какой температуре (по шкале Кельвина) плотность азота будет 1.4 кг/м^3 при давлении 0.2 МПа? .
Определить начальную температуру газа
Объем газа, нагреваемого в изобарных условиях до температуры 280 К, увеличился в 1,4 раза.
Определить температуру идеального газа
:sorry: Не могу решить задачки помогите ребятки) 1-определить температуру идеального газа если.
Источник
Закон Джоуля-Ленца
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Закон Джоуля-Ленца
На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.
Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.
Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.
Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:
количество теплоты в проводнике снижается при увеличении площади его сечения;
тепловой эффект снижается при уменьшении длины проводника.
Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.
Природа тепла в проводниках
Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.
При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.
Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.
Теперь представим, что сечение проводника увеличилось. Конечно, столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.
Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.
Уравнение Джоуля-Ленца
Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.
Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.
Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:
Q = IUt = I(IR)t = I 2 Rt
Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.
Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:
Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:
Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.
Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:
При расчетах используют следующие единицы измерения:
количество тепла Q— в джоулях (Дж);
силу тока I — в амперах (А);
сопротивление R — в омах (Ом);
время t — в секундах (с).
Практическое применение
Применение на практике закона Джоуля-Ленца заключается в том, что тепловым действием электрического тока можно управлять, подбирая проводники с нужным сопротивлением. К примеру, для электрических нагревательных приборов, которые должны выделять максимум тепла, выбирают проводники с высоким сопротивлением.
Низкое сопротивление, напротив, позволяет проводнику практически не нагреваться при прохождении тока. Поэтому на промышленных предприятиях с усиленными требованиями к пожаробезопасности для прокладки линий электропередач используется медный кабель. Удельное сопротивление меди сечением 1 мм 2 равно 0,0175 Ом, в то время как у алюминия оно составляет 0,0271 Ом. Медь практически не нагревается, чем снижает риск возгораний.
Примеры задач
Задача 1
Электроплита подключена к сети с напряжением 220 В. Какое количество тепла выделит ее нагревательный элемент за 50 минут, если известно, что сила тока в цепи составляет 10 А.
Для того, чтобы рассчитать количество тепла, в данном случае подойдет интегральная формула Джоуля-Ленца Q = I 2 Rt, однако мы не знаем, чему равно сопротивление R. Однако согласно закону Ома R = U/I.
Вычислим сопротивление: R = U/I = 220/10 = 22 Ом.
Подставим имеющиеся данные в формулу:
Q = I 2 Rt = 10 2 × 22 × 3000 = 6 600 000 Дж = 6,6 МДж.
Ответ: плита выделит 6,6 мегаджоулей тепла.
Задача 2
Для обогрева дома требуется, чтобы отопительный прибор выделял 125 кДж тепла в час. Напряжение в электрической сети составляет 220 В. Каким должно быть электрическое сопротивление проводника, чтобы обеспечить данную теплоотдачу?
В данном случае подойдет уравнение
Ответ: сопротивление проводника 1393,92 Ом.
Источник
Как найти температуру через напряжение
§ 60. Зависимость сопротивления от температуры
Частицы проводника (молекулы, атомы, ионы), не участвующие в образовании тока, находятся в тепловом движении, а частицы, образующие ток, одновременно находятся в тепловом и в направленном движениях под действием электрического поля. Благодаря этому между частицами, образующими ток, и частицами, не участвующими в его образовании, происходят многочисленные столкновения, при которых первые отдают часть переносимой ими энергии источника тока вторым. Чем больше столкновений, тем меньше скорость упорядоченного движения частиц, образующих ток. Как видно из формулы I = enνS, снижение скорости приводит к уменьшению силы тока. Скалярная величина, характеризующая свойство проводника уменьшать силу тока, называется сопротивлением проводника. Из формулы закона Ома сопротивление Ом — сопротивление проводника, в котором получается ток силой в 1 а при напряжении на концах проводника в 1 в.
Сопротивление проводника зависит от его длины l, поперечного сечения S и материала, который характеризуется удельным сопротивлением Чем длиннее проводник, тем больше за единицу времени столкновений частиц, образующих ток, с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника. Чем меньше поперечное сечение проводника, тем более плотным потоком идут частицы, образующие ток, и тем чаще их столкновения с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника.
Под действием электрического поля частицы, образующие ток, между столкновениями движутся ускоренно, увеличивая свою кинетическую энергию за счет энергии поля. При столкновении с частицами, не образующими ток, они передают им часть своей кинетической энергии. Вследствие этого внутренняя энергия проводника увеличивается, что внешне проявляется в его нагревании. Рассмотрим, изменяется ли сопротивление проводника при его нагревании.
Рис. 81. Зависимость сопротивления металлов от температуры
В электрической цепи имеется моток стальной проволоки (струна, рис. 81, а). Замкнув цепь, начнем нагревать проволоку. Чем больше мы ее нагреваем, тем меньшую силу тока показывает амперметр. Ее уменьшение происходит от того, что при нагревании металлов их сопротивление увеличивается. Так, сопротивление волоска электрической лампочки, когда она не горит, приблизительно 20 ом, а при ее горении (2900° С) — 260 ом. При нагревании металла увеличивается тепловое движение электронов и скорость колебания ионов в кристаллической решетке, в результате этого возрастает число столкновений электронов, образующих ток, с ионами. Это и вызывает увеличение сопротивления проводника * . В металлах несвободные электроны очень прочно связаны с ионами, поэтому при нагревании металлов число свободных электронов практически не изменяется.
* ( Исходя из электронной теории, нельзя вывести точный закон зависимости сопротивления от температуры. Такой закон устанавливается квантовой теорией, в которой электрон рассматривается как частица, обладающая волновыми свойствами, а движение электрона проводимости через металл — как процесс распространения электронных волн, длина которых определяется соотношением де Бройля.)
Опыты показывают, что при изменении температуры проводников из различных веществ на одно и то же число градусов сопротивление их изменяется неодинаково. Например, если медный проводник имел сопротивление 1 ом, то после нагревания на 1°С он будет иметь сопротивление 1,004 ом, а вольфрамовый — 1,005 ом. Для характеристики зависимости сопротивления проводника от его температуры введена величина, называемая температурным коэффициентом сопротивления. Скалярная величина, измеряемая изменением сопротивления проводника в 1 ом, взятого при 0° С, от изменения его температуры на 1° С, называется температурным коэффициентом сопротивления α. Так, для вольфрама этот коэффициент равен 0,005 град -1 , для меди — 0,004 град -1 . Температурный коэффициент сопротивления зависит от температуры. Для металлов он с изменением температуры меняется мало. При небольшом интервале температур его считают постоянным для данного материала.
Выведем формулу, по которой рассчитывают сопротивление проводника с учетом его температуры. Допустим, что R0 — сопротивление проводника при 0°С, при нагревании на 1°С оно увеличится на αR0, а при нагревании на t° — на αRt° и становится R = R0 + αR0t°, или
Зависимость сопротивления металлов от температуры учитывается, например при изготовлении спиралей для электронагревательных приборов, ламп: длину проволоки спирали и допускаемую силу тока рассчитывают по их сопротивлению в нагретом состоянии. Зависимость сопротивления металлов от температуры используется в термометрах сопротивления, которые применяются для измерения температуры тепловых двигателей, газовых турбин, металла в доменных печах и т. д. Этот термометр состоит из тонкой платиновой (никелевой, железной) спирали, намотанной на каркас из фарфора и помещенной в защитный футляр. Ее концы включаются в электрическую цепь с амперметром, шкала которого проградуирована в градусах температуры. При нагревании спирали сила тока в цепи уменьшается, это вызывает перемещение стрелки амперметра, которая и показывает температуру.
Величина, обратная сопротивлению данного участка, цепи, называется электрической проводимостью проводника (электропроводностью). Электропроводность проводника Чем больше проводимость проводника, тем меньше его сопротивление и тем лучше он проводит ток. Наименование единицы электропроводности Проводимость проводника сопротивлением 1 ом называется сименс.
При понижении температуры сопротивление металлов уменьшается. Но есть металлы и сплавы, сопротивление которых при определенной для каждого металла и сплава низкой температуре резким скачком уменьшается и становится исчезающе малым — практически равным нулю (рис. 81, б). Наступает сверхпроводимость — проводник практически не обладает сопротивлением, и раз возбужденный в нем ток существует долгое время, пока проводник находится при температуре сверхпроводимости (в одном из опытов ток наблюдался более года). При пропускании через сверхпроводник тока плотностью 1200 а /мм 2 не наблюдалось выделения количества теплоты. Одновалентные металлы, являющиеся наилучшими проводниками тока, не переходят в сверхпроводящее состояние вплоть до предельно низких температур, при которых проводились опыты. Например, в этих опытах медь охлаждали до 0,0156°К, золото — до 0,0204° К. Если бы удалось получить сплавы со сверхпроводимостью при обычных температурах, то это имело бы огромное значение для электротехники.
Согласно современным представлениям, основной причиной сверхпроводимости является образование связанных электронных пар. При температуре сверхпроводимости между свободными электронами начинают действовать обменные силы, отчего электроны образуют связанные электронные пары. Такой электронный газ из связанных электронных пар обладает иными свойствами, чем обычный электронный газ — он движется в сверхпроводнике без трения об узлы кристаллической решетки.
Задача 24. Для изготовления спиралей электрической плитки мастерская получила моток нихромозой проволоки, на бирке которой было написано: «Масса 8,2 кг,Λ диаметр 0,5 мм«. Определить, сколько спиралей можно изготовить из этой проволоки, если сопротивление спирали, не включенной в сеть, должно быть 22 ома. Плотность нихрома 8200 кг /м 3 .
Отсюда где S = πr 2 ; S = 3,14*0,0625 мм 2 ≈ 2*10 -7 м 2 .
Масса проволоки m = ρ1V, или m = ρ1lS, отсюда
Задача 25. При температуре 20° С вольфрамовая спираль электрической лампочки имеет сопротивление 30 ом; при включении ее в сеть постоянного тока с напряжением 220 в по спирали идет ток 0,6 а. Определить температуру накала нити лампочки и напряженность стационарного электрического поля в нити лампы, если ее длина 550 мм.
Сопротивление спирали при горении лампы определим из формулы закона Ома для участка цепи:
тогда
Напряженность стационарного поля в нити лампы
Источник
Содержание
- Простейшие электрические расчеты нагревательных элементов
- Определить температуру проводника
- Решение
- Решение
Простейшие электрические расчеты нагревательных элементов
Электронагреватели широко используются в бытовых электроприборах: чайниках, утюгах, каминах, плитках, паяльниках и т. д. Тепловое действие тока. При прохождении электрического тока через неподвижные металлические проводники единственным результатом работы тока является нагревание этих проводников, и, следовательно,по закону сохранения энергии вся работа, совершенная током, превращается в тепло.
Работа (в джоулях), совершаемая током при прохождении его через участок цепи, вычисляется по формуле:
- U — напряжение, В;
- I — сила тока, А;
- t- время, с.
Количество теплоты (Дж), выделенное в проводнике при прохождении по нему электрического тока, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока и вычисляется по закону Джоуля — Ленца:
где R — сопротивление проводника, Ом.
Произведем расчет количества теплоты, необходимой для того, чтобы вскипятить воду в чайнике, вмещающем 2 л. Напряжение сети U=220 В. Ток, потребляемый электрочайником, I= 4 А. Определить время закипания воды в чайнике, если КПД его 80% и начальная температура воды 20° С.
- U=220 В;
- I=4 А;
- m=2 кг;
- КПД=0,8;
- t=20° С;
- tкип = 100° С.
- Удельная теплоемкость воды С=4200.
Определим количество теплоты, необходимое для нагрева воды до температуры кипения.
Qпол = cm (tкип — t0) = 4200 * 2(100 — 20) = 672 000 Дж.
Определим общее количество теплоты, которое должен выделить нагревательный элемент электрочайника, с учетом потерь на нагрев керамики, корпуса чайника и внешней среды:
Определим время закипания воды в чайнике:
Отсюда находим t;
Мощность электрического тока. Зная работу, совершаемую током за некоторый промежуток времени, можно рассчитать и мощность тока, под которой, так же как и в механике, понимают работу, совершаемую за единицу времени. Из формулы, определяющей работу постоянного тока А = U//t, следует, что мощность его (Р) равна:
Нередко говорят о мощности электрического тока, потребляемой от сети, желая этим выразить мысль, что при помощи электрического тока (за счет тока) нагреваются утюги, электроплитки и т. д.
В соответствии с этим на приборах нередко обозначается их мощность, т. е. мощность тока, необходимая для нормального действия этих приборов. Так, например, для нормальной работы электроплитки на 220 В мощностью 500 Вт требуется ток около 2,3 А при напряжении 220 В (2.3 * 220 = 500).
На практике применяют более крупные единицы мощности: 1 гВт (гектоватт) = 100 Вт и 1 кВт (киловатт) = 1000 Вт.
Таким образом, 1 Вт есть мощность, выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.
Единица работы, совершаемой электрическим током в течение 1 с при помощи 1 Вт, называется ватт-секундой, или иначе джоулем. Применяют и более крупные единицы работы: 1 гектоватт-час (гВт*ч) или 1 киловатт-час (кВт*ч), который равен работе, совершаемой электрическим током в течение 1 ч при мощности 1 кВт.
Длину и диаметр проволоки нагревательного элемента рассчитывают исходя из величины напряжения сети и заданной мощности нагревательного элемента. Сила тока при данном напряжении и мощности определяется по формуле:
омическое сопротивление проводника всегда вычисляется по формуле:
Зная величину тока, можно найти диаметр и сечение проволоки.
Основные данные для расчета нагревательных элементов:
Допустимая сила тока, А |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Диаметр нихромовой проволоки при температуре 700° С, мм |
0,17 | 0,3 | 0,45 | 0,55 | 0,65 | 0,75 | 0,85 |
Площадь поперечного сечения проволоки, мм2 |
0,0227 | 0,0707 | 0,159 | 0,238 | 0,332 | 0,442 | 0,57 |
Подставляя полученные значения в формулу:
где: l — длина проволоки, м; S — сечение проволоки, мм^2; R — сопротивление проволоки, Ом; р-удельное сопротивление проволоки (для нихрома р = 1,1, для фехраля р =1,3), Ом*мм^2/м, получим необходимую длину проволоки для нагревательного элемента.
Пример. Определить длину проволоки из нихрома для нагревательного элемента плитки мощностью Р = 600 Вт при напряжении сети U = 220 В.
По этим данным находим диаметр и сечение проволоки: d= 0,45 мм, S = 0,159 мм^2. Тогда длина проволоки будет равна:
Точно так же можно рассчитать нагревательные элементы и для других электронагревательных приборов.
Примечание. При эксплуатации электрорадиотехнической аппаратуры необходимо знать сечение монтажных проводов — в зависимости от величины проходящего по ним тока. В таблице приведены максимально допустимые токи нагрузки для медных проводов различного сечения.
Допустимые токи нагрузки медных проводов (монтажных):
Параметр | Сечение провода, мм^2 | ||||||||||||||
0,05 | 0,07 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,7 | 1 | 1 ,5 | 2 | 2,5 | 4 | 6 | 10 | |
Наибольший допустимый ток, А |
0,7 | 1 | 1,3 | 2,5 | 3,5 | 4 | 5 | 7 | 10 | 14 | 17 | 20 | 25 | 30 | 54 |
Литература: В. Г. Бастанов. 300 практических советов, 1986г.
Источник
Определить температуру проводника
Определить температуру холодильника
Определить температуру холодильника идеальной тепловой машины (C), если ее КПД составляет 9%, а.
Определить начальную температуру чёрного тела
При увеличении термодинамической температуры. Т черного тела в два раза длина волны λm, на.
Определить температуру в калориметре
Прошу дать подробное решение. В калориметре находится 4 кг. воды при температуре 291 К. В воду.
Определить температуру в калориметре
В калориметре находится 2 кг воды при температуре 282 К. В воду опускают электронагреватель.
Сначала находим сопротивление с закона Ома: R = U/I.
Потом используем зависимость сопротивления от температуры: .
— коэффициент зависимости сопротивления от температуры.
Добавлено через 2 минуты
— сопротивление при начальной температуре( может быть 0 или 20 градусов, или другое значение, которое наводится в таблице)
Альфа и Rо табличные величины.
Добавлено через 6 минут
Задача немного сложнее чем думал на первый взгляд, сейчас порешаю и напишу.
Добавлено через 49 секунд
Поправка Rо может быть найдена через табл. величины.
Добавлено через 2 минуты
Случайно длина проводника не наведена?
Сообщение было отмечено Nushkaa как решение
Решение
Итак начнём. Для решения этой задачи нужны след. законы и формулы:
1 — з. Ома — .
2 — зависимость сопротивления от длины, сечения и материала проводника — .
3 — зависимость сопротивления от изменения температуры — .
Температура которая нас интересует может быть найдена как + .
температура при которой измеряется начальное значение ро — (наведена в таблице).
При температуре 20 градусов Цельсия = 4,3 * 1/ .
Сообщение было отмечено Nushkaa как решение
Решение
Из (1) находим R. R = U/I. R = 5 Ом.
Из (2) находим . = . Переводить в десятичный дробь пока не будем, так как получится бесконечный дробь. Хотя если большая точность не нужна, можно его округлить и посчитать.
(3) же перепишем так, чтобы выразить дельта т. — .
Отсюда 390,4 гр. Цельсия. А температура алюминия 390,4 + 20 = 410. 4 градусов.
Вы мне очень помогли) спасибо
Добавлено через 9 минут
Спасибо огромное)
Заказываю контрольные, курсовые, дипломные и любые другие студенческие работы здесь.
Определить температуру холодильника
В цикле Карно газ получил от нагревателя количество теплоты равное 500 Дж и совершил работу 100 Дж.
Определить температуру азота
При какой температуре (по шкале Кельвина) плотность азота будет 1.4 кг/м^3 при давлении 0.2 МПа? .
Определить начальную температуру газа
Объем газа, нагреваемого в изобарных условиях до температуры 280 К, увеличился в 1,4 раза.
Определить температуру идеального газа
:sorry: Не могу решить задачки помогите ребятки) 1-определить температуру идеального газа если.
Источник
Как определить температуру, на которую нагреется провод под напряжением?
Мастер
(1516),
закрыт
7 лет назад
Допустимое отклонение
Искусственный Интеллект
(111186)
7 лет назад
Найти выделяемое тепло не проблема, Джоуль с Ленцем наглядно показали, что Q=I^Rt,зная теплоёмкость и параметры проволоки можно найти с какой скоростью провод нагревается. Нагрев прекратится, когда тепло, отдаваемое излучением и уносимое воздухом будет равно выделяемому за то же время на проводе, наступит баланс. Но вот проблема-если найти излучение для известной температуры не сложно с рядом допущений, то как рассчитать тепло, уносимое воздушной конвекцией – х/з.
Шишулин Денис
Мыслитель
(6975)
7 лет назад
Надо взять справочник, и там изыскать удельное сопротивление нихрома, а также его теплоёмкость. Также было бы неплохо знать форму сечения провода, но можно предположить, что он, проводник, круглый.
Зная удельное сопротивление, рассчитать сопротивление конкретного провода, поделить напряжение на сопротивление, и получить ток.
Исходя из тока, можно определить электрическую мощность конструкции (P = U*I), в ваттах. Ватты есть джоули за секунду.
Посчитать объём провода (тут-то и пригодится форма проводника – если круглый, то считайте объём цилиндра, диаметр найдёте из сечения). Это и есть объём нихрома. Из объёма и плотности посчитаете массу.
Далее, по закону Джоуля-Ленца рассчитать выделяемую теплоту, и написать, что пренебрегаем потерями (что в корне неверно).
Известно, что ток, проходящий через электрическую лампу в момент включения, в двенадцать раз превышает рабочий ток. Температура лампы до включения 25 градусов Цельсия. Температурный коэффициент сопротивления вольфрама 5,1×10-3град-1
Необходимо определить температуру вольфрамовой нити накаливания электрической лампы в рабочем состоянии.
Дано: n=12; t°1=25°C; α=5,1×10-3град-1
Найти: t°2-?
Решение
Применив закон Ома, запишем формулы для тока включения I1 и рабочего тока I2
, а ,
где U – напряжение на лампе; R1 и R2 — сопротивление нити накаливания лампы, соответственно при температурах t°1 и t°2.
Находим отношение данных токов:
Для определения R1 и R2 воспользуемся следующей формулой:
, тогда
,
,
.
Так как , то .
Получаем формулу для определения рабочей температуры нити накаливания лампы
Ответ: в рассматриваемом примере температура вольфрамовой нити накаливания электрической лампы в рабочем режиме равна 2157 градусов Цельсия.
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Температура проводника с током
Дата публикации: 12 февраля 2015. Категория: Статьи.
Все проводники при прохождении по ним электрического тока нагреваются и отдают тепло окружающей среде (воздуху, жидкости, твердому телу). Температура нагрева проводника будет повышаться до тех пор, пока количество тепла, получаемое проводником, не станет равным количеству тепла, отдаваемому проводником окружающей среде. Температура нагрева проводника зависит от тока в проводнике, сечения и материала проводника и условий охлаждения. При заданных токе и материале проводника температура нагрева не зависит от его длины, так как чем больше длина, тем больше поверхность охлаждения.
Если выбрать проводник из определенного материала и поместить его в определенные условия охлаждения, то нагрев такого проводника током будет больше, чем больше плотность тока в самом проводнике.
В целях экономии материала стараются пропустить по проводнику наибольший ток, но для каждого проводника существует температура, выше который проводник нельзя нагревать по ряду причин. Так, например, проводники, имеющие в качестве изоляции резину и хлопчатобумажную оплетку, в целях предохранения изоляции от порчи не должны нагреваться выше 50 °С. Поэтому в зависимости от сечения проводники выбирают на определенную плотность тока. Например, наибольшая допустимая плотность тока для изолированных проводов и кабелей, проложенных не в земле, в зависимости от сечения, показана в таблице 1.
Таблица 1
Допустимая плотность тока для изолированных медных проводов
Сечение в мм² | Ток в А | Плотность тока в А/мм² | Сечение в мм² | Ток в А | Плотность тока в А/мм² |
0,75 1 1,5 2,5 4 6 10 16 25 35 | 13 15 20 27 36 46 68 92 123 152 | 17,4 15,0 13,3 10,8 9,0 7,7 6,8 5,7 4,9 4,3 | 50 70 95 120 150 185 240 300 400 | 192 242 292 342 392 450 532 614 737 | 3,8 3,5 3,1 2,8 2,6 2,4 2,2 2,0 1,8 |
Как видно из таблицы, плотность тока с увеличением сечения проводников уменьшается. Это объясняется тем, что проводники небольших сечений, нагреваясь отдают свое тепло окружающей среде, в то время как внутренние слои проводника большого сечения, нагреваясь, свое тепло могут передавать только соседним слоям проводника, которые сами уже нагреты.
Неизолированные («голые») провода благодаря лучшему охлаждению допускают большие величины плотности тока (таблица 2).
Таблица 2
Допустимая плотность тока для изолированных проводов
Сечение в мм² | В закрытом помещении | На воздухе | ||
ток в А | плотность тока в А/мм² | ток в А | плотность тока в А/мм² | |
4 6 10 16 25 35 50 70 95 | 57 73 103 130 165 210 265 340 410 | 14,2 12,2 10,3 8,1 6,6 6,0 5,3 4,8 4,3 | 58 76 108 150 205 270 335 425 510 | 14,5 12,6 10,8 9,4 8,2 7,7 6,7 6,1 5,4 |
Следует отметить, что если медный изолированный провод сечением 25 мм² допускает ток 123 А, то сечение алюминиевого провода при том же токе нужно брать не 25 мм², а в 1,5 раза больше, так как иначе провод будет перегреваться вследствие большого удельного сопротивления алюминия.
Энергия электрического тока, расходуемая на нагревание проводов, теряется бесполезно. Поэтому при расчете проводов тепловые потери стараются свести не более чем к 5 – 10 % от всей энергии.
Но не всегда нагрев проводника является нежелательным. Тепловые действия электрического тока имеют многочисленное практическое применение, и тепло, выделяемое током, проходящим по проводнику, часто стараются получить в большом количестве. В следующих статьях описаны некоторые случаи практического применения тепловых действий тока.
Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.
Закон Джоуля-Ленца
На основании этого и других экспериментов можно сделать следующие предположения:
- чем больше сопротивление, тем сильнее нагреваются проводники. То есть количество теплоты Q, которое выделяется при протекании электрического тока по проводнику, прямо пропорционально величине сопротивления проводника R;
- чем больше сила тока, тем большее количества тепла выделяется. При возрастании тока большее количество частиц проходит через поперечное сечение проводника в единицу времени, то есть число столкновений возрастает, а значит больше энергии передается атомам проводника.
Формулу для вычисления количества тепла получили независимо друг от друга в 1842 г. английский физик Джеймс Джоуль и российский ученый Эмилий Ленц:
Q — количество теплоты, Дж;
Согласно закону Ома:
где U — напряжение, В.
Пользуясь этой формулой, закон Джоуля-Ленца может быть представлен еще в одном варианте, когда известно напряжение на участке проводника, а сила тока неизвестна:
Формулы закона Джоуля-Ленца справедливы тогда, когда работа, совершаемая электрическим током идет исключительно на нагревание. Если в цепи есть потребление энергии на выполнение механической работы (электродвигатель) или на совершение химических реакций (электролит), то для расчета необходимо применять другие формулы.
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Простейшие электрические расчеты нагревательных элементов
Электронагреватели широко используются в бытовых электроприборах: чайниках, утюгах, каминах, плитках, паяльниках и т. д. Тепловое действие тока. При прохождении электрического тока через неподвижные металлические проводники единственным результатом работы тока является нагревание этих проводников, и, следовательно,по закону сохранения энергии вся работа, совершенная током, превращается в тепло.
Работа (в джоулях), совершаемая током при прохождении его через участок цепи, вычисляется по формуле:
- U — напряжение, В;
- I — сила тока, А;
- t- время, с.
Количество теплоты (Дж), выделенное в проводнике при прохождении по нему электрического тока, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока и вычисляется по закону Джоуля — Ленца:
где R — сопротивление проводника, Ом.
Произведем расчет количества теплоты, необходимой для того, чтобы вскипятить воду в чайнике, вмещающем 2 л. Напряжение сети U=220 В. Ток, потребляемый электрочайником, I= 4 А. Определить время закипания воды в чайнике, если КПД его 80% и начальная температура воды 20° С.
- U=220 В;
- I=4 А;
- m=2 кг;
- КПД=0,8;
- t=20° С;
- tкип = 100° С.
- Удельная теплоемкость воды С=4200.
Определим количество теплоты, необходимое для нагрева воды до температуры кипения.
Qпол = cm (tкип — t0) = 4200 * 2(100 — 20) = 672 000 Дж.
Определим общее количество теплоты, которое должен выделить нагревательный элемент электрочайника, с учетом потерь на нагрев керамики, корпуса чайника и внешней среды:
§ 28. НАГРЕВ ПРОВОДНИКОВ ЭЛЕКТРИЧЕСКИМ ТОКОМ
Содержание вперед >
Все проводники при прохождении по ним электрического тока нагреваются и отдают тепло окружающей среде (воздуху, жидкости, твердому телу). Температура проводника будет повышаться до тех пор, пока количество тепла, получаемое проводником, не станет равным количеству тепла, отдаваемому проводником окружающей среде. При этом температура достигнет установившегося значения.
Температура нагрева проводника зависит от величины тока в проводнике, сечения и материала проводника и условий охлаждения. Температура нагрева проводника не зависит от его длины, так как чем больше длина, тем больше поверхность охлаждения.
Если выбрать проводник из какого-либо материала и поместить его в определенные условия охлаждения, то нагрев такого проводника током будет тем больше, чем больше плотность тока в самом проводнике.
В целях экономии проводникового материала желательно, чтобы проводник был нагружен наибольшим током. Но для каждого проводника существует температура, выше которой проводник нельзя нагревать по целому ряду причин, в первую очередь по условиям теплостойкости изоляции. Так, например, проводники, имеющие в качестве изоляции резину, в целях предохранения изоляции от порчи не должны нагреваться выше 65°, а проводники с бумажной изоляцией — свыше 80°.
Приведем табл. 8 для выбора сечения проводов по длительно допустимой нагрузке на открыто проложенные изолированные шнуры, провода и кабели [4] с медными токопроводящими жилами с резиновой или полихлорвиниловой изоляцией при температуре окружающей среды +25°С и допустимой температуре нагрева + 55° С.
Выбор сечений проводов, кабелей и шин производят по наибольшему длительно допустимому току нагрузки (по условиям нагрева) и проверяют по потере напряжения.
Выбор сечения по току производят по таблицам, приведенным в «Правилах устройств электротехнических установок» (ПУЭ), которыми надлежит руководствоваться при проектировании, монтаже и эксплуатации электрооборудования.
Для того чтобы в условиях эксплуатации обеспечить определенную величину напряжения у потребителей, надо ограничить допустимую величину потери напряжения в проводах и кабелях, по которым энергия передается потребителям.
Уменьшение напряжения у потребителя ниже номинального приводит к уменьшению освещенности на рабочих местах, а также к уменьшению вращающего момента двигателей. Допустимая потеря напряжения для осветительных сетей внутренней проводки составляет не более 2,5%, в силовых сетях от питательного пункта до приемника —5 —10%.
Пример 3.
Двигатель постоянного тока, работая в продолжительном режиме работы, потребляет ток 65
а
при напряжении 220
в.
Двигатель расположен на расстоянии 20
м
от питательного пункта.
Выбрать сечение медных проводов с резиновой изоляцией, проложенных открыто.
По таблице допустимых нагрузок (см. табл. находим, что по току 6Ь а
можно выбрать провод сечением 10
мм^.
Проверяем выбранное сечение провода по потере напряжения.
Потеря напряжения в линии (2 провода) будет:
Это составляет что вполне допустимо.
Однако не всегда нагрев проводника является нежелательным. Тепловые действия электрического тока имеют разнообразное практическое применение, и тепло, выделяемое током, проходящим по проводнику, часто стараются получить в большом количестве. Ниже описаны некоторые случаи практического применения тепловых действий тока.
[4] Кабелем называют провод, состоящий из нескольких жил, свитых из медных или алюминиевых проволок и окруженных изолирующими и защитными оболочками. Кабели применяют для подземных и подводных линий.
Содержание вперед >
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Закон Джоуля-Ленца
В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.
Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:
Q — количество выделяемого тепла (Джоули)
I — сила тока, протекающего через проводник (Амперы)
R — сопротивление проводника (Омы)
t — время прохождения тока через проводник (Секунды)
Закон Джоуля — Ленца. Расчет сечения проводов по допустимому нагреву
1.Закон Джоуля — Ленца. Электрический ток — это упорядоченное движение электрически заряженных частиц, которые при движении сталкиваются с атомами и молекулами вещества, отдавая им часть своей кинетической энергии. В результате проводник нагревается и электрическая энергия в проводниках преобразуется в тепловую. Скорость преобразования электрической энергии в тепловую характеризуется мощностью
. Таким образом, количество электрической энергии W, преобразуемое в тепловую энергию за время t, . (5.1.)
По этой формуле определяется и количество выделенной в проводнике теплоты, выраженное в джоулях:
. Формула является математическим выражением закона Джоуля — Ленца:
количество электрической энергии, преобразуемой в проводнике в тепловую энергию, пропорционально квадрату тока, электрическому сопротивлению проводника и времени прохождения тока.
2. Расчет электронагревательных приборов. Тепловое действие электрического тока используется в электронагревательных приборах: электрических печах, сушильных шкафах, электроплитах т. д.
В лампах накаливания электрический ток разогревает нить до такой температуры, что она начинает излучать свет. Количество выделенной теплоты прямо пропорционально сопротивлению проводника. Поэтому обмотки электронагревательных приборов изготовляются из сплавов высокого сопротивления (нихрома, фехраля и др.). Чем больше плотность тока
, тем выше при прочих равных условиях температура проводника. Плотность тока в нихромовой проволоке для электропечей принимают в пределах Плотность тока в нихромовой проволоке реостатов берется в пределах .
Упрощенный расчет электронагревательного прибора производится следующим образом: а) по заданной мощности Р и напряжению U определяют ток
, а затем сопротивление обмотки нагревательного прибора б) по току I и допустимой плотности находят поперечное сечение провода обмотки и округляют его до стандартного; в) по формуле определяют длину обмотки нагревательного прибора. Температура включенных электронагревательных элементов зависит от условий охлаждения (например, электрокипятильники нельзя включать в сеть без предварительного погружения в воду).
Почему греется проводник
Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.
Из формулы также следует – чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге – подгорание с последующим пропаданием контакта.
Основные причины нагрева кабелей и проводов
Чтобы понять причину нагрева электрической проводки, необходимо вспомнить азы электротехники. Электрический ток – это упорядоченное движение свободных электронов, на пути которых возникают другие атомы вещества. Определённое количество таких атомов называется электрическим сопротивлением. При слишком большом сопротивлении, увеличивается температура материала.
Данный принцип успешно применяется, например, в водонагревателях. В других бытовых приборах или электрической сети необходимо наоборот, снизить нагрев проводников – довести его до номинального уровня.
Основные причины нагрева кабелей и проводов:
- Главная причина, почему происходит нагрев провода – это выбор его неправильного сечения. При выборе малого сечения проводов, что преследует практически всех горе-электриков, и неизменной силе тока, происходит быстрое повышение температуры кабеля. Такой же принцип в водопроводных трубах – чем больше диаметр, тем больший напор воды.
- Перегрев линии возникает при неправильном монтаже. Например, незначительное короткое замыкание, на которое не срабатывает автоматический выключатель с завышенными номинальными параметрами. Автомат не размыкает линию – кабель продолжает греться, и через некоторое время прогорает.
- Некачественное место соединения или окисление контактов. Очень быстро окисляются алюминиевые провода, места соединения которых следует проверять чаще медных. Чтобы не беспокоиться за качество скрутки, лучше воспользоваться специальными клеммниками или тщательно пропаять кабели.
- Использование кабеля или провода низкого качества. Сейчас рынок электротехники стремительно наполняется продукцией из Кореи и Китая, качество которой оставляет желать лучшего. Такой кабель, даже при правильном монтаже, сам по себе может стать причиной нагрева и возгорания.
Применение закона Джоуля-Ленца в жизни
Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.
Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.
Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку